Automatic Detection of Retinal Lesions for Screening of Diabetic Retinopathy

Objective: Diabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include micro-aneurysms, hemorrhages, exudates, etc. Detection of these lesions plays a significant role for early diagnosis of DR. Methods: To this...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 65; no. 3; pp. 608 - 618
Main Authors Kar, Sudeshna Sil, Maity, Santi P.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2017.2707578

Cover

Abstract Objective: Diabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include micro-aneurysms, hemorrhages, exudates, etc. Detection of these lesions plays a significant role for early diagnosis of DR. Methods: To this aim, this paper proposes a novel and automated lesion detection scheme, which consists of the four main steps: vessel extraction and optic disc removal, preprocessing, candidate lesion detection, and postprocessing. The optic disc and the blood vessels are suppressed first to facilitate further processing. Curvelet-based edge enhancement is done to separate out the dark lesions from the poorly illuminated retinal background, while the contrast between the bright lesions and the background is enhanced through an optimally designed wideband bandpass filter. The mutual information of the maximum matched filter response and the maximum Laplacian of Gaussian response are then jointly maximized. Differential evolution algorithm is used to determine the optimal values for the parameters of the fuzzy functions that determine the thresholds of segmenting the candidate regions. Morphology-based postprocessing is finally applied to exclude the falsely detected candidate pixels. Results and Conclusions: Extensive simulations on different publicly available databases highlight an improved performance over the existing methods with an average accuracy of 97.71 % and robustness in detecting the various types of DR lesions irrespective of their intrinsic properties.
AbstractList Diabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include microaneurysms, hemorrhages, exudates, etc. Detection of these lesions plays a significant role for early diagnosis of DR.OBJECTIVEDiabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include microaneurysms, hemorrhages, exudates, etc. Detection of these lesions plays a significant role for early diagnosis of DR.To this aim, this paper proposes a novel and automated lesion detection scheme, which consists of the four main steps: vessel extraction and optic disc removal, preprocessing, candidate lesion detection, and postprocessing. The optic disc and the blood vessels are suppressed first to facilitate further processing. Curvelet-based edge enhancement is done to separate out the dark lesions from the poorly illuminated retinal background, while the contrast between the bright lesions and the background is enhanced through an optimally designed wideband bandpass filter. The mutual information of the maximum matched filter response and the maximum Laplacian of Gaussian response are then jointly maximized. Differential evolution algorithm is used to determine the optimal values for the parameters of the fuzzy functions that determine the thresholds of segmenting the candidate regions. Morphology-based postprocessing is finally applied to exclude the falsely detected candidate pixels.METHODSTo this aim, this paper proposes a novel and automated lesion detection scheme, which consists of the four main steps: vessel extraction and optic disc removal, preprocessing, candidate lesion detection, and postprocessing. The optic disc and the blood vessels are suppressed first to facilitate further processing. Curvelet-based edge enhancement is done to separate out the dark lesions from the poorly illuminated retinal background, while the contrast between the bright lesions and the background is enhanced through an optimally designed wideband bandpass filter. The mutual information of the maximum matched filter response and the maximum Laplacian of Gaussian response are then jointly maximized. Differential evolution algorithm is used to determine the optimal values for the parameters of the fuzzy functions that determine the thresholds of segmenting the candidate regions. Morphology-based postprocessing is finally applied to exclude the falsely detected candidate pixels.Extensive simulations on different publicly available databases highlight an improved performance over the existing methods with an average accuracy of and robustness in detecting the various types of DR lesions irrespective of their intrinsic properties.RESULTS AND CONCLUSIONSExtensive simulations on different publicly available databases highlight an improved performance over the existing methods with an average accuracy of and robustness in detecting the various types of DR lesions irrespective of their intrinsic properties.
Diabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include microaneurysms, hemorrhages, exudates, etc. Detection of these lesions plays a significant role for early diagnosis of DR. To this aim, this paper proposes a novel and automated lesion detection scheme, which consists of the four main steps: vessel extraction and optic disc removal, preprocessing, candidate lesion detection, and postprocessing. The optic disc and the blood vessels are suppressed first to facilitate further processing. Curvelet-based edge enhancement is done to separate out the dark lesions from the poorly illuminated retinal background, while the contrast between the bright lesions and the background is enhanced through an optimally designed wideband bandpass filter. The mutual information of the maximum matched filter response and the maximum Laplacian of Gaussian response are then jointly maximized. Differential evolution algorithm is used to determine the optimal values for the parameters of the fuzzy functions that determine the thresholds of segmenting the candidate regions. Morphology-based postprocessing is finally applied to exclude the falsely detected candidate pixels. Extensive simulations on different publicly available databases highlight an improved performance over the existing methods with an average accuracy of and robustness in detecting the various types of DR lesions irrespective of their intrinsic properties.
