A hybrid feature selection method based on Binary Jaya algorithm for micro-array data classification
Micro-array technology generates high-dimensional data. The high dimensionality of data hampers the learning capability of machine learning algorithms. Dimensionality can be reduced using feature selection (FS) techniques, which is an important and essential pre-processing step to process high dimen...
Saved in:
| Published in | Computers & electrical engineering Vol. 90; p. 106963 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier Ltd
01.03.2021
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0045-7906 1879-0755 |
| DOI | 10.1016/j.compeleceng.2020.106963 |
Cover
| Abstract | Micro-array technology generates high-dimensional data. The high dimensionality of data hampers the learning capability of machine learning algorithms. Dimensionality can be reduced using feature selection (FS) techniques, which is an important and essential pre-processing step to process high dimensional data. In this work, a hybrid filter–wrapper approach is proposed for feature selection. The multi-attribute decision-making method called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is used as a filter for informative feature extraction. Further, Binary Jaya algorithm with time-varying transfer function is proposed as a wrapper feature selector to find the optimal subset of features. The proposed approach is tested on 10 benchmark micro-array datasets and compared with state-of-the-art methods. Experimental results suggest that the proposed approach performs better in terms of classification accuracy and it is 10 times faster than existing approaches.
[Display omitted]
•Filter–wrapper based a new hybrid feature selection method is proposed.•TOPSIS is used as filter method to select most informative features.•Binary Jaya algorithm with time varying transfer function is proposed as wrapper.•Proposed approach is evaluated on ten benchmark datasets.•The proposed approach is ten times faster than its competitors. |
|---|---|
| AbstractList | Micro-array technology generates high-dimensional data. The high dimensionality of data hampers the learning capability of machine learning algorithms. Dimensionality can be reduced using feature selection (FS) techniques, which is an important and essential pre-processing step to process high dimensional data. In this work, a hybrid filter–wrapper approach is proposed for feature selection. The multi-attribute decision-making method called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is used as a filter for informative feature extraction. Further, Binary Jaya algorithm with time-varying transfer function is proposed as a wrapper feature selector to find the optimal subset of features. The proposed approach is tested on 10 benchmark micro-array datasets and compared with state-of-the-art methods. Experimental results suggest that the proposed approach performs better in terms of classification accuracy and it is 10 times faster than existing approaches. Micro-array technology generates high-dimensional data. The high dimensionality of data hampers the learning capability of machine learning algorithms. Dimensionality can be reduced using feature selection (FS) techniques, which is an important and essential pre-processing step to process high dimensional data. In this work, a hybrid filter–wrapper approach is proposed for feature selection. The multi-attribute decision-making method called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is used as a filter for informative feature extraction. Further, Binary Jaya algorithm with time-varying transfer function is proposed as a wrapper feature selector to find the optimal subset of features. The proposed approach is tested on 10 benchmark micro-array datasets and compared with state-of-the-art methods. Experimental results suggest that the proposed approach performs better in terms of classification accuracy and it is 10 times faster than existing approaches. [Display omitted] •Filter–wrapper based a new hybrid feature selection method is proposed.•TOPSIS is used as filter method to select most informative features.•Binary Jaya algorithm with time varying transfer function is proposed as wrapper.•Proposed approach is evaluated on ten benchmark datasets.•The proposed approach is ten times faster than its competitors. |
| ArticleNumber | 106963 |
| Author | Sahu, Tirath Prasad Chaudhuri, Abhilasha |
| Author_xml | – sequence: 1 givenname: Abhilasha surname: Chaudhuri fullname: Chaudhuri, Abhilasha email: achaudhuri.phd2018.it@nitrr.ac.in – sequence: 2 givenname: Tirath Prasad orcidid: 0000-0001-9985-5241 surname: Sahu fullname: Sahu, Tirath Prasad email: tpsahu.it@nitrr.ac.in |
| BookMark | eNqNkE1PAyEQhonRxPrxHzCetwK7y5aT0cbPNPGiZ8LC0NLsLhWoSf-9rPVgPPVEZjLzMO9zho4HPwBCV5RMKaH8Zj3Vvt9ABxqG5ZQRNva54OURmtBZIwrS1PUxmhBS1UUjCD9FZzGuSa45nU2QucOrXRucwRZU2gbAcYQl5wfcQ1p5g1sVweBc37tBhR1-VTuFVbf0waVVj60PuHc6-EKFoHbYqKSw7lSMzjqtRtIFOrGqi3D5-56jj8eH9_lzsXh7epnfLQpdViIVuhLUEMtrYTjlzCoh2ooyTgXLjdJUM1LWLVggxlYEGGmbtszBGamU1rUtz9H1nrsJ_nMLMcm134YhfylZzUTJas6aPCX2U_nmGANYuQmuz8kkJXKUKtfyj1Q5SpV7qXn39t-uduknYwrKdQcR5nsCZBFfDoKM2sGgwbiQvUvj3QGUb0s5nlY |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126404 crossref_primary_10_1016_j_eswa_2025_126765 crossref_primary_10_1007_s11042_024_18387_6 crossref_primary_10_1016_j_inffus_2023_102191 crossref_primary_10_1109_ACCESS_2024_3367440 crossref_primary_10_1016_j_bspc_2022_104399 crossref_primary_10_1016_j_compeleceng_2021_107054 crossref_primary_10_1016_j_aej_2025_01_107 crossref_primary_10_1002_cpe_7903 crossref_primary_10_1016_j_eswa_2023_121279 crossref_primary_10_1007_s00500_023_08435_y crossref_primary_10_1007_s10462_021_10077_1 crossref_primary_10_1016_j_engappai_2024_108390 crossref_primary_10_2174_2666145416666230124143912 crossref_primary_10_1016_j_knosys_2022_109899 crossref_primary_10_3390_bioengineering10101123 crossref_primary_10_32604_cmc_2022_028055 crossref_primary_10_1016_j_jestch_2023_101453 crossref_primary_10_1007_s13042_021_01445_y crossref_primary_10_1016_j_chemolab_2023_104989 crossref_primary_10_3390_electronics12234779 crossref_primary_10_1016_j_matpr_2022_04_803 crossref_primary_10_1016_j_ab_2021_114242 crossref_primary_10_1007_s00521_022_07780_7 crossref_primary_10_1142_S0218488523500241 crossref_primary_10_1177_17483026231184171 crossref_primary_10_1007_s40996_022_00868_z crossref_primary_10_1016_j_knosys_2021_107804 crossref_primary_10_1007_s00521_022_08062_y crossref_primary_10_1007_s11227_023_05643_z crossref_primary_10_1155_2022_1452301 crossref_primary_10_1002_cpe_7365 crossref_primary_10_1016_j_knosys_2022_109446 crossref_primary_10_3390_biomimetics9030187 crossref_primary_10_1109_TEVC_2022_3175226 crossref_primary_10_1080_1206212X_2024_2321683 crossref_primary_10_1109_ACCESS_2022_3210122 crossref_primary_10_3390_electronics13122242 crossref_primary_10_3390_pr12020313 crossref_primary_10_1016_j_neucom_2024_129018 crossref_primary_10_1007_s11227_022_04507_2 crossref_primary_10_1155_2023_1444938 crossref_primary_10_1007_s42044_024_00174_z crossref_primary_10_1016_j_heliyon_2024_e38547 crossref_primary_10_3390_math11143221 crossref_primary_10_1007_s13369_024_08861_6 crossref_primary_10_1016_j_compbiolchem_2022_107767 crossref_primary_10_3390_diagnostics13091621 crossref_primary_10_1155_2021_4953074 crossref_primary_10_1088_1742_6596_2273_1_012002 crossref_primary_10_1007_s00521_021_06775_0 crossref_primary_10_1007_s10115_024_02292_3 crossref_primary_10_1016_j_cosrev_2023_100559 crossref_primary_10_1007_s13369_021_05677_6 crossref_primary_10_1007_s10115_025_02340_6 crossref_primary_10_1016_j_conbuildmat_2023_130670 crossref_primary_10_1007_s11042_023_15143_0 crossref_primary_10_1142_S0219622022500432 crossref_primary_10_1007_s10462_022_10234_0 crossref_primary_10_1016_j_asoc_2023_110704 |
| Cites_doi | 10.1016/j.asoc.2018.02.051 10.1016/j.swevo.2020.100661 10.1016/j.asoc.2014.08.032 10.1109/TCBB.2015.2478454 10.1016/j.patcog.2007.02.007 10.1016/j.patrec.2015.03.018 10.1016/j.knosys.2018.08.003 10.1016/j.ins.2013.10.012 10.1016/j.ins.2014.03.128 10.1016/j.asoc.2017.09.038 10.1007/s00521-019-04355-x 10.1007/s10115-010-0288-x 10.1049/el.2020.2517 10.1016/j.asoc.2017.12.049 10.1109/TNB.2009.2035284 10.1016/j.swevo.2012.09.002 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Mar 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Mar 2021 |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.compeleceng.2020.106963 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0755 |
| ExternalDocumentID | 10_1016_j_compeleceng_2020_106963 S0045790620308089 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 UHS VOH WH7 WUQ XPP ZMT ~G- ~S- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c349t-c491d0f659d6162fa99b4126192d613d48035befe0df40e20b7b3ece204acc5f3 |
| IEDL.DBID | .~1 |
| ISSN | 0045-7906 |
| IngestDate | Fri Jul 25 03:56:35 EDT 2025 Wed Oct 01 05:23:02 EDT 2025 Thu Apr 24 23:05:26 EDT 2025 Fri Feb 23 02:46:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dimensionality reduction Micro-array data Jaya algorithm Feature selection TOPSIS Hybrid feature selection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-c491d0f659d6162fa99b4126192d613d48035befe0df40e20b7b3ece204acc5f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9985-5241 |
| PQID | 2529325627 |
| PQPubID | 2045266 |
| ParticipantIDs | proquest_journals_2529325627 crossref_primary_10_1016_j_compeleceng_2020_106963 crossref_citationtrail_10_1016_j_compeleceng_2020_106963 elsevier_sciencedirect_doi_10_1016_j_compeleceng_2020_106963 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2021 2021-03-00 20210301 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computers & electrical engineering |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Venkata Rao (b17) 2016; 7 Lai (b18) 2018; 65 Jain, Jain, Jain (b12) 2018; 62 Mundra, Rajapakse (b6) 2009; 9 Abu Arqub (b15) 2019; 166 Rao (b16) 2007 Nguyen, Khosravi, Creighton, Nahavandi (b21) 2015; 60 El Akadi, Amine, El Ouardighi, Aboutajdine (b9) 2011; 26 Chaudhuri, Sahu (b13) 2020 Shreem, Abdullah, Nazri (b11) 2014; 258 Zhu, Ong, Dash (b5) 2007; 40 Ang, Mirzal, Haron, Hamed (b4) 2015; 13 Shukla, Singh, Vardhan (b3) 2020; 54 Saengsiri, Meesad, Wichian, Herwig (b7) 2010 Mirjalili, Lewis (b20) 2013; 9 Abu Arqub (b14) 2019; 166 Maldonado, López (b1) 2018; 67 Arqub, Abo-Hammour (b8) 2014; 279 Chen, Wang, Wang, Angelia (b10) 2014; 24 Prakash, Singh, Singh, Mohanty (b19) 2017; 140 Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li (b22) 2018; 161 Baliarsingh, Vipsita, Dash (b2) 2020; 32 Shukla (10.1016/j.compeleceng.2020.106963_b3) 2020; 54 Abu Arqub (10.1016/j.compeleceng.2020.106963_b15) 2019; 166 Venkata Rao (10.1016/j.compeleceng.2020.106963_b17) 2016; 7 Arqub (10.1016/j.compeleceng.2020.106963_b8) 2014; 279 Jain (10.1016/j.compeleceng.2020.106963_b12) 2018; 62 Baliarsingh (10.1016/j.compeleceng.2020.106963_b2) 2020; 32 El Akadi (10.1016/j.compeleceng.2020.106963_b9) 2011; 26 Chaudhuri (10.1016/j.compeleceng.2020.106963_b13) 2020 Mirjalili (10.1016/j.compeleceng.2020.106963_b20) 2013; 9 Mafarja (10.1016/j.compeleceng.2020.106963_b22) 2018; 161 Zhu (10.1016/j.compeleceng.2020.106963_b5) 2007; 40 Mundra (10.1016/j.compeleceng.2020.106963_b6) 2009; 9 Saengsiri (10.1016/j.compeleceng.2020.106963_b7) 2010 Ang (10.1016/j.compeleceng.2020.106963_b4) 2015; 13 Chen (10.1016/j.compeleceng.2020.106963_b10) 2014; 24 Shreem (10.1016/j.compeleceng.2020.106963_b11) 2014; 258 Nguyen (10.1016/j.compeleceng.2020.106963_b21) 2015; 60 Abu Arqub (10.1016/j.compeleceng.2020.106963_b14) 2019; 166 Prakash (10.1016/j.compeleceng.2020.106963_b19) 2017; 140 Lai (10.1016/j.compeleceng.2020.106963_b18) 2018; 65 Rao (10.1016/j.compeleceng.2020.106963_b16) 2007 Maldonado (10.1016/j.compeleceng.2020.106963_b1) 2018; 67 |
| References_xml | – volume: 24 start-page: 773 year: 2014 end-page: 780 ident: b10 article-title: Applying particle swarm optimization-based decision tree classifier for cancer classification on gene expression data publication-title: Appl Soft Comput J – year: 2020 ident: b13 article-title: PROMETHEE-based hybrid feature selection technique for high-dimensional biomedical data: Application to Parkinson’s disease classification publication-title: Electron Lett – volume: 161 start-page: 185 year: 2018 end-page: 204 ident: b22 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowl-Based Syst – volume: 166 start-page: 87 year: 2019 end-page: 110 ident: b14 article-title: Application of residual power series method for the solution of time-fractional Schrödinger equations in one-dimensional space publication-title: Fund Inform – volume: 7 start-page: 19 year: 2016 end-page: 34 ident: b17 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: Int J Ind Eng Comput – volume: 67 start-page: 94 year: 2018 end-page: 105 ident: b1 article-title: Dealing with high-dimensional class-imbalanced datasets: Embedded feature selection for SVM classification publication-title: Appl Soft Comput J – start-page: 13 year: 2010 end-page: 18 ident: b7 article-title: Comparison of hybrid feature selection models on gene expression data publication-title: 2010 8th int. conf. on ICT and knowledge engg. – volume: 140 start-page: 34 year: 2017 end-page: 35 ident: b19 article-title: Binary Jaya algorithm based optimal placement of phasor measurement units for power system observability publication-title: Energy Convers Manage – volume: 65 start-page: 58 year: 2018 end-page: 68 ident: b18 article-title: Multi-objective simplified swarm optimization with weighting scheme for gene selection publication-title: Appl Soft Comput – volume: 40 start-page: 3236 year: 2007 end-page: 3248 ident: b5 article-title: Markov blanket-embedded genetic algorithm for gene selection publication-title: Pattern Recognit – volume: 32 start-page: 8599 year: 2020 end-page: 8616 ident: b2 article-title: A new optimal gene selection approach for cancer classification using enhanced Jaya-based forest optimization algorithm publication-title: Neural Comput Appl – volume: 258 start-page: 108 year: 2014 end-page: 121 ident: b11 article-title: Hybridising harmony search with a Markov blanket for gene selection problems publication-title: Inform Sci – volume: 13 start-page: 971 year: 2015 end-page: 989 ident: b4 article-title: Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection publication-title: IEEE/ACM Trans Comput Biol Bioinform – volume: 9 start-page: 31 year: 2009 end-page: 37 ident: b6 article-title: SVM-RFE with MRMR filter for gene selection publication-title: IEEE Trans NanoBioscience – volume: 279 start-page: 396 year: 2014 end-page: 415 ident: b8 article-title: Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm publication-title: Inform Sci – year: 2007 ident: b16 article-title: Decision making in the manufacturing environment: Using graph theory and fuzzy multiple attribute decision making methods – volume: 60 start-page: 16 year: 2015 end-page: 23 ident: b21 article-title: A novel aggregate gene selection method for microarray data classification publication-title: Pattern Recognit Lett – volume: 26 start-page: 487 year: 2011 end-page: 500 ident: b9 article-title: A two-stage gene selection scheme utilizing MRMR filter and GA wrapper publication-title: Knowl Inf Syst – volume: 62 start-page: 203 year: 2018 end-page: 215 ident: b12 article-title: Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification publication-title: Appl Soft Comput J – volume: 54 year: 2020 ident: b3 article-title: Gene selection for cancer types classification using novel hybrid metaheuristics approach publication-title: Swarm Evol Comput – volume: 9 start-page: 1 year: 2013 end-page: 14 ident: b20 article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization publication-title: Swarm Evol Comput – volume: 166 start-page: 111 year: 2019 end-page: 137 ident: b15 article-title: Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis publication-title: Fund Inform – volume: 67 start-page: 94 year: 2018 ident: 10.1016/j.compeleceng.2020.106963_b1 article-title: Dealing with high-dimensional class-imbalanced datasets: Embedded feature selection for SVM classification publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2018.02.051 – volume: 54 year: 2020 ident: 10.1016/j.compeleceng.2020.106963_b3 article-title: Gene selection for cancer types classification using novel hybrid metaheuristics approach publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100661 – volume: 24 start-page: 773 year: 2014 ident: 10.1016/j.compeleceng.2020.106963_b10 article-title: Applying particle swarm optimization-based decision tree classifier for cancer classification on gene expression data publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2014.08.032 – volume: 13 start-page: 971 issue: 5 year: 2015 ident: 10.1016/j.compeleceng.2020.106963_b4 article-title: Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2015.2478454 – volume: 40 start-page: 3236 issue: 11 year: 2007 ident: 10.1016/j.compeleceng.2020.106963_b5 article-title: Markov blanket-embedded genetic algorithm for gene selection publication-title: Pattern Recognit doi: 10.1016/j.patcog.2007.02.007 – volume: 60 start-page: 16 year: 2015 ident: 10.1016/j.compeleceng.2020.106963_b21 article-title: A novel aggregate gene selection method for microarray data classification publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2015.03.018 – volume: 161 start-page: 185 issue: December 2017 year: 2018 ident: 10.1016/j.compeleceng.2020.106963_b22 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.08.003 – volume: 258 start-page: 108 year: 2014 ident: 10.1016/j.compeleceng.2020.106963_b11 article-title: Hybridising harmony search with a Markov blanket for gene selection problems publication-title: Inform Sci doi: 10.1016/j.ins.2013.10.012 – volume: 140 start-page: 34 year: 2017 ident: 10.1016/j.compeleceng.2020.106963_b19 article-title: Binary Jaya algorithm based optimal placement of phasor measurement units for power system observability publication-title: Energy Convers Manage – volume: 279 start-page: 396 year: 2014 ident: 10.1016/j.compeleceng.2020.106963_b8 article-title: Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm publication-title: Inform Sci doi: 10.1016/j.ins.2014.03.128 – volume: 62 start-page: 203 year: 2018 ident: 10.1016/j.compeleceng.2020.106963_b12 article-title: Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2017.09.038 – volume: 32 start-page: 8599 issue: 12 year: 2020 ident: 10.1016/j.compeleceng.2020.106963_b2 article-title: A new optimal gene selection approach for cancer classification using enhanced Jaya-based forest optimization algorithm publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04355-x – volume: 26 start-page: 487 issue: 3 year: 2011 ident: 10.1016/j.compeleceng.2020.106963_b9 article-title: A two-stage gene selection scheme utilizing MRMR filter and GA wrapper publication-title: Knowl Inf Syst doi: 10.1007/s10115-010-0288-x – volume: 166 start-page: 87 issue: 2 year: 2019 ident: 10.1016/j.compeleceng.2020.106963_b14 article-title: Application of residual power series method for the solution of time-fractional Schrödinger equations in one-dimensional space publication-title: Fund Inform – volume: 166 start-page: 111 issue: 2 year: 2019 ident: 10.1016/j.compeleceng.2020.106963_b15 article-title: Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis publication-title: Fund Inform – year: 2020 ident: 10.1016/j.compeleceng.2020.106963_b13 article-title: PROMETHEE-based hybrid feature selection technique for high-dimensional biomedical data: Application to Parkinson’s disease classification publication-title: Electron Lett doi: 10.1049/el.2020.2517 – volume: 65 start-page: 58 year: 2018 ident: 10.1016/j.compeleceng.2020.106963_b18 article-title: Multi-objective simplified swarm optimization with weighting scheme for gene selection publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.12.049 – volume: 7 start-page: 19 year: 2016 ident: 10.1016/j.compeleceng.2020.106963_b17 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: Int J Ind Eng Comput – start-page: 13 year: 2010 ident: 10.1016/j.compeleceng.2020.106963_b7 article-title: Comparison of hybrid feature selection models on gene expression data – volume: 9 start-page: 31 issue: 1 year: 2009 ident: 10.1016/j.compeleceng.2020.106963_b6 article-title: SVM-RFE with MRMR filter for gene selection publication-title: IEEE Trans NanoBioscience doi: 10.1109/TNB.2009.2035284 – year: 2007 ident: 10.1016/j.compeleceng.2020.106963_b16 – volume: 9 start-page: 1 year: 2013 ident: 10.1016/j.compeleceng.2020.106963_b20 article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2012.09.002 |
| SSID | ssj0004618 |
| Score | 2.5036843 |
| Snippet | Micro-array technology generates high-dimensional data. The high dimensionality of data hampers the learning capability of machine learning algorithms.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106963 |
| SubjectTerms | Algorithms Arrays Classification Decision making Dimensionality reduction Feature extraction Feature selection Hybrid feature selection Jaya algorithm Machine learning Micro-array data TOPSIS Transfer functions |
| Title | A hybrid feature selection method based on Binary Jaya algorithm for micro-array data classification |
| URI | https://dx.doi.org/10.1016/j.compeleceng.2020.106963 https://www.proquest.com/docview/2529325627 |
| Volume | 90 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004618 issn: 0045-7906 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection customDbUrl: eissn: 1879-0755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004618 issn: 0045-7906 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004618 issn: 0045-7906 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004618 issn: 0045-7906 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004618 issn: 0045-7906 databaseCode: AKRWK dateStart: 19730601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEA2iIHoQP_FjlQheq0k6SbfgZRVlVfSk4C2kTaIr6yq762Ev_nYzaaurIAgeOzClvElnJvDmDSEHzmMh8UUijSoSgJQlOQibKAWZl14ZG3Vmr29U9w4u7-X9DDltZmGQVlnn_iqnx2xdW45qNI9eez2c8QWZocwuSq6wNg7xAWS4xeDwnU_NRvIqGwNKMzI1T_a_OF5I28Z1M27wEK6KAu0qV-lvNepHto4l6HyZLNW9I-1Un7dCZtxglSxOKQquEduhjxMcwqLeRclOOoqLbgL6tFoWTbFuWRqeT-IoLr00E0NN_-Fl2Bs_PtPQxNJnZOklZjg0E4oUUlpij42kohjHdXJ3fnZ72k3qRQpJmUI-TkrIuWVeydwqroQ3eV4Aj3enYEgttFkqC-cdsx6YE6zIijSgIhiYspQ-3SCzg5eB2yTUOjBKWp5yUYI1sii5tbxtvTfB07kt0m6g02WtMo7LLvq6oZM96SnUNaKuK9S3iPh0fa2kNv7idNzER387NzqUhL-4t5qY6vrnHWkhQw8UWkGRbf_v7TtkQSAFJlLWWmR2PHxzu6GHGRd78ZDukbnOxVX35gOczPPm |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gI-D-MS3EbxWkzRJt-BFRVmfJwVvIW0SXdFV1vWwF3-7mbTVVRAEjx2YUr6k84BvvgHYcR4TiS8SaVSRCJHSJBfcJkqJzEuvjI06s5dXqn0jzm7l7QgcNbMwSKusY38V02O0ri17NZp7L50OzvgKmaHMLkqu0FY-CuNC8gw7sN13NjQcyapwLFCbkaoJ2P4ieSFvG_fNuO5d6BU52lWu0t-S1I9wHXPQySzM1MUjOai-bw5GXHcepockBRfAHpD7AU5hEe-iZid5jZtuAvyk2hZNMHFZEp4P4ywuOTMDQ8zj3XOv079_IqGKJU9I00tMr2cGBDmkpMQiG1lF8SAX4ebk-PqondSbFJIyFXk_KUXOLPVK5lYxxb3J80Kw2DwFQ2pFi6aycN5R6wV1nBZZkQZUOBWmLKVPl2Cs-9x1y0CsE0ZJy1LGS2GNLEpmLWtZ703wdG4FWg10uqxlxnHbxaNu-GQPegh1jajrCvUV4J-uL5XWxl-c9pvz0d8ujg454S_u682Z6vrvfdVchiIo1II8W_3f27dgsn19eaEvTq_O12CKIx8m8tfWYazfe3MboaDpF5vxwn4AQSf1ew |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+feature+selection+method+based+on+Binary+Jaya+algorithm+for+micro-array+data+classification&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Chaudhuri%2C+Abhilasha&rft.au=Sahu%2C+Tirath+Prasad&rft.date=2021-03-01&rft.issn=0045-7906&rft.volume=90&rft.spage=106963&rft_id=info:doi/10.1016%2Fj.compeleceng.2020.106963&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2020_106963 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon |