Automatic Detection of Retinal Lesions for Screening of Diabetic Retinopathy
Objective: Diabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include micro-aneurysms, hemorrhages, exudates, etc. Detection of these lesions plays a significant role for early diagnosis of DR. Methods: To this...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 65; no. 3; pp. 608 - 618 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.03.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2017.2707578 |
Cover
| Abstract | Objective: Diabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include micro-aneurysms, hemorrhages, exudates, etc. Detection of these lesions plays a significant role for early diagnosis of DR. Methods: To this aim, this paper proposes a novel and automated lesion detection scheme, which consists of the four main steps: vessel extraction and optic disc removal, preprocessing, candidate lesion detection, and postprocessing. The optic disc and the blood vessels are suppressed first to facilitate further processing. Curvelet-based edge enhancement is done to separate out the dark lesions from the poorly illuminated retinal background, while the contrast between the bright lesions and the background is enhanced through an optimally designed wideband bandpass filter. The mutual information of the maximum matched filter response and the maximum Laplacian of Gaussian response are then jointly maximized. Differential evolution algorithm is used to determine the optimal values for the parameters of the fuzzy functions that determine the thresholds of segmenting the candidate regions. Morphology-based postprocessing is finally applied to exclude the falsely detected candidate pixels. Results and Conclusions: Extensive simulations on different publicly available databases highlight an improved performance over the existing methods with an average accuracy of 97.71 % and robustness in detecting the various types of DR lesions irrespective of their intrinsic properties. |
|---|---|
| AbstractList | Diabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include microaneurysms, hemorrhages, exudates, etc. Detection of these lesions plays a significant role for early diagnosis of DR.OBJECTIVEDiabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include microaneurysms, hemorrhages, exudates, etc. Detection of these lesions plays a significant role for early diagnosis of DR.To this aim, this paper proposes a novel and automated lesion detection scheme, which consists of the four main steps: vessel extraction and optic disc removal, preprocessing, candidate lesion detection, and postprocessing. The optic disc and the blood vessels are suppressed first to facilitate further processing. Curvelet-based edge enhancement is done to separate out the dark lesions from the poorly illuminated retinal background, while the contrast between the bright lesions and the background is enhanced through an optimally designed wideband bandpass filter. The mutual information of the maximum matched filter response and the maximum Laplacian of Gaussian response are then jointly maximized. Differential evolution algorithm is used to determine the optimal values for the parameters of the fuzzy functions that determine the thresholds of segmenting the candidate regions. Morphology-based postprocessing is finally applied to exclude the falsely detected candidate pixels.METHODSTo this aim, this paper proposes a novel and automated lesion detection scheme, which consists of the four main steps: vessel extraction and optic disc removal, preprocessing, candidate lesion detection, and postprocessing. The optic disc and the blood vessels are suppressed first to facilitate further processing. Curvelet-based edge enhancement is done to separate out the dark lesions from the poorly illuminated retinal background, while the contrast between the bright lesions and the background is enhanced through an optimally designed wideband bandpass filter. The mutual information of the maximum matched filter response and the maximum Laplacian of Gaussian response are then jointly maximized. Differential evolution algorithm is used to determine the optimal values for the parameters of the fuzzy functions that determine the thresholds of segmenting the candidate regions. Morphology-based postprocessing is finally applied to exclude the falsely detected candidate pixels.Extensive simulations on different publicly available databases highlight an improved performance over the existing methods with an average accuracy of and robustness in detecting the various types of DR lesions irrespective of their intrinsic properties.RESULTS AND CONCLUSIONSExtensive simulations on different publicly available databases highlight an improved performance over the existing methods with an average accuracy of and robustness in detecting the various types of DR lesions irrespective of their intrinsic properties. Diabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include microaneurysms, hemorrhages, exudates, etc. Detection of these lesions plays a significant role for early diagnosis of DR. To this aim, this paper proposes a novel and automated lesion detection scheme, which consists of the four main steps: vessel extraction and optic disc removal, preprocessing, candidate lesion detection, and postprocessing. The optic disc and the blood vessels are suppressed first to facilitate further processing. Curvelet-based edge enhancement is done to separate out the dark lesions from the poorly illuminated retinal background, while the contrast between the bright lesions and the background is enhanced through an optimally designed wideband bandpass filter. The mutual information of the maximum matched filter response and the maximum Laplacian of Gaussian response are then jointly maximized. Differential evolution algorithm is used to determine the optimal values for the parameters of the fuzzy functions that determine the thresholds of segmenting the candidate regions. Morphology-based postprocessing is finally applied to exclude the falsely detected candidate pixels. Extensive simulations on different publicly available databases highlight an improved performance over the existing methods with an average accuracy of and robustness in detecting the various types of DR lesions irrespective of their intrinsic properties. Objective: Diabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include micro-aneurysms, hemorrhages, exudates, etc. Detection of these lesions plays a significant role for early diagnosis of DR. Methods: To this aim, this paper proposes a novel and automated lesion detection scheme, which consists of the four main steps: vessel extraction and optic disc removal, preprocessing, candidate lesion detection, and postprocessing. The optic disc and the blood vessels are suppressed first to facilitate further processing. Curvelet-based edge enhancement is done to separate out the dark lesions from the poorly illuminated retinal background, while the contrast between the bright lesions and the background is enhanced through an optimally designed wideband bandpass filter. The mutual information of the maximum matched filter response and the maximum Laplacian of Gaussian response are then jointly maximized. Differential evolution algorithm is used to determine the optimal values for the parameters of the fuzzy functions that determine the thresholds of segmenting the candidate regions. Morphology-based postprocessing is finally applied to exclude the falsely detected candidate pixels. Results and Conclusions: Extensive simulations on different publicly available databases highlight an improved performance over the existing methods with an average accuracy of 97.71 % and robustness in detecting the various types of DR lesions irrespective of their intrinsic properties. |
| Author | Kar, Sudeshna Sil Maity, Santi P. |
| Author_xml | – sequence: 1 givenname: Sudeshna Sil surname: Kar fullname: Kar, Sudeshna Sil organization: Department of Information TechnologyIndian Institute of Engineering Science and Technology – sequence: 2 givenname: Santi P. orcidid: 0000-0002-1075-3829 surname: Maity fullname: Maity, Santi P. email: santipmaity@it.iiests.ac.in organization: Department of Information Technology, Indian Institute of Engineering Science and Technology, Shibpur, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28541892$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1vEzEQhi1URNPCD0BIaKVeuGzw-GNtH9u0BaQgJAhny-vMgqvNOtjeQ_49uyTtoQdOI4-eZ0ae94KcDXFAQt4CXQJQ83Fz8_VuySioJVNUSaVfkAVIqWsmOZyRBaWga8OMOCcXOT9MT6FF84qcMy0FaMMWZH09lrhzJfjqFgv6EuJQxa76jiUMrq_WmKdOrrqYqh8-IQ5h-DUDt8G1OGv_yLh35ffhNXnZuT7jm1O9JD_v7zarz_X626cvq-t17bkwpfZeI7boGaPKGaEVFdAK13SNk9vOS99Q9KBQUCYNwJaKVqLTkjnKpWsUvyQfjnP3Kf4ZMRe7C9lj37sB45gtGMqh0YLLCb16hj7EMU0_y5aBEkIJJsVEvT9RY7vDrd2nsHPpYB_vNAFwBHyKOSfsnhCgds7CzlnYOQt7ymJy1DPHh-LmA5fkQv9f893RDIj4tEkZzhkA_wtXc5Ss |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1007_s10792_024_03279_3 crossref_primary_10_1080_03772063_2022_2138577 crossref_primary_10_1615_CritRevBiomedEng_2022041571 crossref_primary_10_1007_s11042_022_12968_z crossref_primary_10_1038_s41598_021_97649_x crossref_primary_10_1167_tvst_12_1_22 crossref_primary_10_1016_j_jksuci_2021_06_006 crossref_primary_10_1007_s42600_023_00298_4 crossref_primary_10_1007_s11831_023_09998_7 crossref_primary_10_1016_j_procs_2019_12_110 crossref_primary_10_1016_j_bspc_2022_103536 crossref_primary_10_1016_j_bspc_2022_104149 crossref_primary_10_1007_s11390_019_1977_x crossref_primary_10_1007_s40200_023_01220_6 crossref_primary_10_1002_ima_70015 crossref_primary_10_1016_j_compbiomed_2022_106277 crossref_primary_10_1016_j_eswa_2023_119557 crossref_primary_10_2139_ssrn_4183380 crossref_primary_10_1007_s00779_020_01519_8 crossref_primary_10_1016_j_patcog_2020_107209 crossref_primary_10_3390_metabo13091007 crossref_primary_10_1166_jmihi_2021_3309 crossref_primary_10_1109_ACCESS_2021_3074458 crossref_primary_10_1049_iet_ipr_2017_1013 crossref_primary_10_1007_s11277_020_07186_5 crossref_primary_10_1007_s12065_020_00400_0 crossref_primary_10_1109_TIM_2023_3322497 crossref_primary_10_1080_10255842_2023_2289344 crossref_primary_10_1016_j_bspc_2022_104123 crossref_primary_10_1016_j_bspc_2022_104365 crossref_primary_10_1111_ceo_13433 crossref_primary_10_1002_jemt_24413 crossref_primary_10_1016_j_procs_2023_01_085 crossref_primary_10_1080_03772063_2021_1886876 crossref_primary_10_1364_BOE_394472 crossref_primary_10_1007_s11042_023_16366_x crossref_primary_10_1007_s00500_023_08238_1 crossref_primary_10_1016_j_artmed_2019_07_002 crossref_primary_10_2174_2210327909666191126092411 crossref_primary_10_1038_s41598_023_29916_y crossref_primary_10_1038_s41598_024_56389_4 crossref_primary_10_1016_j_health_2024_100346 crossref_primary_10_1016_j_media_2020_101742 crossref_primary_10_1109_ACCESS_2020_2993937 crossref_primary_10_1002_ima_22391 crossref_primary_10_1016_j_bspc_2022_104370 crossref_primary_10_1007_s11042_023_14606_8 crossref_primary_10_2196_12539 crossref_primary_10_1007_s11760_020_01798_x crossref_primary_10_1016_j_biopha_2018_07_175 crossref_primary_10_1515_bams_2020_0053 crossref_primary_10_1007_s10916_020_01635_1 crossref_primary_10_1007_s00500_021_06098_1 crossref_primary_10_1007_s11831_021_09635_1 crossref_primary_10_1080_21681163_2023_2244603 crossref_primary_10_1007_s12652_020_02518_6 crossref_primary_10_1093_comjnl_bxab068 crossref_primary_10_1007_s10278_022_00629_4 crossref_primary_10_1038_s41598_023_30459_5 crossref_primary_10_1016_j_bspc_2022_103952 crossref_primary_10_3390_diagnostics10010024 crossref_primary_10_1109_ACCESS_2018_2886315 crossref_primary_10_1142_S0219519422400292 crossref_primary_10_1007_s11831_018_9281_4 crossref_primary_10_1007_s42600_022_00200_8 crossref_primary_10_1134_S105466182002011X crossref_primary_10_3390_diagnostics12071607 crossref_primary_10_1016_j_bbe_2020_02_006 crossref_primary_10_1016_j_rfo_2019_04_013 crossref_primary_10_1007_s00530_023_01078_x crossref_primary_10_2174_1573405615666190219102427 crossref_primary_10_3390_s20226549 crossref_primary_10_2298_GENSR2303983S crossref_primary_10_1007_s11042_023_16213_z crossref_primary_10_1007_s41870_019_00318_6 crossref_primary_10_1016_j_jvcir_2020_102852 crossref_primary_10_1080_03772063_2019_1623092 crossref_primary_10_35940_ijrte_D7951_1112423 crossref_primary_10_1007_s11042_022_12492_0 crossref_primary_10_1080_01969722_2022_2151176 crossref_primary_10_1142_S0219519423500082 crossref_primary_10_1007_s11042_023_18089_5 crossref_primary_10_1007_s12652_023_04648_z crossref_primary_10_1007_s00521_022_07471_3 crossref_primary_10_1007_s12652_020_02417_w |
| Cites_doi | 10.1109/42.845178 10.1109/TMI.2005.843738 10.1016/j.compbiomed.2014.09.001 10.1016/j.ins.2012.03.003 10.1016/j.compmedimag.2009.06.003 10.1109/TMI.2012.2227119 10.1109/TMI.2008.920619 10.1016/j.cmpb.2014.01.010 10.1016/j.compbiomed.2015.12.018 10.1016/j.compbiomed.2015.08.008 10.1016/j.cmpb.2012.03.004 10.1016/j.ins.2014.10.059 10.1109/TBME.2012.2201717 10.1109/TMI.2009.2033909 10.1109/TIP.2003.819861 10.1109/TMI.2015.2509785 10.1016/j.medengphy.2007.04.010 10.1109/TMI.2002.806290 10.1117/12.381679 10.1109/TMI.2012.2228665 10.1016/j.media.2009.05.005 10.1109/TBME.2010.2096223 10.1016/j.patcog.2009.12.017 10.1016/j.compbiomed.2013.11.014 10.1167/iovs.06-0996 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TBME.2017.2707578 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 618 |
| ExternalDocumentID | 28541892 10_1109_TBME_2017_2707578 7933211 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c349t-cc8eebec2207a9487041b4a6f6a5dfc5c60ec17e4025911d04b5ea852a035a673 |
| IEDL.DBID | RIE |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Sun Sep 28 00:34:10 EDT 2025 Sat Aug 23 13:22:03 EDT 2025 Thu Apr 03 07:09:35 EDT 2025 Wed Oct 01 04:08:45 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 Wed Aug 27 02:53:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-cc8eebec2207a9487041b4a6f6a5dfc5c60ec17e4025911d04b5ea852a035a673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1075-3829 |
| PMID | 28541892 |
| PQID | 2174474254 |
| PQPubID | 85474 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1903168435 ieee_primary_7933211 crossref_citationtrail_10_1109_TBME_2017_2707578 crossref_primary_10_1109_TBME_2017_2707578 proquest_journals_2174474254 pubmed_primary_28541892 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-01 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 niemeijer (ref15) 2004 ref14 ref11 ref10 ref2 ref1 ref16 ref19 ref24 ref23 ref26 kalesnykiene (ref17) 0 ref25 ref20 ref22 ref21 ref28 ref27 ref8 (ref18) 2008 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref16 doi: 10.1109/42.845178 – year: 0 ident: ref17 article-title: Diaretdb1 diabetic retinopathy database and evaluation protocol – ident: ref24 doi: 10.1109/TMI.2005.843738 – ident: ref5 doi: 10.1016/j.compbiomed.2014.09.001 – ident: ref14 doi: 10.1016/j.ins.2012.03.003 – ident: ref6 doi: 10.1016/j.compmedimag.2009.06.003 – ident: ref4 doi: 10.1109/TMI.2012.2227119 – ident: ref9 doi: 10.1109/TMI.2008.920619 – ident: ref12 doi: 10.1016/j.cmpb.2014.01.010 – ident: ref20 doi: 10.1016/j.compbiomed.2015.12.018 – ident: ref25 doi: 10.1016/j.compbiomed.2015.08.008 – ident: ref21 doi: 10.1016/j.cmpb.2012.03.004 – ident: ref1 doi: 10.1016/j.ins.2014.10.059 – year: 2008 ident: ref18 – ident: ref11 doi: 10.1109/TBME.2012.2201717 – ident: ref19 doi: 10.1109/TMI.2009.2033909 – ident: ref23 doi: 10.1109/TIP.2003.819861 – ident: ref10 doi: 10.1109/TMI.2015.2509785 – ident: ref13 doi: 10.1016/j.medengphy.2007.04.010 – ident: ref28 doi: 10.1109/TMI.2002.806290 – ident: ref22 doi: 10.1117/12.381679 – ident: ref8 doi: 10.1109/TMI.2012.2228665 – ident: ref26 doi: 10.1016/j.media.2009.05.005 – ident: ref7 doi: 10.1109/TBME.2010.2096223 – year: 2004 ident: ref15 article-title: DRIVE: Digital Retinal Images For Vessel Extraction – ident: ref3 doi: 10.1016/j.patcog.2009.12.017 – ident: ref2 doi: 10.1016/j.compbiomed.2013.11.014 – ident: ref27 doi: 10.1167/iovs.06-0996 |
| SSID | ssj0014846 |
| Score | 2.5404031 |
| Snippet | Objective: Diabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include... Diabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 608 |
| SubjectTerms | Adult Aged Aged, 80 and over Algorithms Automation Bandpass filters Biomedical imaging Blood vessels Broadband Computer simulation Diabetes Diabetes mellitus Diabetic retinopathy Diabetic Retinopathy - diagnostic imaging Diagnostic Techniques, Ophthalmological Differential evolution Evolutionary algorithms Exudates Hemorrhage hemorrhages Humans Image edge detection Image Interpretation, Computer-Assisted - methods Kernel Lesions LoG Mass Screening matched filter Matched filters microaneurysms Middle Aged Morphology mutual information Optimization Retina Retina - diagnostic imaging Retinopathy Shape |
| Title | Automatic Detection of Retinal Lesions for Screening of Diabetic Retinopathy |
| URI | https://ieeexplore.ieee.org/document/7933211 https://www.ncbi.nlm.nih.gov/pubmed/28541892 https://www.proquest.com/docview/2174474254 https://www.proquest.com/docview/1903168435 |
| Volume | 65 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT4UwEJ7oOxg9uC-4BRNPRp4FWihH1xjj8-CSeCOlDBcNGB8c9NfbKTyiRo03EqaFdqbtTGfmG4D9nCkpc8085L72eJQJT4qMeX4WotSFLwsLXzy6iS4f-NWjeJyCwz4XBhFt8BkO6dH68vNKN3RVdmRkKQwokXc6llGbq9V7DLhsk3KYbxZwkPDOg-mz5Oj-ZHROQVzxMIgZ4bcTArAU3JdJ8OU4svVVflc17ZFzsQCjyc-2kSZPw6bOhvr9G47jf0ezCPOd7uket8KyBFNYLsPcJ0TCZZgZdb72Fbg-burKArq6Z1jbiK3SrQr3lpKkTTfXSBdtY9dove6dpvAd0wMRtEE2ppmlrKjm8dsqPFyc359eel3tBU-HPKk9rSUSf4OAxSoxVg3jfsZVVERK5IUWOmKo_RiN-SnMfpkznglUUgSKhUJFcbgGg7IqcQNcyXLEWHNMaM6TXCmOGgtjehtWaGQOsAkLUt0Bk1N9jOfUGigsSYmBKTEw7RjowEHf5KVF5fiLeIUmvyfs5t2B7Qmf027djlMy0Hhs9jHuwF7_2qw4cqOoEqtmnBoViqp9GT3TgfVWPvq-J2K1-fM3t2A2IAG1MWzbMKhfG9wxSk2d7Vpp_gAQFe9R |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLemIfFx4GPjo2NAkTgh-pa2TpseB2x6wOsO8CbtFqWpewG1iNcetr9-cdpXAQLErVKdtImdxI7tnwFe1cIoVVsREcY2wqySkZKViOIqJWWbWDUevrg8y5bn-PFCXuzAmzkXhoh88Bkt-NH78uvODnxVduRkKU04kfeGREQ5ZmvNPgNUY1qOiN0STgqcfJixKI7Wb8sTDuPKF0kuGMGdMYCVxFgVyS8Hkq-w8ndl0x86p_eg3P7uGGvydTH01cJe_Ybk-L_juQ93J-0zPB7F5QHsULsHd37CJNyDm-Xkbd-H1fHQdx7SNXxPvY_ZasOuCT9zmrTrZkV81bYJnd4bfrEcwON6YIIxzMY185QdVz2-fAjnpyfrd8toqr4Q2RSLPrJWEXM4SURuCmfXCIwrNFmTGVk3VtpMkI1zcgaodDtmLbCSZJRMjEilyfL0Eey2XUtPIFSiJsotUsFzXtTGIFlqnPHtWGFJBCC2LNB2gibnChnftDdRRKGZgZoZqCcGBvB6bvJ9xOX4F_E-T_5MOM17AIdbPutp5W40m2iYu50MA3g5v3Zrjh0ppqVu2GinRHG9L6dpBvB4lI-5761YHfz5my_g1nJdrvTqw9mnp3A7YWH1EW2HsNv_GOiZU3H66rmX7GvAFvKe |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Detection+of+Retinal+Lesions+for+Screening+of+Diabetic+Retinopathy&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kar%2C+Sudeshna+Sil&rft.au=Maity%2C+Santi+P&rft.date=2018-03-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=65&rft.issue=3&rft.spage=608&rft_id=info:doi/10.1109%2FTBME.2017.2707578&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |