Sliding large kernel of deep learning algorithm for mobile electrocardiogram diagnosis

•A new diagnostic framework for mobile electrocardiogram signal is proposed.•The sliding segmentation method is used to enhance the model's generalization ability.•Adopted a large-scale convolution kernel of a one-dimensional neural network.•The proposed algorithm shows more resistant to sparse...

Full description

Saved in:
Bibliographic Details
Published inComputers & electrical engineering Vol. 96; p. 107521
Main Authors Tseng, Kuo-Kun, Wang, Chao, Xiao, Tianjie, Chen, Chien-Ming, Hassan, Mohammad Mehedi, de Albuquerque, Victor Hugo C.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.12.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0045-7906
1879-0755
DOI10.1016/j.compeleceng.2021.107521

Cover

Abstract •A new diagnostic framework for mobile electrocardiogram signal is proposed.•The sliding segmentation method is used to enhance the model's generalization ability.•Adopted a large-scale convolution kernel of a one-dimensional neural network.•The proposed algorithm shows more resistant to sparseness and noise issues.•Experimental results present better accuracy as compared to previous approaches. Cardiovascular disease has become a significant cause of modern people's health problems. The mobile electrocardiogram can be a non-intrusive and convenient tool to provide an auxiliary diagnosis of cardiovascular diseases for the virtual heath community. In this paper, a new diagnostic framework for mobile electrocardiogram signal is proposed with two improved methods. They are (1) the sliding segmentation method, which enhances the model's generalization ability and (2) the large-scale convolution kernel of a one-dimensional neural network, that is designed for mobile electrocardiogram signal with more resistant to sparseness and noise issues. According our experiments, the results show that the proposed sliding large kernel algorithm has a better accuracy than previous algorithms. [Display omitted] Sliding large kernel of deep neural network for mobile electrocardiogram diagnosis of the virtual heath community.
AbstractList •A new diagnostic framework for mobile electrocardiogram signal is proposed.•The sliding segmentation method is used to enhance the model's generalization ability.•Adopted a large-scale convolution kernel of a one-dimensional neural network.•The proposed algorithm shows more resistant to sparseness and noise issues.•Experimental results present better accuracy as compared to previous approaches. Cardiovascular disease has become a significant cause of modern people's health problems. The mobile electrocardiogram can be a non-intrusive and convenient tool to provide an auxiliary diagnosis of cardiovascular diseases for the virtual heath community. In this paper, a new diagnostic framework for mobile electrocardiogram signal is proposed with two improved methods. They are (1) the sliding segmentation method, which enhances the model's generalization ability and (2) the large-scale convolution kernel of a one-dimensional neural network, that is designed for mobile electrocardiogram signal with more resistant to sparseness and noise issues. According our experiments, the results show that the proposed sliding large kernel algorithm has a better accuracy than previous algorithms. [Display omitted] Sliding large kernel of deep neural network for mobile electrocardiogram diagnosis of the virtual heath community.
Cardiovascular disease has become a significant cause of modern people's health problems. The mobile electrocardiogram can be a non-intrusive and convenient tool to provide an auxiliary diagnosis of cardiovascular diseases for the virtual heath community. In this paper, a new diagnostic framework for mobile electrocardiogram signal is proposed with two improved methods. They are (1) the sliding segmentation method, which enhances the model's generalization ability and (2) the large-scale convolution kernel of a one-dimensional neural network, that is designed for mobile electrocardiogram signal with more resistant to sparseness and noise issues. According our experiments, the results show that the proposed sliding large kernel algorithm has a better accuracy than previous algorithms.
ArticleNumber 107521
Author de Albuquerque, Victor Hugo C.
Chen, Chien-Ming
Xiao, Tianjie
Wang, Chao
Tseng, Kuo-Kun
Hassan, Mohammad Mehedi
Author_xml – sequence: 1
  givenname: Kuo-Kun
  surname: Tseng
  fullname: Tseng, Kuo-Kun
  organization: Harbin Institute of Technology (Shenzhen), Shenzhen, China
– sequence: 2
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: Harbin Institute of Technology (Shenzhen), Shenzhen, China
– sequence: 3
  givenname: Tianjie
  surname: Xiao
  fullname: Xiao, Tianjie
  organization: Harbin Institute of Technology (Shenzhen), Shenzhen, China
– sequence: 4
  givenname: Chien-Ming
  surname: Chen
  fullname: Chen, Chien-Ming
  organization: Shandong University of Science and Technology, Shandong, China
– sequence: 5
  givenname: Mohammad Mehedi
  surname: Hassan
  fullname: Hassan, Mohammad Mehedi
  organization: Information Systems Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
– sequence: 6
  givenname: Victor Hugo C.
  surname: de Albuquerque
  fullname: de Albuquerque, Victor Hugo C.
  email: victor.albuquerque@fe.up.pt
  organization: Department of Mechanical Engineering, Faculty of Engineering, University of Porto (FEUP), Porto, Portugal
BookMark eNqNkE9LJDEQxcPiwo7jfoeI555N0ulO90lkUFcQPPjnGjJJdW_GdDJWWmG_vRnGg3gSCopXVe8V_I7JUUwRCDnlbMUZb_9sVzZNOwhgIY4rwQQvc9UI_oMseKf6qojmiCwYk02letb-Isc5b1nRLe8W5Ok-eOfjSIPBEegzYIRA00AdwI4GMBj3WxPGhH7-N9EhIZ3Sxgeg-68zJmvQ-TSimajzZowp-3xCfg4mZPj90Zfk8eryYf23ur27vllf3Fa2lv1cWcslg64Rg2yN7buug1pumHG2cU3bGtcI6Lt64LVTQy9dKamEZFYqo9RG1EtydsjdYXp5hTzrbXrFWF5q0YpatqJXslz1hyuLKWeEQe_QTwb_a870HqPe6k8Y9R6jPmAs3vMvXutnM_sUZzQ-fCthfUiAAuLNA-psPUQLzmMBqF3y30h5BzSgmV0
CitedBy_id crossref_primary_10_3390_app12031307
crossref_primary_10_1007_s11042_023_17787_4
crossref_primary_10_1016_j_bbe_2023_01_002
crossref_primary_10_1007_s11334_022_00495_x
crossref_primary_10_1016_j_compeleceng_2024_110022
crossref_primary_10_3390_s22103705
crossref_primary_10_1016_j_bbe_2023_04_003
crossref_primary_10_1016_j_compbiomed_2023_107908
crossref_primary_10_1016_j_measurement_2022_111787
crossref_primary_10_3390_app122312342
crossref_primary_10_56294_dm202384
Cites_doi 10.1109/TBME.1985.325532
10.3390/s100606063
10.3844/ajassp.2008.276.281
10.1016/j.dsp.2008.09.002
10.1109/ACCESS.2017.2779939
10.1007/s11227-020-03407-7
10.1155/2008/491382
10.1016/j.future.2020.02.054
10.1142/S0219691309002957
10.3923/jas.2014.165.170
10.1088/1361-6579/aa6e9f
10.1016/j.cmpb.2005.11.012
10.1088/1361-6579/aaaa9d
10.1007/BF00979218
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compeleceng.2021.107521
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
ExternalDocumentID 10_1016_j_compeleceng_2021_107521
S0045790621004687
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
AGCQF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c349t-cc140e852f46ac9888e34b0adc5d566ad52e983f13d7f94d94d47240c47a77b23
IEDL.DBID .~1
ISSN 0045-7906
IngestDate Wed Aug 13 06:29:05 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
Wed Oct 01 05:23:36 EDT 2025
Fri Feb 23 02:41:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Virtual heath community
Cardiovascular disease
Electrocardiogram
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-cc140e852f46ac9888e34b0adc5d566ad52e983f13d7f94d94d47240c47a77b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2623462974
PQPubID 2045266
ParticipantIDs proquest_journals_2623462974
crossref_primary_10_1016_j_compeleceng_2021_107521
crossref_citationtrail_10_1016_j_compeleceng_2021_107521
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2021_107521
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & electrical engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Chen, Zeng, Tseng, Huang, Panl (bib0012) 2012
übeyli (bib0015) 2009; 19
Alturki, Al-Ghamdi, Daqrouq, Al-Hmouz (bib0014) 2014; 14
Tseng, Zhang, Chen, Hassan (bib0001) 2021; 77
Chiu, Chuang, Hsu (bib0008) 2019; 7
Technicolor, Related (bib0020) 2012; 25
Liang, Lukkarinen, Hartimo (bib0019) 1997
Kiranyaz, Ince, Hamila, Gabbouj (bib0016) 2015
Zeng, Tseng, Huang, Tu, Pan (bib0011) 2012
Wang, Agrafioti, Hatzinakos (bib0009) 2008; 2008
Saechia, Koseeyaporn, Wardkein (bib0010) 2007
Kamaleswaran, Mahajan, Akbilgic (bib0026) 2018; 39
Karim, Majumdar, Darabi, Chen (bib0017) 2017; 6
Chang (bib0005) 2010; 10
Pan, Tompkins (bib0007) 2007; 32
Simonyan, Zisserman (bib0021) 2014
Wang, Chen, Hassan, Almogren (bib0002) 2020; 108
Kravchenko, Popov (bib0003) 1994; 37
Alfaouri, Daqrouq (bib0004) 2008; 5
Chen, Tseng, Zeng, Huang, Tu (bib0013) 2012
Zagoruyko, Komodakis (bib0025) 2016
.
He, Zhang, Ren, Sun (bib0022) 2016
Rajpurkar, P., Hannun, A.Y., Haghpanahi, M., Bourn, C., & Ng, A.Y. Cardiologist-level arrhythmia detection with convolutional neural networks.
Chen, Chen, Chan (bib0006) 2006; 82
Liu, Springer, Clifford (bib0018) 2017; 38
Behar, Rosenberg, Yaniv, Oster (bib0023) 2018
Pan (10.1016/j.compeleceng.2021.107521_bib0007) 2007; 32
Chang (10.1016/j.compeleceng.2021.107521_bib0005) 2010; 10
Zeng (10.1016/j.compeleceng.2021.107521_bib0011) 2012
Zagoruyko (10.1016/j.compeleceng.2021.107521_bib0025) 2016
Karim (10.1016/j.compeleceng.2021.107521_bib0017) 2017; 6
Chiu (10.1016/j.compeleceng.2021.107521_bib0008) 2019; 7
Technicolor (10.1016/j.compeleceng.2021.107521_bib0020) 2012; 25
Tseng (10.1016/j.compeleceng.2021.107521_bib0001) 2021; 77
Alturki (10.1016/j.compeleceng.2021.107521_bib0014) 2014; 14
Chen (10.1016/j.compeleceng.2021.107521_bib0012) 2012
Wang (10.1016/j.compeleceng.2021.107521_bib0009) 2008; 2008
Kamaleswaran (10.1016/j.compeleceng.2021.107521_bib0026) 2018; 39
übeyli (10.1016/j.compeleceng.2021.107521_bib0015) 2009; 19
Kravchenko (10.1016/j.compeleceng.2021.107521_bib0003) 1994; 37
Wang (10.1016/j.compeleceng.2021.107521_bib0002) 2020; 108
Liu (10.1016/j.compeleceng.2021.107521_bib0018) 2017; 38
Liang (10.1016/j.compeleceng.2021.107521_bib0019) 1997
Alfaouri (10.1016/j.compeleceng.2021.107521_bib0004) 2008; 5
Chen (10.1016/j.compeleceng.2021.107521_bib0006) 2006; 82
10.1016/j.compeleceng.2021.107521_bib0024
He (10.1016/j.compeleceng.2021.107521_bib0022) 2016
Kiranyaz (10.1016/j.compeleceng.2021.107521_bib0016) 2015
Simonyan (10.1016/j.compeleceng.2021.107521_bib0021) 2014
Saechia (10.1016/j.compeleceng.2021.107521_bib0010) 2007
Chen (10.1016/j.compeleceng.2021.107521_bib0013) 2012
Behar (10.1016/j.compeleceng.2021.107521_bib0023) 2018
References_xml – year: 2016
  ident: bib0025
  article-title: Wide residual networks
  publication-title: Proceedings of the British machine vision conference, 19-22 September, York
– volume: 19
  start-page: 320
  year: 2009
  end-page: 329
  ident: bib0015
  article-title: Combining recurrent neural networks with eigenvector methods for classification of ECG beats
  publication-title: Digit Signal Process
– volume: 108
  start-page: 135
  year: 2020
  end-page: 144
  ident: bib0002
  article-title: A deep learning based medical image segmentation technique in internet-of-medical-things domain
  publication-title: Future Gener Comput Syst
– volume: 77
  start-page: 3594
  year: 2021
  end-page: 3615
  ident: bib0001
  article-title: DNetUnet: a semi-supervised CNN of medical image segmentation for super-computing AI service
  publication-title: J Supercomput
– volume: 32
  start-page: 230
  year: 2007
  end-page: 236
  ident: bib0007
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans Biomed Eng
– volume: 10
  start-page: 6063
  year: 2010
  end-page: 6080
  ident: bib0005
  article-title: Arrhythmia ECG noise reduction by ensemble empirical mode decomposition
  publication-title: Sensors
– start-page: 1
  year: 2007
  end-page: 4
  ident: bib0010
  article-title: Human identification system based ECG signal
  publication-title: Proceedings of the TENCON IEEE region 10 conference
– year: 2012
  ident: bib0012
  article-title: ECG human identification with statistical support vector machines
  publication-title: Proceedings of the international conference on computing, measurement, control and sensor network (CMCSN)
– year: 2016
  ident: bib0022
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 11
  ident: bib0009
  article-title: Analysis of human electrocardiogram for biometric recognition
  publication-title: Eurasip J Adv Signal Process
– volume: 7
  start-page: 341
  year: 2019
  end-page: 355
  ident: bib0008
  article-title: Discrete wavelet transform applied on personal identity verification with ECG signal
  publication-title: International Journal of Wavelets, Multiresolution and Information Processing
– year: 2018
  ident: bib0023
  article-title: Rhythm and quality classification from short ECGs recorded using a mobile device
  publication-title: Proceedings of the 2017 computing in cardiology (CinC)
– volume: 14
  start-page: 165
  year: 2014
  end-page: 170
  ident: bib0014
  article-title: Application of ECG arrhythmia classification by means of bayesian theorem
  publication-title: J Appl Sci
– volume: 37
  start-page: 220
  year: 1994
  end-page: 223
  ident: bib0003
  article-title: Digital filters in human ECG processing and analysis
  publication-title: Meas Tech
– volume: 6
  start-page: 1662
  year: 2017
  end-page: 1669
  ident: bib0017
  article-title: LSTM fully convolutional networks for time series classification
  publication-title: IEEE Access
– volume: 38
  start-page: 1730
  year: 2017
  end-page: 1745
  ident: bib0018
  article-title: Performance of an open-source heart sound segmentation algorithm on eight independent databases
  publication-title: Physiol Meas
– volume: 5
  start-page: 276
  year: 2008
  end-page: 281
  ident: bib0004
  article-title: ECG signal denoising by wavelet transform thresholding
  publication-title: Am J Appl Sci
– reference: .
– year: 2012
  ident: bib0013
  article-title: A new ECG identification with neural network
  publication-title: Proceedings of the 12th international conference on hybrid intelligent systems (HIS)
– volume: 82
  start-page: 187
  year: 2006
  end-page: 195
  ident: bib0006
  article-title: A real-time QRS detection method based on moving-averaging incorporating with wavelet denoising
  publication-title: Comput Methods Programs Biomed
– year: 2012
  ident: bib0011
  article-title: A new statistical-based algorithm for ECG identification
  publication-title: Proceedings of the eighth international conference on intelligent information hiding & multimedia signal processing
– reference: Rajpurkar, P., Hannun, A.Y., Haghpanahi, M., Bourn, C., & Ng, A.Y. Cardiologist-level arrhythmia detection with convolutional neural networks.
– volume: 39
  year: 2018
  ident: bib0026
  article-title: A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using varying length single lead electrocardiogram
  publication-title: Physiol Meas
– year: 1997
  ident: bib0019
  article-title: Heart sound segmentation algorithm based on heart sound envelogram
  publication-title: Proceedings of the computers in cardiology
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0020
  article-title: ImageNet classification with deep convolutional neural networks.
  publication-title: systems
– year: 2015
  ident: bib0016
  article-title: Convolutional neural networks for patient-specific ECG classification
  publication-title: Proceedings of the engineering in medicine and biology society (EMBC)
– year: 2014
  ident: bib0021
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint arXiv:1409.1556
– volume: 32
  start-page: 230
  issue: 3
  year: 2007
  ident: 10.1016/j.compeleceng.2021.107521_bib0007
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.1985.325532
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.compeleceng.2021.107521_bib0020
  article-title: ImageNet classification with deep convolutional neural networks.Advances in neural information processing
  publication-title: systems
– year: 2016
  ident: 10.1016/j.compeleceng.2021.107521_bib0022
  article-title: Deep residual learning for image recognition
– year: 2018
  ident: 10.1016/j.compeleceng.2021.107521_bib0023
  article-title: Rhythm and quality classification from short ECGs recorded using a mobile device
– volume: 10
  start-page: 6063
  issue: 6
  year: 2010
  ident: 10.1016/j.compeleceng.2021.107521_bib0005
  article-title: Arrhythmia ECG noise reduction by ensemble empirical mode decomposition
  publication-title: Sensors
  doi: 10.3390/s100606063
– volume: 5
  start-page: 276
  issue: 3
  year: 2008
  ident: 10.1016/j.compeleceng.2021.107521_bib0004
  article-title: ECG signal denoising by wavelet transform thresholding
  publication-title: Am J Appl Sci
  doi: 10.3844/ajassp.2008.276.281
– year: 2012
  ident: 10.1016/j.compeleceng.2021.107521_bib0013
  article-title: A new ECG identification with neural network
– volume: 19
  start-page: 320
  issue: 2
  year: 2009
  ident: 10.1016/j.compeleceng.2021.107521_bib0015
  article-title: Combining recurrent neural networks with eigenvector methods for classification of ECG beats
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2008.09.002
– volume: 6
  start-page: 1662
  year: 2017
  ident: 10.1016/j.compeleceng.2021.107521_bib0017
  article-title: LSTM fully convolutional networks for time series classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2779939
– year: 2012
  ident: 10.1016/j.compeleceng.2021.107521_bib0012
  article-title: ECG human identification with statistical support vector machines
– volume: 77
  start-page: 3594
  issue: 4
  year: 2021
  ident: 10.1016/j.compeleceng.2021.107521_bib0001
  article-title: DNetUnet: a semi-supervised CNN of medical image segmentation for super-computing AI service
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03407-7
– year: 2016
  ident: 10.1016/j.compeleceng.2021.107521_bib0025
  article-title: Wide residual networks
– year: 1997
  ident: 10.1016/j.compeleceng.2021.107521_bib0019
  article-title: Heart sound segmentation algorithm based on heart sound envelogram
– year: 2012
  ident: 10.1016/j.compeleceng.2021.107521_bib0011
  article-title: A new statistical-based algorithm for ECG identification
– ident: 10.1016/j.compeleceng.2021.107521_bib0024
– volume: 2008
  start-page: 1
  issue: 19
  year: 2008
  ident: 10.1016/j.compeleceng.2021.107521_bib0009
  article-title: Analysis of human electrocardiogram for biometric recognition
  publication-title: Eurasip J Adv Signal Process
  doi: 10.1155/2008/491382
– volume: 108
  start-page: 135
  year: 2020
  ident: 10.1016/j.compeleceng.2021.107521_bib0002
  article-title: A deep learning based medical image segmentation technique in internet-of-medical-things domain
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2020.02.054
– year: 2015
  ident: 10.1016/j.compeleceng.2021.107521_bib0016
  article-title: Convolutional neural networks for patient-specific ECG classification
– volume: 7
  start-page: 341
  issue: 3
  year: 2019
  ident: 10.1016/j.compeleceng.2021.107521_bib0008
  article-title: Discrete wavelet transform applied on personal identity verification with ECG signal
  publication-title: International Journal of Wavelets, Multiresolution and Information Processing
  doi: 10.1142/S0219691309002957
– volume: 14
  start-page: 165
  issue: 2
  year: 2014
  ident: 10.1016/j.compeleceng.2021.107521_bib0014
  article-title: Application of ECG arrhythmia classification by means of bayesian theorem
  publication-title: J Appl Sci
  doi: 10.3923/jas.2014.165.170
– start-page: 1
  year: 2007
  ident: 10.1016/j.compeleceng.2021.107521_bib0010
  article-title: Human identification system based ECG signal
– volume: 38
  start-page: 1730
  issue: 8
  year: 2017
  ident: 10.1016/j.compeleceng.2021.107521_bib0018
  article-title: Performance of an open-source heart sound segmentation algorithm on eight independent databases
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/aa6e9f
– volume: 82
  start-page: 187
  issue: 3
  year: 2006
  ident: 10.1016/j.compeleceng.2021.107521_bib0006
  article-title: A real-time QRS detection method based on moving-averaging incorporating with wavelet denoising
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2005.11.012
– year: 2014
  ident: 10.1016/j.compeleceng.2021.107521_bib0021
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint arXiv:1409.1556
– volume: 39
  issue: 3
  year: 2018
  ident: 10.1016/j.compeleceng.2021.107521_bib0026
  article-title: A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using varying length single lead electrocardiogram
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/aaaa9d
– volume: 37
  start-page: 220
  issue: 2
  year: 1994
  ident: 10.1016/j.compeleceng.2021.107521_bib0003
  article-title: Digital filters in human ECG processing and analysis
  publication-title: Meas Tech
  doi: 10.1007/BF00979218
SSID ssj0004618
Score 2.3820655
Snippet •A new diagnostic framework for mobile electrocardiogram signal is proposed.•The sliding segmentation method is used to enhance the model's generalization...
Cardiovascular disease has become a significant cause of modern people's health problems. The mobile electrocardiogram can be a non-intrusive and convenient...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107521
SubjectTerms Algorithms
Cardiovascular disease
Deep learning
Diagnosis
Electrocardiogram
Electrocardiography
Kernels
Machine learning
Neural networks
Segmentation
Sliding
Virtual heath community
Title Sliding large kernel of deep learning algorithm for mobile electrocardiogram diagnosis
URI https://dx.doi.org/10.1016/j.compeleceng.2021.107521
https://www.proquest.com/docview/2623462974
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: AKRWK
  dateStart: 19730601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5DQfRBvOK8EcHXujVNLwFfZDimwl68sLeQJums1m7M-epv95w21SkIgtCXBk4pX5Jzge-cj5BTkShjhR94KrKJxw33PZGIzOOhNkESplB0VQTZYTS459ejcNQivaYXBmmVzvfXPr3y1m6l49DsTPMce3x5GOOYXRx6FiXYUc55jCoGZ-_-Qm-kX3tjjqMZu9EKOfnieCFtG-VmbDmGUpH5sB6HzP8tRv3w1lUI6m-QdZc70ov69zZJy5ZbZG1houA2ebgtcoxGtECGN322s9IWdJJRY-2UOomIMVXFeDLL548vFHJW-jJJwTdQp4ijK4YqkraoqXl4-esOue9f3vUGnpNO8HTAxdzTGgonm4Qs45HSAhC3AU-7yujQQAKnTMisSILMD0ycCW7gAeh4V_NYxXHKgl2yVE5Ku0co1DsqS4WxKKLObKBixrqQxhlYQzWFNkkasKR2c8VR3qKQDYHsSS7gLBFnWePcJuzTdFoP1_iL0XmzI_LbSZEQBP5iftjsonTX9VUySAJ5xKC22v_f1w_IKr7VfJdDsjSfvdkjyFrm6XF1LI_J8sXVzWD4AYNz7V0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3xIRU4IChUfCytkXpN2Th2HEtcKgTawpYLUHGzHNtZUkJ2tSxXfjvjxClbpEpIlXJyNFE0tmfmSW_mAXyVmbZOxkmkU5dFzLI4kpksIsaNTTKeI-hqCLKX6eCGnd_y2wU46XphPK0yxP42pjfROqwcBW8eTcrS9_gyLvyYXT_0LM3EIiwzToVHYN-e47nmyLgNx8zPZuynH-DwleTledteb8bVI8SKNMZ1wWn8ryT1Jlw3OehsA9ZD8Ui-t_-3CQuu_ghrcyMFt-DXVVX6dEQqT_Em925au4qMC2Kdm5CgETEiuhqNp-Xs7oFg0UoexjkGBxIkcUxDUfWsLWJbIl75uA03Z6fXJ4MoaCdEJmFyFhmDyMllnBYs1Uaiy13C8r62hlus4LTl1MksKeLEikIyiw8TmN0NE1qInCafYKke124HCAIeXeTSOq-iTl2iBaV9rOMsrnk5hV3IOmcpEwaLe32LSnUMst9qzs_K-1m1ft4F-sd00k7XeI_Rcbcj6q-jojALvMe81-2iCvf1UVGsAllKEVzt_d_Xv8DK4PrnUA1_XF7sw6p_05JferA0mz65AyxhZvnn5oi-AAqD7vI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sliding+large+kernel+of+deep+learning+algorithm+for+mobile+electrocardiogram+diagnosis&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Tseng%2C+Kuo-Kun&rft.au=Wang%2C+Chao&rft.au=Xiao%2C+Tianjie&rft.au=Chen%2C+Chien-Ming&rft.date=2021-12-01&rft.issn=0045-7906&rft.volume=96&rft.spage=107521&rft_id=info:doi/10.1016%2Fj.compeleceng.2021.107521&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2021_107521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon