Sliding large kernel of deep learning algorithm for mobile electrocardiogram diagnosis
•A new diagnostic framework for mobile electrocardiogram signal is proposed.•The sliding segmentation method is used to enhance the model's generalization ability.•Adopted a large-scale convolution kernel of a one-dimensional neural network.•The proposed algorithm shows more resistant to sparse...
Saved in:
| Published in | Computers & electrical engineering Vol. 96; p. 107521 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier Ltd
01.12.2021
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0045-7906 1879-0755 |
| DOI | 10.1016/j.compeleceng.2021.107521 |
Cover
| Abstract | •A new diagnostic framework for mobile electrocardiogram signal is proposed.•The sliding segmentation method is used to enhance the model's generalization ability.•Adopted a large-scale convolution kernel of a one-dimensional neural network.•The proposed algorithm shows more resistant to sparseness and noise issues.•Experimental results present better accuracy as compared to previous approaches.
Cardiovascular disease has become a significant cause of modern people's health problems. The mobile electrocardiogram can be a non-intrusive and convenient tool to provide an auxiliary diagnosis of cardiovascular diseases for the virtual heath community. In this paper, a new diagnostic framework for mobile electrocardiogram signal is proposed with two improved methods. They are (1) the sliding segmentation method, which enhances the model's generalization ability and (2) the large-scale convolution kernel of a one-dimensional neural network, that is designed for mobile electrocardiogram signal with more resistant to sparseness and noise issues. According our experiments, the results show that the proposed sliding large kernel algorithm has a better accuracy than previous algorithms.
[Display omitted]
Sliding large kernel of deep neural network for mobile electrocardiogram diagnosis of the virtual heath community. |
|---|---|
| AbstractList | •A new diagnostic framework for mobile electrocardiogram signal is proposed.•The sliding segmentation method is used to enhance the model's generalization ability.•Adopted a large-scale convolution kernel of a one-dimensional neural network.•The proposed algorithm shows more resistant to sparseness and noise issues.•Experimental results present better accuracy as compared to previous approaches.
Cardiovascular disease has become a significant cause of modern people's health problems. The mobile electrocardiogram can be a non-intrusive and convenient tool to provide an auxiliary diagnosis of cardiovascular diseases for the virtual heath community. In this paper, a new diagnostic framework for mobile electrocardiogram signal is proposed with two improved methods. They are (1) the sliding segmentation method, which enhances the model's generalization ability and (2) the large-scale convolution kernel of a one-dimensional neural network, that is designed for mobile electrocardiogram signal with more resistant to sparseness and noise issues. According our experiments, the results show that the proposed sliding large kernel algorithm has a better accuracy than previous algorithms.
[Display omitted]
Sliding large kernel of deep neural network for mobile electrocardiogram diagnosis of the virtual heath community. Cardiovascular disease has become a significant cause of modern people's health problems. The mobile electrocardiogram can be a non-intrusive and convenient tool to provide an auxiliary diagnosis of cardiovascular diseases for the virtual heath community. In this paper, a new diagnostic framework for mobile electrocardiogram signal is proposed with two improved methods. They are (1) the sliding segmentation method, which enhances the model's generalization ability and (2) the large-scale convolution kernel of a one-dimensional neural network, that is designed for mobile electrocardiogram signal with more resistant to sparseness and noise issues. According our experiments, the results show that the proposed sliding large kernel algorithm has a better accuracy than previous algorithms. |