Objective: Diabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include micro-aneurysms, hemorrhages, exudates, etc. Detection of these lesions plays a significant role for early diagnosis of DR. Methods: To this aim, this paper proposes a novel and automated lesion detection scheme, which consists of the four main steps: vessel extraction and optic disc removal, preprocessing, candidate lesion detection, and postprocessing. The optic disc and the blood vessels are suppressed first to facilitate further processing. Curvelet-based edge enhancement is done to separate out the dark lesions from the poorly illuminated retinal background, while the contrast between the bright lesions and the background is enhanced through an optimally designed wideband bandpass filter. The mutual information of the maximum matched filter response and the maximum Laplacian of Gaussian response are then jointly maximized. Differential evolution algorithm is used to determine the optimal values for the parameters of the fuzzy functions that determine the thresholds of segmenting the candidate regions. Morphology-based postprocessing is finally applied to exclude the falsely detected candidate pixels. Results and Conclusions: Extensive simulations on different publicly available databases highlight an improved performance over the existing methods with an average accuracy of 97.71 % and robustness in detecting the various types of DR lesions irrespective of their intrinsic properties.
Author Kar, Sudeshna Sil
Maity, Santi P.
Author_xml – sequence: 1
  givenname: Sudeshna Sil
  surname: Kar
  fullname: Kar, Sudeshna Sil
  organization: Department of Information TechnologyIndian Institute of Engineering Science and Technology
– sequence: 2
  givenname: Santi P.
  orcidid: 0000-0002-1075-3829
  surname: Maity
  fullname: Maity, Santi P.
  email: santipmaity@it.iiests.ac.in
  organization: Department of Information Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28541892$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1URNPCD0BIaKVeuGzw-GNtH9u0BaQgJAhny-vMgqvNOtjeQ_49uyTtoQdOI4-eZ0ae94KcDXFAQt4CXQJQ83Fz8_VuySioJVNUSaVfkAVIqWsmOZyRBaWga8OMOCcXOT9MT6FF84qcMy0FaMMWZH09lrhzJfjqFgv6EuJQxa76jiUMrq_WmKdOrrqYqh8-IQ5h-DUDt8G1OGv_yLh35ffhNXnZuT7jm1O9JD_v7zarz_X626cvq-t17bkwpfZeI7boGaPKGaEVFdAK13SNk9vOS99Q9KBQUCYNwJaKVqLTkjnKpWsUvyQfjnP3Kf4ZMRe7C9lj37sB45gtGMqh0YLLCb16hj7EMU0_y5aBEkIJJsVEvT9RY7vDrd2nsHPpYB_vNAFwBHyKOSfsnhCgds7CzlnYOQt7ymJy1DPHh-LmA5fkQv9f893RDIj4tEkZzhkA_wtXc5Ss
CODEN IEBEAX
CitedBy_id crossref_primary_10_1007_s10792_024_03279_3
crossref_primary_10_1080_03772063_2022_2138577
crossref_primary_10_1615_CritRevBiomedEng_2022041571
crossref_primary_10_1007_s11042_022_12968_z
crossref_primary_10_1038_s41598_021_97649_x
crossref_primary_10_1167_tvst_12_1_22
crossref_primary_10_1016_j_jksuci_2021_06_006
crossref_primary_10_1007_s42600_023_00298_4
crossref_primary_10_1007_s11831_023_09998_7
crossref_primary_10_1016_j_procs_2019_12_110
crossref_primary_10_1016_j_bspc_2022_103536
crossref_primary_10_1016_j_bspc_2022_104149
crossref_primary_10_1007_s11390_019_1977_x
crossref_primary_10_1007_s40200_023_01220_6
crossref_primary_10_1002_ima_70015
crossref_primary_10_1016_j_compbiomed_2022_106277
crossref_primary_10_1016_j_eswa_2023_119557
crossref_primary_10_2139_ssrn_4183380
crossref_primary_10_1007_s00779_020_01519_8
crossref_primary_10_1016_j_patcog_2020_107209
crossref_primary_10_3390_metabo13091007
crossref_primary_10_1166_jmihi_2021_3309
crossref_primary_10_1109_ACCESS_2021_3074458
crossref_primary_10_1049_iet_ipr_2017_1013
crossref_primary_10_1007_s11277_020_07186_5
crossref_primary_10_1007_s12065_020_00400_0
crossref_primary_10_1109_TIM_2023_3322497
crossref_primary_10_1080_10255842_2023_2289344
crossref_primary_10_1016_j_bspc_2022_104123
crossref_primary_10_1016_j_bspc_2022_104365
crossref_primary_10_1111_ceo_13433
crossref_primary_10_1002_jemt_24413
crossref_primary_10_1016_j_procs_2023_01_085
crossref_primary_10_1080_03772063_2021_1886876
crossref_primary_10_1364_BOE_394472
crossref_primary_10_1007_s11042_023_16366_x
crossref_primary_10_1007_s00500_023_08238_1
crossref_primary_10_1016_j_artmed_2019_07_002
crossref_primary_10_2174_2210327909666191126092411
crossref_primary_10_1038_s41598_023_29916_y
crossref_primary_10_1038_s41598_024_56389_4
crossref_primary_10_1016_j_health_2024_100346
crossref_primary_10_1016_j_media_2020_101742
crossref_primary_10_1109_ACCESS_2020_2993937
crossref_primary_10_1002_ima_22391
crossref_primary_10_1016_j_bspc_2022_104370
crossref_primary_10_1007_s11042_023_14606_8
crossref_primary_10_2196_12539
crossref_primary_10_1007_s11760_020_01798_x
crossref_primary_10_1016_j_biopha_2018_07_175
crossref_primary_10_1515_bams_2020_0053
crossref_primary_10_1007_s10916_020_01635_1
crossref_primary_10_1007_s00500_021_06098_1
crossref_primary_10_1007_s11831_021_09635_1
crossref_primary_10_1080_21681163_2023_2244603
crossref_primary_10_1007_s12652_020_02518_6
crossref_primary_10_1093_comjnl_bxab068
crossref_primary_10_1007_s10278_022_00629_4
crossref_primary_10_1038_s41598_023_30459_5
crossref_primary_10_1016_j_bspc_2022_103952
crossref_primary_10_3390_diagnostics10010024
crossref_primary_10_1109_ACCESS_2018_2886315
crossref_primary_10_1142_S0219519422400292
crossref_primary_10_1007_s11831_018_9281_4
crossref_primary_10_1007_s42600_022_00200_8
crossref_primary_10_1134_S105466182002011X
crossref_primary_10_3390_diagnostics12071607
crossref_primary_10_1016_j_bbe_2020_02_006
crossref_primary_10_1016_j_rfo_2019_04_013
crossref_primary_10_1007_s00530_023_01078_x
crossref_primary_10_2174_1573405615666190219102427
crossref_primary_10_3390_s20226549
crossref_primary_10_2298_GENSR2303983S
crossref_primary_10_1007_s11042_023_16213_z
crossref_primary_10_1007_s41870_019_00318_6
crossref_primary_10_1016_j_jvcir_2020_102852
crossref_primary_10_1080_03772063_2019_1623092
crossref_primary_10_35940_ijrte_D7951_1112423
crossref_primary_10_1007_s11042_022_12492_0
crossref_primary_10_1080_01969722_2022_2151176
crossref_primary_10_1142_S0219519423500082
crossref_primary_10_1007_s11042_023_18089_5
crossref_primary_10_1007_s12652_023_04648_z
crossref_primary_10_1007_s00521_022_07471_3
crossref_primary_10_1007_s12652_020_02417_w
Cites_doi 10.1109/42.845178
10.1109/TMI.2005.843738
10.1016/j.compbiomed.2014.09.001
10.1016/j.ins.2012.03.003
10.1016/j.compmedimag.2009.06.003
10.1109/TMI.2012.2227119
10.1109/TMI.2008.920619
10.1016/j.cmpb.2014.01.010
10.1016/j.compbiomed.2015.12.018
10.1016/j.compbiomed.2015.08.008
10.1016/j.cmpb.2012.03.004
10.1016/j.ins.2014.10.059
10.1109/TBME.2012.2201717
10.1109/TMI.2009.2033909
10.1109/TIP.2003.819861
10.1109/TMI.2015.2509785
10.1016/j.medengphy.2007.04.010
10.1109/TMI.2002.806290
10.1117/12.381679
10.1109/TMI.2012.2228665
10.1016/j.media.2009.05.005
10.1109/TBME.2010.2096223
10.1016/j.patcog.2009.12.017
10.1016/j.compbiomed.2013.11.014
10.1167/iovs.06-0996
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2017.2707578
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 618
ExternalDocumentID 28541892
10_1109_TBME_2017_2707578
7933211
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-cc8eebec2207a9487041b4a6f6a5dfc5c60ec17e4025911d04b5ea852a035a673
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Sun Sep 28 00:34:10 EDT 2025
Sat Aug 23 13:22:03 EDT 2025
Thu Apr 03 07:09:35 EDT 2025
Wed Oct 01 04:08:45 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
Wed Aug 27 02:53:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-cc8eebec2207a9487041b4a6f6a5dfc5c60ec17e4025911d04b5ea852a035a673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1075-3829
PMID 28541892
PQID 2174474254
PQPubID 85474
PageCount 11
ParticipantIDs proquest_miscellaneous_1903168435
ieee_primary_7933211
crossref_citationtrail_10_1109_TBME_2017_2707578
crossref_primary_10_1109_TBME_2017_2707578
proquest_journals_2174474254
pubmed_primary_28541892
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
niemeijer (ref15) 2004
ref14
ref11
ref10
ref2
ref1
ref16
ref19
ref24
ref23
ref26
kalesnykiene (ref17) 0
ref25
ref20
ref22
ref21
ref28
ref27
ref8
(ref18) 2008
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref16
  doi: 10.1109/42.845178
– year: 0
  ident: ref17
  article-title: Diaretdb1 diabetic retinopathy database and evaluation protocol
– ident: ref24
  doi: 10.1109/TMI.2005.843738
– ident: ref5
  doi: 10.1016/j.compbiomed.2014.09.001
– ident: ref14
  doi: 10.1016/j.ins.2012.03.003
– ident: ref6
  doi: 10.1016/j.compmedimag.2009.06.003
– ident: ref4
  doi: 10.1109/TMI.2012.2227119
– ident: ref9
  doi: 10.1109/TMI.2008.920619
– ident: ref12
  doi: 10.1016/j.cmpb.2014.01.010
– ident: ref20
  doi: 10.1016/j.compbiomed.2015.12.018
– ident: ref25
  doi: 10.1016/j.compbiomed.2015.08.008
– ident: ref21
  doi: 10.1016/j.cmpb.2012.03.004
– ident: ref1
  doi: 10.1016/j.ins.2014.10.059
– year: 2008
  ident: ref18
– ident: ref11
  doi: 10.1109/TBME.2012.2201717
– ident: ref19
  doi: 10.1109/TMI.2009.2033909
– ident: ref23
  doi: 10.1109/TIP.2003.819861
– ident: ref10
  doi: 10.1109/TMI.2015.2509785
– ident: ref13
  doi: 10.1016/j.medengphy.2007.04.010
– ident: ref28
  doi: 10.1109/TMI.2002.806290
– ident: ref22
  doi: 10.1117/12.381679
– ident: ref8
  doi: 10.1109/TMI.2012.2228665
– ident: ref26
  doi: 10.1016/j.media.2009.05.005
– ident: ref7
  doi: 10.1109/TBME.2010.2096223
– year: 2004
  ident: ref15
  article-title: DRIVE: Digital Retinal Images For Vessel Extraction
– ident: ref3
  doi: 10.1016/j.patcog.2009.12.017
– ident: ref2
  doi: 10.1016/j.compbiomed.2013.11.014
– ident: ref27
  doi: 10.1167/iovs.06-0996
SSID ssj0014846
Score 2.5404031
Snippet Objective: Diabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include...
Diabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 608
SubjectTerms Adult
Aged
Aged, 80 and over
Algorithms
Automation
Bandpass filters
Biomedical imaging
Blood vessels
Broadband
Computer simulation
Diabetes
Diabetes mellitus
Diabetic retinopathy
Diabetic Retinopathy - diagnostic imaging
Diagnostic Techniques, Ophthalmological
Differential evolution
Evolutionary algorithms
Exudates
Hemorrhage
hemorrhages
Humans
Image edge detection
Image Interpretation, Computer-Assisted - methods
Kernel
Lesions
LoG
Mass Screening
matched filter
Matched filters
microaneurysms
Middle Aged
Morphology
mutual information
Optimization
Retina
Retina - diagnostic imaging
Retinopathy
Shape
Title Automatic Detection of Retinal Lesions for Screening of Diabetic Retinopathy
URI https://ieeexplore.ieee.org/document/7933211
https://www.ncbi.nlm.nih.gov/pubmed/28541892
https://www.proquest.com/docview/2174474254
https://www.proquest.com/docview/1903168435
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT4UwEJ7oOxg9uC-4BRNPRp4FWihH1xjj8-CSeCOlDBcNGB8c9NfbKTyiRo03EqaFdqbtTGfmG4D9nCkpc8085L72eJQJT4qMeX4WotSFLwsLXzy6iS4f-NWjeJyCwz4XBhFt8BkO6dH68vNKN3RVdmRkKQwokXc6llGbq9V7DLhsk3KYbxZwkPDOg-mz5Oj-ZHROQVzxMIgZ4bcTArAU3JdJ8OU4svVVflc17ZFzsQCjyc-2kSZPw6bOhvr9G47jf0ezCPOd7uket8KyBFNYLsPcJ0TCZZgZdb72Fbg-burKArq6Z1jbiK3SrQr3lpKkTTfXSBdtY9dove6dpvAd0wMRtEE2ppmlrKjm8dsqPFyc359eel3tBU-HPKk9rSUSf4OAxSoxVg3jfsZVVERK5IUWOmKo_RiN-SnMfpkznglUUgSKhUJFcbgGg7IqcQNcyXLEWHNMaM6TXCmOGgtjehtWaGQOsAkLUt0Bk1N9jOfUGigsSYmBKTEw7RjowEHf5KVF5fiLeIUmvyfs5t2B7Qmf027djlMy0Hhs9jHuwF7_2qw4cqOoEqtmnBoViqp9GT3TgfVWPvq-J2K1-fM3t2A2IAG1MWzbMKhfG9wxSk2d7Vpp_gAQFe9R
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLemIfFx4GPjo2NAkTgh-pa2TpseB2x6wOsO8CbtFqWpewG1iNcetr9-cdpXAQLErVKdtImdxI7tnwFe1cIoVVsREcY2wqySkZKViOIqJWWbWDUevrg8y5bn-PFCXuzAmzkXhoh88Bkt-NH78uvODnxVduRkKU04kfeGREQ5ZmvNPgNUY1qOiN0STgqcfJixKI7Wb8sTDuPKF0kuGMGdMYCVxFgVyS8Hkq-w8ndl0x86p_eg3P7uGGvydTH01cJe_Ybk-L_juQ93J-0zPB7F5QHsULsHd37CJNyDm-Xkbd-H1fHQdx7SNXxPvY_ZasOuCT9zmrTrZkV81bYJnd4bfrEcwON6YIIxzMY185QdVz2-fAjnpyfrd8toqr4Q2RSLPrJWEXM4SURuCmfXCIwrNFmTGVk3VtpMkI1zcgaodDtmLbCSZJRMjEilyfL0Eey2XUtPIFSiJsotUsFzXtTGIFlqnPHtWGFJBCC2LNB2gibnChnftDdRRKGZgZoZqCcGBvB6bvJ9xOX4F_E-T_5MOM17AIdbPutp5W40m2iYu50MA3g5v3Zrjh0ppqVu2GinRHG9L6dpBvB4lI-5761YHfz5my_g1nJdrvTqw9mnp3A7YWH1EW2HsNv_GOiZU3H66rmX7GvAFvKe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Detection+of+Retinal+Lesions+for+Screening+of+Diabetic+Retinopathy&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kar%2C+Sudeshna+Sil&rft.au=Maity%2C+Santi+P&rft.date=2018-03-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=65&rft.issue=3&rft.spage=608&rft_id=info:doi/10.1109%2FTBME.2017.2707578&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon