Automatic Detection of Retinal Lesions for Screening of Diabetic Retinopathy

Objective: Diabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include micro-aneurysms, hemorrhages, exudates, etc. Detection of these lesions plays a significant role for early diagnosis of DR. Methods: To this...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 65; no. 3; pp. 608 - 618
Main Authors Kar, Sudeshna Sil, Maity, Santi P.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2017.2707578

Cover

More Information
Summary:Objective: Diabetic retinopathy (DR) is characterized by the progressive deterioration of retina with the appearance of different types of lesions that include micro-aneurysms, hemorrhages, exudates, etc. Detection of these lesions plays a significant role for early diagnosis of DR. Methods: To this aim, this paper proposes a novel and automated lesion detection scheme, which consists of the four main steps: vessel extraction and optic disc removal, preprocessing, candidate lesion detection, and postprocessing. The optic disc and the blood vessels are suppressed first to facilitate further processing. Curvelet-based edge enhancement is done to separate out the dark lesions from the poorly illuminated retinal background, while the contrast between the bright lesions and the background is enhanced through an optimally designed wideband bandpass filter. The mutual information of the maximum matched filter response and the maximum Laplacian of Gaussian response are then jointly maximized. Differential evolution algorithm is used to determine the optimal values for the parameters of the fuzzy functions that determine the thresholds of segmenting the candidate regions. Morphology-based postprocessing is finally applied to exclude the falsely detected candidate pixels. Results and Conclusions: Extensive simulations on different publicly available databases highlight an improved performance over the existing methods with an average accuracy of 97.71 % and robustness in detecting the various types of DR lesions irrespective of their intrinsic properties.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2017.2707578