| ArticleNumber | 107521 |
| Author | de Albuquerque, Victor Hugo C. Chen, Chien-Ming Xiao, Tianjie Wang, Chao Tseng, Kuo-Kun Hassan, Mohammad Mehedi |
| Author_xml | – sequence: 1 givenname: Kuo-Kun surname: Tseng fullname: Tseng, Kuo-Kun organization: Harbin Institute of Technology (Shenzhen), Shenzhen, China – sequence: 2 givenname: Chao surname: Wang fullname: Wang, Chao organization: Harbin Institute of Technology (Shenzhen), Shenzhen, China – sequence: 3 givenname: Tianjie surname: Xiao fullname: Xiao, Tianjie organization: Harbin Institute of Technology (Shenzhen), Shenzhen, China – sequence: 4 givenname: Chien-Ming surname: Chen fullname: Chen, Chien-Ming organization: Shandong University of Science and Technology, Shandong, China – sequence: 5 givenname: Mohammad Mehedi surname: Hassan fullname: Hassan, Mohammad Mehedi organization: Information Systems Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia – sequence: 6 givenname: Victor Hugo C. surname: de Albuquerque fullname: de Albuquerque, Victor Hugo C. email: victor.albuquerque@fe.up.pt organization: Department of Mechanical Engineering, Faculty of Engineering, University of Porto (FEUP), Porto, Portugal |
| BookMark | eNqNkE9LJDEQxcPiwo7jfoeI555N0ulO90lkUFcQPPjnGjJJdW_GdDJWWmG_vRnGg3gSCopXVe8V_I7JUUwRCDnlbMUZb_9sVzZNOwhgIY4rwQQvc9UI_oMseKf6qojmiCwYk02letb-Isc5b1nRLe8W5Ok-eOfjSIPBEegzYIRA00AdwI4GMBj3WxPGhH7-N9EhIZ3Sxgeg-68zJmvQ-TSimajzZowp-3xCfg4mZPj90Zfk8eryYf23ur27vllf3Fa2lv1cWcslg64Rg2yN7buug1pumHG2cU3bGtcI6Lt64LVTQy9dKamEZFYqo9RG1EtydsjdYXp5hTzrbXrFWF5q0YpatqJXslz1hyuLKWeEQe_QTwb_a870HqPe6k8Y9R6jPmAs3vMvXutnM_sUZzQ-fCthfUiAAuLNA-psPUQLzmMBqF3y30h5BzSgmV0 |
| CitedBy_id | crossref_primary_10_3390_app12031307 crossref_primary_10_1007_s11042_023_17787_4 crossref_primary_10_1016_j_bbe_2023_01_002 crossref_primary_10_1007_s11334_022_00495_x crossref_primary_10_1016_j_compeleceng_2024_110022 crossref_primary_10_3390_s22103705 crossref_primary_10_1016_j_bbe_2023_04_003 crossref_primary_10_1016_j_compbiomed_2023_107908 crossref_primary_10_1016_j_measurement_2022_111787 crossref_primary_10_3390_app122312342 crossref_primary_10_56294_dm202384 |
| Cites_doi | 10.1109/TBME.1985.325532 10.3390/s100606063 10.3844/ajassp.2008.276.281 10.1016/j.dsp.2008.09.002 10.1109/ACCESS.2017.2779939 10.1007/s11227-020-03407-7 10.1155/2008/491382 10.1016/j.future.2020.02.054 10.1142/S0219691309002957 10.3923/jas.2014.165.170 10.1088/1361-6579/aa6e9f 10.1016/j.cmpb.2005.11.012 10.1088/1361-6579/aaaa9d 10.1007/BF00979218 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Dec 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Dec 2021 |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.compeleceng.2021.107521 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0755 |
| ExternalDocumentID | 10_1016_j_compeleceng_2021_107521 S0045790621004687 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 UHS VOH WH7 WUQ XPP ZMT ~G- ~S- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 8FD AGCQF JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c349t-cc140e852f46ac9888e34b0adc5d566ad52e983f13d7f94d94d47240c47a77b23 |
| IEDL.DBID | .~1 |
| ISSN | 0045-7906 |
| IngestDate | Wed Aug 13 06:29:05 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 Wed Oct 01 05:23:36 EDT 2025 Fri Feb 23 02:41:42 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Virtual heath community Cardiovascular disease Electrocardiogram |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-cc140e852f46ac9888e34b0adc5d566ad52e983f13d7f94d94d47240c47a77b23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2623462974 |
| PQPubID | 2045266 |
| ParticipantIDs | proquest_journals_2623462974 crossref_primary_10_1016_j_compeleceng_2021_107521 crossref_citationtrail_10_1016_j_compeleceng_2021_107521 elsevier_sciencedirect_doi_10_1016_j_compeleceng_2021_107521 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 2021-12-00 20211201 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computers & electrical engineering |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Chen, Zeng, Tseng, Huang, Panl (bib0012) 2012 übeyli (bib0015) 2009; 19 Alturki, Al-Ghamdi, Daqrouq, Al-Hmouz (bib0014) 2014; 14 Tseng, Zhang, Chen, Hassan (bib0001) 2021; 77 Chiu, Chuang, Hsu (bib0008) 2019; 7 Technicolor, Related (bib0020) 2012; 25 Liang, Lukkarinen, Hartimo (bib0019) 1997 Kiranyaz, Ince, Hamila, Gabbouj (bib0016) 2015 Zeng, Tseng, Huang, Tu, Pan (bib0011) 2012 Wang, Agrafioti, Hatzinakos (bib0009) 2008; 2008 Saechia, Koseeyaporn, Wardkein (bib0010) 2007 Kamaleswaran, Mahajan, Akbilgic (bib0026) 2018; 39 Karim, Majumdar, Darabi, Chen (bib0017) 2017; 6 Chang (bib0005) 2010; 10 Pan, Tompkins (bib0007) 2007; 32 Simonyan, Zisserman (bib0021) 2014 Wang, Chen, Hassan, Almogren (bib0002) 2020; 108 Kravchenko, Popov (bib0003) 1994; 37 Alfaouri, Daqrouq (bib0004) 2008; 5 Chen, Tseng, Zeng, Huang, Tu (bib0013) 2012 Zagoruyko, Komodakis (bib0025) 2016 . He, Zhang, Ren, Sun (bib0022) 2016 Rajpurkar, P., Hannun, A.Y., Haghpanahi, M., Bourn, C., & Ng, A.Y. Cardiologist-level arrhythmia detection with convolutional neural networks. Chen, Chen, Chan (bib0006) 2006; 82 Liu, Springer, Clifford (bib0018) 2017; 38 Behar, Rosenberg, Yaniv, Oster (bib0023) 2018 Pan (10.1016/j.compeleceng.2021.107521_bib0007) 2007; 32 Chang (10.1016/j.compeleceng.2021.107521_bib0005) 2010; 10 Zeng (10.1016/j.compeleceng.2021.107521_bib0011) 2012 Zagoruyko (10.1016/j.compeleceng.2021.107521_bib0025) 2016 Karim (10.1016/j.compeleceng.2021.107521_bib0017) 2017; 6 Chiu (10.1016/j.compeleceng.2021.107521_bib0008) 2019; 7 Technicolor (10.1016/j.compeleceng.2021.107521_bib0020) 2012; 25 Tseng (10.1016/j.compeleceng.2021.107521_bib0001) 2021; 77 Alturki (10.1016/j.compeleceng.2021.107521_bib0014) 2014; 14 Chen (10.1016/j.compeleceng.2021.107521_bib0012) 2012 Wang (10.1016/j.compeleceng.2021.107521_bib0009) 2008; 2008 Kamaleswaran (10.1016/j.compeleceng.2021.107521_bib0026) 2018; 39 übeyli (10.1016/j.compeleceng.2021.107521_bib0015) 2009; 19 Kravchenko (10.1016/j.compeleceng.2021.107521_bib0003) 1994; 37 Wang (10.1016/j.compeleceng.2021.107521_bib0002) 2020; 108 Liu (10.1016/j.compeleceng.2021.107521_bib0018) 2017; 38 Liang (10.1016/j.compeleceng.2021.107521_bib0019) 1997 Alfaouri (10.1016/j.compeleceng.2021.107521_bib0004) 2008; 5 Chen (10.1016/j.compeleceng.2021.107521_bib0006) 2006; 82 10.1016/j.compeleceng.2021.107521_bib0024 He (10.1016/j.compeleceng.2021.107521_bib0022) 2016 Kiranyaz (10.1016/j.compeleceng.2021.107521_bib0016) 2015 Simonyan (10.1016/j.compeleceng.2021.107521_bib0021) 2014 Saechia (10.1016/j.compeleceng.2021.107521_bib0010) 2007 Chen (10.1016/j.compeleceng.2021.107521_bib0013) 2012 Behar (10.1016/j.compeleceng.2021.107521_bib0023) 2018 |
| References_xml | – year: 2016 ident: bib0025 article-title: Wide residual networks publication-title: Proceedings of the British machine vision conference, 19-22 September, York – volume: 19 start-page: 320 year: 2009 end-page: 329 ident: bib0015 article-title: Combining recurrent neural networks with eigenvector methods for classification of ECG beats publication-title: Digit Signal Process – volume: 108 start-page: 135 year: 2020 end-page: 144 ident: bib0002 article-title: A deep learning based medical image segmentation technique in internet-of-medical-things domain publication-title: Future Gener Comput Syst – volume: 77 start-page: 3594 year: 2021 end-page: 3615 ident: bib0001 article-title: DNetUnet: a semi-supervised CNN of medical image segmentation for super-computing AI service publication-title: J Supercomput – volume: 32 start-page: 230 year: 2007 end-page: 236 ident: bib0007 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans Biomed Eng – volume: 10 start-page: 6063 year: 2010 end-page: 6080 ident: bib0005 article-title: Arrhythmia ECG noise reduction by ensemble empirical mode decomposition publication-title: Sensors – start-page: 1 year: 2007 end-page: 4 ident: bib0010 article-title: Human identification system based ECG signal publication-title: Proceedings of the TENCON IEEE region 10 conference – year: 2012 ident: bib0012 article-title: ECG human identification with statistical support vector machines publication-title: Proceedings of the international conference on computing, measurement, control and sensor network (CMCSN) – year: 2016 ident: bib0022 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) – volume: 2008 start-page: 1 year: 2008 end-page: 11 ident: bib0009 article-title: Analysis of human electrocardiogram for biometric recognition publication-title: Eurasip J Adv Signal Process – volume: 7 start-page: 341 year: 2019 end-page: 355 ident: bib0008 article-title: Discrete wavelet transform applied on personal identity verification with ECG signal publication-title: International Journal of Wavelets, Multiresolution and Information Processing – year: 2018 ident: bib0023 article-title: Rhythm and quality classification from short ECGs recorded using a mobile device publication-title: Proceedings of the 2017 computing in cardiology (CinC) – volume: 14 start-page: 165 year: 2014 end-page: 170 ident: bib0014 article-title: Application of ECG arrhythmia classification by means of bayesian theorem publication-title: J Appl Sci – volume: 37 start-page: 220 year: 1994 end-page: 223 ident: bib0003 article-title: Digital filters in human ECG processing and analysis publication-title: Meas Tech – volume: 6 start-page: 1662 year: 2017 end-page: 1669 ident: bib0017 article-title: LSTM fully convolutional networks for time series classification publication-title: IEEE Access – volume: 38 start-page: 1730 year: 2017 end-page: 1745 ident: bib0018 article-title: Performance of an open-source heart sound segmentation algorithm on eight independent databases publication-title: Physiol Meas – volume: 5 start-page: 276 year: 2008 end-page: 281 ident: bib0004 article-title: ECG signal denoising by wavelet transform thresholding publication-title: Am J Appl Sci – reference: . – year: 2012 ident: bib0013 article-title: A new ECG identification with neural network publication-title: Proceedings of the 12th international conference on hybrid intelligent systems (HIS) – volume: 82 start-page: 187 year: 2006 end-page: 195 ident: bib0006 article-title: A real-time QRS detection method based on moving-averaging incorporating with wavelet denoising publication-title: Comput Methods Programs Biomed – year: 2012 ident: bib0011 article-title: A new statistical-based algorithm for ECG identification publication-title: Proceedings of the eighth international conference on intelligent information hiding & multimedia signal processing – reference: Rajpurkar, P., Hannun, A.Y., Haghpanahi, M., Bourn, C., & Ng, A.Y. Cardiologist-level arrhythmia detection with convolutional neural networks. – volume: 39 year: 2018 ident: bib0026 article-title: A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using varying length single lead electrocardiogram publication-title: Physiol Meas – year: 1997 ident: bib0019 article-title: Heart sound segmentation algorithm based on heart sound envelogram publication-title: Proceedings of the computers in cardiology – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: bib0020 article-title: ImageNet classification with deep convolutional neural networks. publication-title: systems – year: 2015 ident: bib0016 article-title: Convolutional neural networks for patient-specific ECG classification publication-title: Proceedings of the engineering in medicine and biology society (EMBC) – year: 2014 ident: bib0021 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv preprint arXiv:1409.1556 – volume: 32 start-page: 230 issue: 3 year: 2007 ident: 10.1016/j.compeleceng.2021.107521_bib0007 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.1985.325532 – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.compeleceng.2021.107521_bib0020 article-title: ImageNet classification with deep convolutional neural networks.Advances in neural information processing publication-title: systems – year: 2016 ident: 10.1016/j.compeleceng.2021.107521_bib0022 article-title: Deep residual learning for image recognition – year: 2018 ident: 10.1016/j.compeleceng.2021.107521_bib0023 article-title: Rhythm and quality classification from short ECGs recorded using a mobile device – volume: 10 start-page: 6063 issue: 6 year: 2010 ident: 10.1016/j.compeleceng.2021.107521_bib0005 article-title: Arrhythmia ECG noise reduction by ensemble empirical mode decomposition publication-title: Sensors doi: 10.3390/s100606063 – volume: 5 start-page: 276 issue: 3 year: 2008 ident: 10.1016/j.compeleceng.2021.107521_bib0004 article-title: ECG signal denoising by wavelet transform thresholding publication-title: Am J Appl Sci doi: 10.3844/ajassp.2008.276.281 – year: 2012 ident: 10.1016/j.compeleceng.2021.107521_bib0013 article-title: A new ECG identification with neural network – volume: 19 start-page: 320 issue: 2 year: 2009 ident: 10.1016/j.compeleceng.2021.107521_bib0015 article-title: Combining recurrent neural networks with eigenvector methods for classification of ECG beats publication-title: Digit Signal Process doi: 10.1016/j.dsp.2008.09.002 – volume: 6 start-page: 1662 year: 2017 ident: 10.1016/j.compeleceng.2021.107521_bib0017 article-title: LSTM fully convolutional networks for time series classification publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2779939 – year: 2012 ident: 10.1016/j.compeleceng.2021.107521_bib0012 article-title: ECG human identification with statistical support vector machines – volume: 77 start-page: 3594 issue: 4 year: 2021 ident: 10.1016/j.compeleceng.2021.107521_bib0001 article-title: DNetUnet: a semi-supervised CNN of medical image segmentation for super-computing AI service publication-title: J Supercomput doi: 10.1007/s11227-020-03407-7 – year: 2016 ident: 10.1016/j.compeleceng.2021.107521_bib0025 article-title: Wide residual networks – year: 1997 ident: 10.1016/j.compeleceng.2021.107521_bib0019 article-title: Heart sound segmentation algorithm based on heart sound envelogram – year: 2012 ident: 10.1016/j.compeleceng.2021.107521_bib0011 article-title: A new statistical-based algorithm for ECG identification – ident: 10.1016/j.compeleceng.2021.107521_bib0024 – volume: 2008 start-page: 1 issue: 19 year: 2008 ident: 10.1016/j.compeleceng.2021.107521_bib0009 article-title: Analysis of human electrocardiogram for biometric recognition publication-title: Eurasip J Adv Signal Process doi: 10.1155/2008/491382 – volume: 108 start-page: 135 year: 2020 ident: 10.1016/j.compeleceng.2021.107521_bib0002 article-title: A deep learning based medical image segmentation technique in internet-of-medical-things domain publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2020.02.054 – year: 2015 ident: 10.1016/j.compeleceng.2021.107521_bib0016 article-title: Convolutional neural networks for patient-specific ECG classification – volume: 7 start-page: 341 issue: 3 year: 2019 ident: 10.1016/j.compeleceng.2021.107521_bib0008 article-title: Discrete wavelet transform applied on personal identity verification with ECG signal publication-title: International Journal of Wavelets, Multiresolution and Information Processing doi: 10.1142/S0219691309002957 – volume: 14 start-page: 165 issue: 2 year: 2014 ident: 10.1016/j.compeleceng.2021.107521_bib0014 article-title: Application of ECG arrhythmia classification by means of bayesian theorem publication-title: J Appl Sci doi: 10.3923/jas.2014.165.170 – start-page: 1 year: 2007 ident: 10.1016/j.compeleceng.2021.107521_bib0010 article-title: Human identification system based ECG signal – volume: 38 start-page: 1730 issue: 8 year: 2017 ident: 10.1016/j.compeleceng.2021.107521_bib0018 article-title: Performance of an open-source heart sound segmentation algorithm on eight independent databases publication-title: Physiol Meas doi: 10.1088/1361-6579/aa6e9f – volume: 82 start-page: 187 issue: 3 year: 2006 ident: 10.1016/j.compeleceng.2021.107521_bib0006 article-title: A real-time QRS detection method based on moving-averaging incorporating with wavelet denoising publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2005.11.012 – year: 2014 ident: 10.1016/j.compeleceng.2021.107521_bib0021 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv preprint arXiv:1409.1556 – volume: 39 issue: 3 year: 2018 ident: 10.1016/j.compeleceng.2021.107521_bib0026 article-title: A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using varying length single lead electrocardiogram publication-title: Physiol Meas doi: 10.1088/1361-6579/aaaa9d – volume: 37 start-page: 220 issue: 2 year: 1994 ident: 10.1016/j.compeleceng.2021.107521_bib0003 article-title: Digital filters in human ECG processing and analysis publication-title: Meas Tech doi: 10.1007/BF00979218 |
| SSID | ssj0004618 |
| Score | 2.3820655 |
| Snippet | •A new diagnostic framework for mobile electrocardiogram signal is proposed.•The sliding segmentation method is used to enhance the model's generalization... Cardiovascular disease has become a significant cause of modern people's health problems. The mobile electrocardiogram can be a non-intrusive and convenient... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107521 |
| SubjectTerms | Algorithms Cardiovascular disease Deep learning Diagnosis Electrocardiogram Electrocardiography Kernels Machine learning Neural networks Segmentation Sliding Virtual heath community |
| Title | Sliding large kernel of deep learning algorithm for mobile electrocardiogram diagnosis |
| URI | https://dx.doi.org/10.1016/j.compeleceng.2021.107521 https://www.proquest.com/docview/2623462974 |
| Volume | 96 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004618 issn: 0045-7906 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004618 issn: 0045-7906 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004618 issn: 0045-7906 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004618 issn: 0045-7906 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004618 issn: 0045-7906 databaseCode: AKRWK dateStart: 19730601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5DQfRBvOK8EcHXujVNLwFfZDimwl68sLeQJums1m7M-epv95w21SkIgtCXBk4pX5Jzge-cj5BTkShjhR94KrKJxw33PZGIzOOhNkESplB0VQTZYTS459ejcNQivaYXBmmVzvfXPr3y1m6l49DsTPMce3x5GOOYXRx6FiXYUc55jCoGZ-_-Qm-kX3tjjqMZu9EKOfnieCFtG-VmbDmGUpH5sB6HzP8tRv3w1lUI6m-QdZc70ov69zZJy5ZbZG1houA2ebgtcoxGtECGN322s9IWdJJRY-2UOomIMVXFeDLL548vFHJW-jJJwTdQp4ijK4YqkraoqXl4-esOue9f3vUGnpNO8HTAxdzTGgonm4Qs45HSAhC3AU-7yujQQAKnTMisSILMD0ycCW7gAeh4V_NYxXHKgl2yVE5Ku0co1DsqS4WxKKLObKBixrqQxhlYQzWFNkkasKR2c8VR3qKQDYHsSS7gLBFnWePcJuzTdFoP1_iL0XmzI_LbSZEQBP5iftjsonTX9VUySAJ5xKC22v_f1w_IKr7VfJdDsjSfvdkjyFrm6XF1LI_J8sXVzWD4AYNz7V0 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3xIRU4IChUfCytkXpN2Th2HEtcKgTawpYLUHGzHNtZUkJ2tSxXfjvjxClbpEpIlXJyNFE0tmfmSW_mAXyVmbZOxkmkU5dFzLI4kpksIsaNTTKeI-hqCLKX6eCGnd_y2wU46XphPK0yxP42pjfROqwcBW8eTcrS9_gyLvyYXT_0LM3EIiwzToVHYN-e47nmyLgNx8zPZuynH-DwleTledteb8bVI8SKNMZ1wWn8ryT1Jlw3OehsA9ZD8Ui-t_-3CQuu_ghrcyMFt-DXVVX6dEQqT_Em925au4qMC2Kdm5CgETEiuhqNp-Xs7oFg0UoexjkGBxIkcUxDUfWsLWJbIl75uA03Z6fXJ4MoaCdEJmFyFhmDyMllnBYs1Uaiy13C8r62hlus4LTl1MksKeLEikIyiw8TmN0NE1qInCafYKke124HCAIeXeTSOq-iTl2iBaV9rOMsrnk5hV3IOmcpEwaLe32LSnUMst9qzs_K-1m1ft4F-sd00k7XeI_Rcbcj6q-jojALvMe81-2iCvf1UVGsAllKEVzt_d_Xv8DK4PrnUA1_XF7sw6p_05JferA0mz65AyxhZvnn5oi-AAqD7vI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sliding+large+kernel+of+deep+learning+algorithm+for+mobile+electrocardiogram+diagnosis&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Tseng%2C+Kuo-Kun&rft.au=Wang%2C+Chao&rft.au=Xiao%2C+Tianjie&rft.au=Chen%2C+Chien-Ming&rft.date=2021-12-01&rft.issn=0045-7906&rft.volume=96&rft.spage=107521&rft_id=info:doi/10.1016%2Fj.compeleceng.2021.107521&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2021_107521 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon |