A hybrid feature selection method based on Binary Jaya algorithm for micro-array data classification

Micro-array technology generates high-dimensional data. The high dimensionality of data hampers the learning capability of machine learning algorithms. Dimensionality can be reduced using feature selection (FS) techniques, which is an important and essential pre-processing step to process high dimen...

Full description

Saved in:
Bibliographic Details
Published inComputers & electrical engineering Vol. 90; p. 106963
Main Authors Chaudhuri, Abhilasha, Sahu, Tirath Prasad
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.03.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0045-7906
1879-0755
DOI10.1016/j.compeleceng.2020.106963

Cover

Abstract Micro-array technology generates high-dimensional data. The high dimensionality of data hampers the learning capability of machine learning algorithms. Dimensionality can be reduced using feature selection (FS) techniques, which is an important and essential pre-processing step to process high dimensional data. In this work, a hybrid filter–wrapper approach is proposed for feature selection. The multi-attribute decision-making method called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is used as a filter for informative feature extraction. Further, Binary Jaya algorithm with time-varying transfer function is proposed as a wrapper feature selector to find the optimal subset of features. The proposed approach is tested on 10 benchmark micro-array datasets and compared with state-of-the-art methods. Experimental results suggest that the proposed approach performs better in terms of classification accuracy and it is 10 times faster than existing approaches. [Display omitted] •Filter–wrapper based a new hybrid feature selection method is proposed.•TOPSIS is used as filter method to select most informative features.•Binary Jaya algorithm with time varying transfer function is proposed as wrapper.•Proposed approach is evaluated on ten benchmark datasets.•The proposed approach is ten times faster than its competitors.
AbstractList Micro-array technology generates high-dimensional data. The high dimensionality of data hampers the learning capability of machine learning algorithms. Dimensionality can be reduced using feature selection (FS) techniques, which is an important and essential pre-processing step to process high dimensional data. In this work, a hybrid filter–wrapper approach is proposed for feature selection. The multi-attribute decision-making method called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is used as a filter for informative feature extraction. Further, Binary Jaya algorithm with time-varying transfer function is proposed as a wrapper feature selector to find the optimal subset of features. The proposed approach is tested on 10 benchmark micro-array datasets and compared with state-of-the-art methods. Experimental results suggest that the proposed approach performs better in terms of classification accuracy and it is 10 times faster than existing approaches.
Micro-array technology generates high-dimensional data. The high dimensionality of data hampers the learning capability of machine learning algorithms. Dimensionality can be reduced using feature selection (FS) techniques, which is an important and essential pre-processing step to process high dimensional data. In this work, a hybrid filter–wrapper approach is proposed for feature selection. The multi-attribute decision-making method called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is used as a filter for informative feature extraction. Further, Binary Jaya algorithm with time-varying transfer function is proposed as a wrapper feature selector to find the optimal subset of features. The proposed approach is tested on 10 benchmark micro-array datasets and compared with state-of-the-art methods. Experimental results suggest that the proposed approach performs better in terms of classification accuracy and it is 10 times faster than existing approaches. [Display omitted] •Filter–wrapper based a new hybrid feature selection method is proposed.•TOPSIS is used as filter method to select most informative features.•Binary Jaya algorithm with time varying transfer function is proposed as wrapper.•Proposed approach is evaluated on ten benchmark datasets.•The proposed approach is ten times faster than its competitors.
ArticleNumber 106963
Author Sahu, Tirath Prasad
Chaudhuri, Abhilasha
Author_xml – sequence: 1
  givenname: Abhilasha
  surname: Chaudhuri
  fullname: Chaudhuri, Abhilasha
  email: achaudhuri.phd2018.it@nitrr.ac.in
– sequence: 2
  givenname: Tirath Prasad
  orcidid: 0000-0001-9985-5241
  surname: Sahu
  fullname: Sahu, Tirath Prasad
  email: tpsahu.it@nitrr.ac.in
BookMark eNqNkE1PAyEQhonRxPrxHzCetwK7y5aT0cbPNPGiZ8LC0NLsLhWoSf-9rPVgPPVEZjLzMO9zho4HPwBCV5RMKaH8Zj3Vvt9ABxqG5ZQRNva54OURmtBZIwrS1PUxmhBS1UUjCD9FZzGuSa45nU2QucOrXRucwRZU2gbAcYQl5wfcQ1p5g1sVweBc37tBhR1-VTuFVbf0waVVj60PuHc6-EKFoHbYqKSw7lSMzjqtRtIFOrGqi3D5-56jj8eH9_lzsXh7epnfLQpdViIVuhLUEMtrYTjlzCoh2ooyTgXLjdJUM1LWLVggxlYEGGmbtszBGamU1rUtz9H1nrsJ_nMLMcm134YhfylZzUTJas6aPCX2U_nmGANYuQmuz8kkJXKUKtfyj1Q5SpV7qXn39t-uduknYwrKdQcR5nsCZBFfDoKM2sGgwbiQvUvj3QGUb0s5nlY
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126404
crossref_primary_10_1016_j_eswa_2025_126765
crossref_primary_10_1007_s11042_024_18387_6
crossref_primary_10_1016_j_inffus_2023_102191
crossref_primary_10_1109_ACCESS_2024_3367440
crossref_primary_10_1016_j_bspc_2022_104399
crossref_primary_10_1016_j_compeleceng_2021_107054
crossref_primary_10_1016_j_aej_2025_01_107
crossref_primary_10_1002_cpe_7903
crossref_primary_10_1016_j_eswa_2023_121279
crossref_primary_10_1007_s00500_023_08435_y
crossref_primary_10_1007_s10462_021_10077_1
crossref_primary_10_1016_j_engappai_2024_108390
crossref_primary_10_2174_2666145416666230124143912
crossref_primary_10_1016_j_knosys_2022_109899
crossref_primary_10_3390_bioengineering10101123
crossref_primary_10_32604_cmc_2022_028055
crossref_primary_10_1016_j_jestch_2023_101453
crossref_primary_10_1007_s13042_021_01445_y
crossref_primary_10_1016_j_chemolab_2023_104989
crossref_primary_10_3390_electronics12234779
crossref_primary_10_1016_j_matpr_2022_04_803
crossref_primary_10_1016_j_ab_2021_114242
crossref_primary_10_1007_s00521_022_07780_7
crossref_primary_10_1142_S0218488523500241
crossref_primary_10_1177_17483026231184171
crossref_primary_10_1007_s40996_022_00868_z
crossref_primary_10_1016_j_knosys_2021_107804
crossref_primary_10_1007_s00521_022_08062_y
crossref_primary_10_1007_s11227_023_05643_z
crossref_primary_10_1155_2022_1452301
crossref_primary_10_1002_cpe_7365
crossref_primary_10_1016_j_knosys_2022_109446
crossref_primary_10_3390_biomimetics9030187
crossref_primary_10_1109_TEVC_2022_3175226
crossref_primary_10_1080_1206212X_2024_2321683
crossref_primary_10_1109_ACCESS_2022_3210122
crossref_primary_10_3390_electronics13122242
crossref_primary_10_3390_pr12020313
crossref_primary_10_1016_j_neucom_2024_129018
crossref_primary_10_1007_s11227_022_04507_2
crossref_primary_10_1155_2023_1444938
crossref_primary_10_1007_s42044_024_00174_z
crossref_primary_10_1016_j_heliyon_2024_e38547
crossref_primary_10_3390_math11143221
crossref_primary_10_1007_s13369_024_08861_6
crossref_primary_10_1016_j_compbiolchem_2022_107767
crossref_primary_10_3390_diagnostics13091621
crossref_primary_10_1155_2021_4953074
crossref_primary_10_1088_1742_6596_2273_1_012002
crossref_primary_10_1007_s00521_021_06775_0
crossref_primary_10_1007_s10115_024_02292_3
crossref_primary_10_1016_j_cosrev_2023_100559
crossref_primary_10_1007_s13369_021_05677_6
crossref_primary_10_1007_s10115_025_02340_6
crossref_primary_10_1016_j_conbuildmat_2023_130670
crossref_primary_10_1007_s11042_023_15143_0
crossref_primary_10_1142_S0219622022500432
crossref_primary_10_1007_s10462_022_10234_0
crossref_primary_10_1016_j_asoc_2023_110704
Cites_doi 10.1016/j.asoc.2018.02.051
10.1016/j.swevo.2020.100661
10.1016/j.asoc.2014.08.032
10.1109/TCBB.2015.2478454
10.1016/j.patcog.2007.02.007
10.1016/j.patrec.2015.03.018
10.1016/j.knosys.2018.08.003
10.1016/j.ins.2013.10.012
10.1016/j.ins.2014.03.128
10.1016/j.asoc.2017.09.038
10.1007/s00521-019-04355-x
10.1007/s10115-010-0288-x
10.1049/el.2020.2517
10.1016/j.asoc.2017.12.049
10.1109/TNB.2009.2035284
10.1016/j.swevo.2012.09.002
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Mar 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compeleceng.2020.106963
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
ExternalDocumentID 10_1016_j_compeleceng_2020_106963
S0045790620308089
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c349t-c491d0f659d6162fa99b4126192d613d48035befe0df40e20b7b3ece204acc5f3
IEDL.DBID .~1
ISSN 0045-7906
IngestDate Fri Jul 25 03:56:35 EDT 2025
Wed Oct 01 05:23:02 EDT 2025
Thu Apr 24 23:05:26 EDT 2025
Fri Feb 23 02:46:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dimensionality reduction
Micro-array data
Jaya algorithm
Feature selection
TOPSIS
Hybrid feature selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-c491d0f659d6162fa99b4126192d613d48035befe0df40e20b7b3ece204acc5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9985-5241
PQID 2529325627
PQPubID 2045266
ParticipantIDs proquest_journals_2529325627
crossref_primary_10_1016_j_compeleceng_2020_106963
crossref_citationtrail_10_1016_j_compeleceng_2020_106963
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2020_106963
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & electrical engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Venkata Rao (b17) 2016; 7
Lai (b18) 2018; 65
Jain, Jain, Jain (b12) 2018; 62
Mundra, Rajapakse (b6) 2009; 9
Abu Arqub (b15) 2019; 166
Rao (b16) 2007
Nguyen, Khosravi, Creighton, Nahavandi (b21) 2015; 60
El Akadi, Amine, El Ouardighi, Aboutajdine (b9) 2011; 26
Chaudhuri, Sahu (b13) 2020
Shreem, Abdullah, Nazri (b11) 2014; 258
Zhu, Ong, Dash (b5) 2007; 40
Ang, Mirzal, Haron, Hamed (b4) 2015; 13
Shukla, Singh, Vardhan (b3) 2020; 54
Saengsiri, Meesad, Wichian, Herwig (b7) 2010
Mirjalili, Lewis (b20) 2013; 9
Abu Arqub (b14) 2019; 166
Maldonado, López (b1) 2018; 67
Arqub, Abo-Hammour (b8) 2014; 279
Chen, Wang, Wang, Angelia (b10) 2014; 24
Prakash, Singh, Singh, Mohanty (b19) 2017; 140
Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li (b22) 2018; 161
Baliarsingh, Vipsita, Dash (b2) 2020; 32
Shukla (10.1016/j.compeleceng.2020.106963_b3) 2020; 54
Abu Arqub (10.1016/j.compeleceng.2020.106963_b15) 2019; 166
Venkata Rao (10.1016/j.compeleceng.2020.106963_b17) 2016; 7
Arqub (10.1016/j.compeleceng.2020.106963_b8) 2014; 279
Jain (10.1016/j.compeleceng.2020.106963_b12) 2018; 62
Baliarsingh (10.1016/j.compeleceng.2020.106963_b2) 2020; 32
El Akadi (10.1016/j.compeleceng.2020.106963_b9) 2011; 26
Chaudhuri (10.1016/j.compeleceng.2020.106963_b13) 2020
Mirjalili (10.1016/j.compeleceng.2020.106963_b20) 2013; 9
Mafarja (10.1016/j.compeleceng.2020.106963_b22) 2018; 161
Zhu (10.1016/j.compeleceng.2020.106963_b5) 2007; 40
Mundra (10.1016/j.compeleceng.2020.106963_b6) 2009; 9
Saengsiri (10.1016/j.compeleceng.2020.106963_b7) 2010
Ang (10.1016/j.compeleceng.2020.106963_b4) 2015; 13
Chen (10.1016/j.compeleceng.2020.106963_b10) 2014; 24
Shreem (10.1016/j.compeleceng.2020.106963_b11) 2014; 258
Nguyen (10.1016/j.compeleceng.2020.106963_b21) 2015; 60
Abu Arqub (10.1016/j.compeleceng.2020.106963_b14) 2019; 166
Prakash (10.1016/j.compeleceng.2020.106963_b19) 2017; 140
Lai (10.1016/j.compeleceng.2020.106963_b18) 2018; 65
Rao (10.1016/j.compeleceng.2020.106963_b16) 2007
Maldonado (10.1016/j.compeleceng.2020.106963_b1) 2018; 67
References_xml – volume: 24
  start-page: 773
  year: 2014
  end-page: 780
  ident: b10
  article-title: Applying particle swarm optimization-based decision tree classifier for cancer classification on gene expression data
  publication-title: Appl Soft Comput J
– year: 2020
  ident: b13
  article-title: PROMETHEE-based hybrid feature selection technique for high-dimensional biomedical data: Application to Parkinson’s disease classification
  publication-title: Electron Lett
– volume: 161
  start-page: 185
  year: 2018
  end-page: 204
  ident: b22
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowl-Based Syst
– volume: 166
  start-page: 87
  year: 2019
  end-page: 110
  ident: b14
  article-title: Application of residual power series method for the solution of time-fractional Schrödinger equations in one-dimensional space
  publication-title: Fund Inform
– volume: 7
  start-page: 19
  year: 2016
  end-page: 34
  ident: b17
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int J Ind Eng Comput
– volume: 67
  start-page: 94
  year: 2018
  end-page: 105
  ident: b1
  article-title: Dealing with high-dimensional class-imbalanced datasets: Embedded feature selection for SVM classification
  publication-title: Appl Soft Comput J
– start-page: 13
  year: 2010
  end-page: 18
  ident: b7
  article-title: Comparison of hybrid feature selection models on gene expression data
  publication-title: 2010 8th int. conf. on ICT and knowledge engg.
– volume: 140
  start-page: 34
  year: 2017
  end-page: 35
  ident: b19
  article-title: Binary Jaya algorithm based optimal placement of phasor measurement units for power system observability
  publication-title: Energy Convers Manage
– volume: 65
  start-page: 58
  year: 2018
  end-page: 68
  ident: b18
  article-title: Multi-objective simplified swarm optimization with weighting scheme for gene selection
  publication-title: Appl Soft Comput
– volume: 40
  start-page: 3236
  year: 2007
  end-page: 3248
  ident: b5
  article-title: Markov blanket-embedded genetic algorithm for gene selection
  publication-title: Pattern Recognit
– volume: 32
  start-page: 8599
  year: 2020
  end-page: 8616
  ident: b2
  article-title: A new optimal gene selection approach for cancer classification using enhanced Jaya-based forest optimization algorithm
  publication-title: Neural Comput Appl
– volume: 258
  start-page: 108
  year: 2014
  end-page: 121
  ident: b11
  article-title: Hybridising harmony search with a Markov blanket for gene selection problems
  publication-title: Inform Sci
– volume: 13
  start-page: 971
  year: 2015
  end-page: 989
  ident: b4
  article-title: Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
– volume: 9
  start-page: 31
  year: 2009
  end-page: 37
  ident: b6
  article-title: SVM-RFE with MRMR filter for gene selection
  publication-title: IEEE Trans NanoBioscience
– volume: 279
  start-page: 396
  year: 2014
  end-page: 415
  ident: b8
  article-title: Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm
  publication-title: Inform Sci
– year: 2007
  ident: b16
  article-title: Decision making in the manufacturing environment: Using graph theory and fuzzy multiple attribute decision making methods
– volume: 60
  start-page: 16
  year: 2015
  end-page: 23
  ident: b21
  article-title: A novel aggregate gene selection method for microarray data classification
  publication-title: Pattern Recognit Lett
– volume: 26
  start-page: 487
  year: 2011
  end-page: 500
  ident: b9
  article-title: A two-stage gene selection scheme utilizing MRMR filter and GA wrapper
  publication-title: Knowl Inf Syst
– volume: 62
  start-page: 203
  year: 2018
  end-page: 215
  ident: b12
  article-title: Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification
  publication-title: Appl Soft Comput J
– volume: 54
  year: 2020
  ident: b3
  article-title: Gene selection for cancer types classification using novel hybrid metaheuristics approach
  publication-title: Swarm Evol Comput
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: b20
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol Comput
– volume: 166
  start-page: 111
  year: 2019
  end-page: 137
  ident: b15
  article-title: Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis
  publication-title: Fund Inform
– volume: 67
  start-page: 94
  year: 2018
  ident: 10.1016/j.compeleceng.2020.106963_b1
  article-title: Dealing with high-dimensional class-imbalanced datasets: Embedded feature selection for SVM classification
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2018.02.051
– volume: 54
  year: 2020
  ident: 10.1016/j.compeleceng.2020.106963_b3
  article-title: Gene selection for cancer types classification using novel hybrid metaheuristics approach
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100661
– volume: 24
  start-page: 773
  year: 2014
  ident: 10.1016/j.compeleceng.2020.106963_b10
  article-title: Applying particle swarm optimization-based decision tree classifier for cancer classification on gene expression data
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2014.08.032
– volume: 13
  start-page: 971
  issue: 5
  year: 2015
  ident: 10.1016/j.compeleceng.2020.106963_b4
  article-title: Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2015.2478454
– volume: 40
  start-page: 3236
  issue: 11
  year: 2007
  ident: 10.1016/j.compeleceng.2020.106963_b5
  article-title: Markov blanket-embedded genetic algorithm for gene selection
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2007.02.007
– volume: 60
  start-page: 16
  year: 2015
  ident: 10.1016/j.compeleceng.2020.106963_b21
  article-title: A novel aggregate gene selection method for microarray data classification
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2015.03.018
– volume: 161
  start-page: 185
  issue: December 2017
  year: 2018
  ident: 10.1016/j.compeleceng.2020.106963_b22
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.08.003
– volume: 258
  start-page: 108
  year: 2014
  ident: 10.1016/j.compeleceng.2020.106963_b11
  article-title: Hybridising harmony search with a Markov blanket for gene selection problems
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2013.10.012
– volume: 140
  start-page: 34
  year: 2017
  ident: 10.1016/j.compeleceng.2020.106963_b19
  article-title: Binary Jaya algorithm based optimal placement of phasor measurement units for power system observability
  publication-title: Energy Convers Manage
– volume: 279
  start-page: 396
  year: 2014
  ident: 10.1016/j.compeleceng.2020.106963_b8
  article-title: Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2014.03.128
– volume: 62
  start-page: 203
  year: 2018
  ident: 10.1016/j.compeleceng.2020.106963_b12
  article-title: Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2017.09.038
– volume: 32
  start-page: 8599
  issue: 12
  year: 2020
  ident: 10.1016/j.compeleceng.2020.106963_b2
  article-title: A new optimal gene selection approach for cancer classification using enhanced Jaya-based forest optimization algorithm
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04355-x
– volume: 26
  start-page: 487
  issue: 3
  year: 2011
  ident: 10.1016/j.compeleceng.2020.106963_b9
  article-title: A two-stage gene selection scheme utilizing MRMR filter and GA wrapper
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-010-0288-x
– volume: 166
  start-page: 87
  issue: 2
  year: 2019
  ident: 10.1016/j.compeleceng.2020.106963_b14
  article-title: Application of residual power series method for the solution of time-fractional Schrödinger equations in one-dimensional space
  publication-title: Fund Inform
– volume: 166
  start-page: 111
  issue: 2
  year: 2019
  ident: 10.1016/j.compeleceng.2020.106963_b15
  article-title: Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis
  publication-title: Fund Inform
– year: 2020
  ident: 10.1016/j.compeleceng.2020.106963_b13
  article-title: PROMETHEE-based hybrid feature selection technique for high-dimensional biomedical data: Application to Parkinson’s disease classification
  publication-title: Electron Lett
  doi: 10.1049/el.2020.2517
– volume: 65
  start-page: 58
  year: 2018
  ident: 10.1016/j.compeleceng.2020.106963_b18
  article-title: Multi-objective simplified swarm optimization with weighting scheme for gene selection
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.12.049
– volume: 7
  start-page: 19
  year: 2016
  ident: 10.1016/j.compeleceng.2020.106963_b17
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int J Ind Eng Comput
– start-page: 13
  year: 2010
  ident: 10.1016/j.compeleceng.2020.106963_b7
  article-title: Comparison of hybrid feature selection models on gene expression data
– volume: 9
  start-page: 31
  issue: 1
  year: 2009
  ident: 10.1016/j.compeleceng.2020.106963_b6
  article-title: SVM-RFE with MRMR filter for gene selection
  publication-title: IEEE Trans NanoBioscience
  doi: 10.1109/TNB.2009.2035284
– year: 2007
  ident: 10.1016/j.compeleceng.2020.106963_b16
– volume: 9
  start-page: 1
  year: 2013
  ident: 10.1016/j.compeleceng.2020.106963_b20
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2012.09.002
SSID ssj0004618
Score 2.5036843
Snippet Micro-array technology generates high-dimensional data. The high dimensionality of data hampers the learning capability of machine learning algorithms....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106963
SubjectTerms Algorithms
Arrays
Classification
Decision making
Dimensionality reduction
Feature extraction
Feature selection
Hybrid feature selection
Jaya algorithm
Machine learning
Micro-array data
TOPSIS
Transfer functions
Title A hybrid feature selection method based on Binary Jaya algorithm for micro-array data classification
URI https://dx.doi.org/10.1016/j.compeleceng.2020.106963
https://www.proquest.com/docview/2529325627
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Freedom Collection
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: AKRWK
  dateStart: 19730601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEA2iIHoQP_FjlQheq0k6SbfgZRVlVfSk4C2kTaIr6yq762Ev_nYzaaurIAgeOzClvElnJvDmDSEHzmMh8UUijSoSgJQlOQibKAWZl14ZG3Vmr29U9w4u7-X9DDltZmGQVlnn_iqnx2xdW45qNI9eez2c8QWZocwuSq6wNg7xAWS4xeDwnU_NRvIqGwNKMzI1T_a_OF5I28Z1M27wEK6KAu0qV-lvNepHto4l6HyZLNW9I-1Un7dCZtxglSxOKQquEduhjxMcwqLeRclOOoqLbgL6tFoWTbFuWRqeT-IoLr00E0NN_-Fl2Bs_PtPQxNJnZOklZjg0E4oUUlpij42kohjHdXJ3fnZ72k3qRQpJmUI-TkrIuWVeydwqroQ3eV4Aj3enYEgttFkqC-cdsx6YE6zIijSgIhiYspQ-3SCzg5eB2yTUOjBKWp5yUYI1sii5tbxtvTfB07kt0m6g02WtMo7LLvq6oZM96SnUNaKuK9S3iPh0fa2kNv7idNzER387NzqUhL-4t5qY6vrnHWkhQw8UWkGRbf_v7TtkQSAFJlLWWmR2PHxzu6GHGRd78ZDukbnOxVX35gOczPPm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gI-D-MS3EbxWkzRJt-BFRVmfJwVvIW0SXdFV1vWwF3-7mbTVVRAEjx2YUr6k84BvvgHYcR4TiS8SaVSRCJHSJBfcJkqJzEuvjI06s5dXqn0jzm7l7QgcNbMwSKusY38V02O0ri17NZp7L50OzvgKmaHMLkqu0FY-CuNC8gw7sN13NjQcyapwLFCbkaoJ2P4ieSFvG_fNuO5d6BU52lWu0t-S1I9wHXPQySzM1MUjOai-bw5GXHcepockBRfAHpD7AU5hEe-iZid5jZtuAvyk2hZNMHFZEp4P4ywuOTMDQ8zj3XOv079_IqGKJU9I00tMr2cGBDmkpMQiG1lF8SAX4ebk-PqondSbFJIyFXk_KUXOLPVK5lYxxb3J80Kw2DwFQ2pFi6aycN5R6wV1nBZZkQZUOBWmLKVPl2Cs-9x1y0CsE0ZJy1LGS2GNLEpmLWtZ703wdG4FWg10uqxlxnHbxaNu-GQPegh1jajrCvUV4J-uL5XWxl-c9pvz0d8ujg454S_u682Z6vrvfdVchiIo1II8W_3f27dgsn19eaEvTq_O12CKIx8m8tfWYazfe3MboaDpF5vxwn4AQSf1ew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+feature+selection+method+based+on+Binary+Jaya+algorithm+for+micro-array+data+classification&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Chaudhuri%2C+Abhilasha&rft.au=Sahu%2C+Tirath+Prasad&rft.date=2021-03-01&rft.issn=0045-7906&rft.volume=90&rft.spage=106963&rft_id=info:doi/10.1016%2Fj.compeleceng.2020.106963&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2020_106963
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon