An EM algorithm for the destructive COM-Poisson regression cure rate model

In this paper, we consider a competitive scenario and assume the initial number of competing causes to undergo a destruction after an initial treatment. This brings in a more realistic and practical interpretation of the biological mechanism of the occurrence of tumor since what is recorded is only...

Full description

Saved in:
Bibliographic Details
Published inMetrika Vol. 81; no. 2; pp. 143 - 171
Main Authors Pal, Suvra, Majakwara, Jacob, Balakrishnan, N.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0026-1335
1435-926X
DOI10.1007/s00184-017-0638-8

Cover

Abstract In this paper, we consider a competitive scenario and assume the initial number of competing causes to undergo a destruction after an initial treatment. This brings in a more realistic and practical interpretation of the biological mechanism of the occurrence of tumor since what is recorded is only from the undamaged portion of the original number of competing causes. Instead of assuming any particular distribution for the competing cause, we assume the competing cause to follow a Conway–Maxwell Poisson distribution which brings in flexibility as it can handle both over-dispersion and under-dispersion that we usually encounter in count data. Under this setup and assuming a Weibull distribution to model the time-to-event, we develop the expectation maximization algorithm for such a flexible destructive cure rate model. An extensive simulation study is carried out to demonstrate the performance of the proposed estimation method. Finally, a melanoma data is analyzed for illustrative purpose.
AbstractList In this paper, we consider a competitive scenario and assume the initial number of competing causes to undergo a destruction after an initial treatment. This brings in a more realistic and practical interpretation of the biological mechanism of the occurrence of tumor since what is recorded is only from the undamaged portion of the original number of competing causes. Instead of assuming any particular distribution for the competing cause, we assume the competing cause to follow a Conway–Maxwell Poisson distribution which brings in flexibility as it can handle both over-dispersion and under-dispersion that we usually encounter in count data. Under this setup and assuming a Weibull distribution to model the time-to-event, we develop the expectation maximization algorithm for such a flexible destructive cure rate model. An extensive simulation study is carried out to demonstrate the performance of the proposed estimation method. Finally, a melanoma data is analyzed for illustrative purpose.
Author Majakwara, Jacob
Pal, Suvra
Balakrishnan, N.
Author_xml – sequence: 1
  givenname: Suvra
  surname: Pal
  fullname: Pal, Suvra
  email: suvra.pal@uta.edu
  organization: Department of Mathematics, University of Texas at Arlington, School of Statistics and Actuarial Science, University of the Witwatersrand
– sequence: 2
  givenname: Jacob
  surname: Majakwara
  fullname: Majakwara, Jacob
  organization: School of Statistics and Actuarial Science, University of the Witwatersrand
– sequence: 3
  givenname: N.
  surname: Balakrishnan
  fullname: Balakrishnan, N.
  organization: Department of Mathematics and Statistics, McMaster University
BookMark eNp9kE1LwzAYgINMcJv-AG8Bz9F8tE16HGN-4ZgHBW8hTd9uHVszk1Tw35tRDyLoKTk8T943zwSNOtcBQpeMXjNK5U2glKmMUCYJLYQi6gSNWSZyUvLibYTGlPKCMCHyMzQJYZtoWXA-Ro-zDi-W2OzWzrdxs8eN8zhuANcQou9tbD8Az1dL8uzaEFyHPaw9hNCmq-09YG8i4L2rYXeOThuzC3DxfU7R6-3iZX5PnlZ3D_PZE7EiKyOpGgN5ASrPgWdM1kY10lZV2agcbKMMlDZnVW15XXImqEhMJqmhtrasSrCYoqvh3YN3731aU29d77s0UrOy5DKFyFmi2EBZ70Lw0OiDb_fGf2pG9TGZHpLpVEIfk2mVHPnLsW00Mf01etPu_jX5YIY0pVuD_7HTn9IXZEKCNg
CitedBy_id crossref_primary_10_1002_sim_9739
crossref_primary_10_1002_sim_9904
crossref_primary_10_1080_03610918_2024_2314664
crossref_primary_10_1080_03610918_2022_2067876
crossref_primary_10_1007_s42519_022_00274_8
crossref_primary_10_1214_23_AOAS1741
crossref_primary_10_1080_03610918_2020_1819321
crossref_primary_10_1002_sim_9189
crossref_primary_10_1002_sim_9850
crossref_primary_10_1080_02664763_2020_1786676
crossref_primary_10_1007_s00180_024_01480_7
crossref_primary_10_1080_03610918_2024_2393702
crossref_primary_10_1080_02664763_2024_2418476
crossref_primary_10_1080_03610918_2018_1502780
crossref_primary_10_1111_stan_12237
crossref_primary_10_1080_03610918_2019_1642483
crossref_primary_10_1007_s00180_023_01389_7
crossref_primary_10_1177_09622802231210917
Cites_doi 10.1016/S0167-7152(01)00105-5
10.1093/biomet/91.2.331
10.1142/2420
10.1080/15598608.2012.719803
10.1007/s00180-016-0660-8
10.1080/00949655.2015.1071375
10.1177/0962280213491641
10.1111/j.1467-9876.2005.00474.x
10.1080/01621459.1999.10474196
10.1007/s00362-010-0326-5
10.1016/j.spl.2016.04.005
10.1002/sim.1260
10.1016/j.spl.2008.10.029
10.1007/s10985-010-9189-2
10.1016/j.jspi.2009.04.014
10.1016/j.jspi.2007.05.028
10.1002/sim.1774
10.1080/01621459.1952.10501187
10.1080/00949655.2014.943223
10.1080/00949655.2016.1247843
10.1016/j.csda.2013.04.018
10.1198/01622145030000001007
10.1093/biomet/79.3.531
10.1016/j.csda.2011.10.013
10.1111/j.1467-9876.2005.00510.x
10.1007/s00180-014-0527-9
10.1016/j.spl.2008.07.044
10.1111/j.2517-6161.1995.tb02037.x
10.1080/10618600.1996.10474708
10.1111/j.2517-6161.1982.tb01203.x
10.1080/03610918.2015.1053918
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2017
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s00184-017-0638-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1435-926X
EndPage 171
ExternalDocumentID 10_1007_s00184_017_0638_8
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
692
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEHJ
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c349t-bfae56e855e2417da8f7cbb9f85ecf8ae9c51bdc2d921303417470a0cdc1ba8f3
IEDL.DBID U2A
ISSN 0026-1335
IngestDate Thu Sep 25 00:39:07 EDT 2025
Thu Apr 24 23:11:40 EDT 2025
Wed Oct 01 03:59:02 EDT 2025
Fri Feb 21 02:35:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Maximum likelihood estimates (MLEs)
Profile likelihood
Long-term survivors
Competing cause scenario
COM-Poisson distribution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-bfae56e855e2417da8f7cbb9f85ecf8ae9c51bdc2d921303417470a0cdc1ba8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1992701851
PQPubID 2043711
PageCount 29
ParticipantIDs proquest_journals_1992701851
crossref_primary_10_1007_s00184_017_0638_8
crossref_citationtrail_10_1007_s00184_017_0638_8
springer_journals_10_1007_s00184_017_0638_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal for Theoretical and Applied Statistics
PublicationTitle Metrika
PublicationTitleAbbrev Metrika
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Borges, Rodrigues, Balakrishnan (CR6) 2012; 56
Lu, Ying (CR18) 2004; 91
Peng, Zhang (CR24) 2008; 78
Gallardo, Bolfarine, Pedroso-de Lima (CR11) 2016; 86
Berkson, Gage (CR5) 1952; 47
Li, Taylor (CR15) 2002; 21
Yu, Tiwari, Cronin, Feuer (CR33) 2004; 23
Yakovlev, Tsodikov (CR32) 1996
Shmueli, Minka, Kadane, Borle, Boatwright (CR30) 2005; 54
Rodrigues, Cancho, de Castro, Louzada-Neto (CR26) 2009; 79
Balakrishnan, Pal (CR3) 2015; 30
Chen, Ibrahim, Sinha (CR8) 1999; 94
Pal, Balakrishnan (CR20) 2015
Rodrigues, de Castro, Balakrishnan, Cancho (CR28) 2011; 17
Dunn, Smyth (CR10) 1996; 5
Balakrishnan, Pal (CR1) 2012; 6
Tsodikov, Ibrahim, Yakovlev (CR31) 2003; 98
Conway, Maxwell (CR9) 1962; 12
Rodrigues, Balakrishnan, Cordeiro, de Castro, Cancho (CR29) 2015; 85
Rodrigues, de Castro, Cancho, Balakrishnan (CR27) 2009; 139
Louis (CR17) 1982; 44
Kuk, Chen (CR13) 1992; 79
Lange (CR14) 1995; 57
Pal, Balakrishnan (CR23) 2017; 32
Maller, Zhou (CR19) 1996
Cancho, de Castro, Rodrigues (CR7) 2012; 53
Balakrishnan, Pal (CR4) 2016; 25
Kokonendji, Mizere, Balakrishnan (CR12) 2008; 138
Pal, Balakrishnan (CR21) 2016; 116
Pal, Balakrishnan (CR22) 2017; 87
Balakrishnan, Pal (CR2) 2013; 67
Li, Taylor, Sy (CR16) 2001; 54
Rigby, Stasinopoulos (CR25) 2005; 54
N Balakrishnan (638_CR1) 2012; 6
MH Chen (638_CR8) 1999; 94
PK Dunn (638_CR10) 1996; 5
CS Li (638_CR16) 2001; 54
TA Louis (638_CR17) 1982; 44
AY Yakovlev (638_CR32) 1996
CS Li (638_CR15) 2002; 21
N Balakrishnan (638_CR2) 2013; 67
P Borges (638_CR6) 2012; 56
K Lange (638_CR14) 1995; 57
W Lu (638_CR18) 2004; 91
VG Cancho (638_CR7) 2012; 53
G Shmueli (638_CR30) 2005; 54
RA Maller (638_CR19) 1996
AD Tsodikov (638_CR31) 2003; 98
DI Gallardo (638_CR11) 2016; 86
J Rodrigues (638_CR29) 2015; 85
RW Conway (638_CR9) 1962; 12
J Rodrigues (638_CR27) 2009; 139
N Balakrishnan (638_CR4) 2016; 25
J Rodrigues (638_CR28) 2011; 17
N Balakrishnan (638_CR3) 2015; 30
B Yu (638_CR33) 2004; 23
S Pal (638_CR21) 2016; 116
RA Rigby (638_CR25) 2005; 54
J Berkson (638_CR5) 1952; 47
CC Kokonendji (638_CR12) 2008; 138
AYC Kuk (638_CR13) 1992; 79
J Rodrigues (638_CR26) 2009; 79
S Pal (638_CR22) 2017; 87
Y Peng (638_CR24) 2008; 78
S Pal (638_CR20) 2015
S Pal (638_CR23) 2017; 32
References_xml – volume: 54
  start-page: 389
  issue: 4
  year: 2001
  end-page: 395
  ident: CR16
  article-title: Identifiability of cure models
  publication-title: Stat Probab Lett
  doi: 10.1016/S0167-7152(01)00105-5
– volume: 91
  start-page: 331
  issue: 2
  year: 2004
  end-page: 343
  ident: CR18
  article-title: On semiparametric transformation cure models
  publication-title: Biometrika
  doi: 10.1093/biomet/91.2.331
– year: 1996
  ident: CR32
  publication-title: Stochastic models of tumor latency and their biostatistical applications
  doi: 10.1142/2420
– year: 2015
  ident: CR20
  article-title: Likelihood inference based on EM algorithm for the destructive length-biased Poisson cure rate model with Weibull lifetime
  publication-title: Commun Stat Simul Comput
– volume: 6
  start-page: 698
  issue: 4
  year: 2012
  end-page: 724
  ident: CR1
  article-title: EM algorithm-based likelihood estimation for some cure rate models
  publication-title: J Stat Theory Pract
  doi: 10.1080/15598608.2012.719803
– volume: 32
  start-page: 429
  issue: 2
  year: 2017
  end-page: 449
  ident: CR23
  article-title: Likelihood inference for the destructive exponentially weighted Poisson cure rate model with Weibull lifetime and an application to melanoma data
  publication-title: Comput Stat
  doi: 10.1007/s00180-016-0660-8
– volume: 86
  start-page: 1497
  issue: 8
  year: 2016
  end-page: 1515
  ident: CR11
  article-title: An EM algorithm for estimating the destructive weighted Poisson cure rate model
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2015.1071375
– volume: 25
  start-page: 1535
  issue: 4
  year: 2016
  end-page: 1563
  ident: CR4
  article-title: Expectation maximization-based likelihood inference for flexible cure rate models with Weibull lifetimes
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280213491641
– volume: 5
  start-page: 236
  issue: 3
  year: 1996
  end-page: 244
  ident: CR10
  article-title: Randomized quantile residuals
  publication-title: J Comput Graph Stat
– year: 1996
  ident: CR19
  publication-title: Survival analysis with long-term survivors
– volume: 54
  start-page: 127
  issue: 1
  year: 2005
  end-page: 142
  ident: CR30
  article-title: A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution
  publication-title: J Roy Stat Soc Ser C (Appl Stat)
  doi: 10.1111/j.1467-9876.2005.00474.x
– volume: 94
  start-page: 909
  issue: 447
  year: 1999
  end-page: 919
  ident: CR8
  article-title: A new Bayesian model for survival data with a surviving fraction
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1999.10474196
– volume: 53
  start-page: 165
  issue: 1
  year: 2012
  end-page: 176
  ident: CR7
  article-title: A Bayesian analysis of the Conway–Maxwell–Poisson cure rate model
  publication-title: Stat Pap
  doi: 10.1007/s00362-010-0326-5
– volume: 116
  start-page: 9
  year: 2016
  end-page: 20
  ident: CR21
  article-title: Destructive negative binomial cure rate model and EM-based likelihood inference under Weibull lifetime
  publication-title: Stat Probab Lett
  doi: 10.1016/j.spl.2016.04.005
– volume: 44
  start-page: 226
  issue: 2
  year: 1982
  end-page: 233
  ident: CR17
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J R Stat Soc Ser B (Methodol)
– volume: 21
  start-page: 3235
  issue: 21
  year: 2002
  end-page: 3247
  ident: CR15
  article-title: A semi-parametric accelerated failure time cure model
  publication-title: Stat Med
  doi: 10.1002/sim.1260
– volume: 79
  start-page: 753
  issue: 6
  year: 2009
  end-page: 759
  ident: CR26
  article-title: On the unification of long-term survival models
  publication-title: Stat Probab Lett
  doi: 10.1016/j.spl.2008.10.029
– volume: 17
  start-page: 333
  issue: 3
  year: 2011
  end-page: 346
  ident: CR28
  article-title: Destructive weighted Poisson cure rate models
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-010-9189-2
– volume: 139
  start-page: 3605
  issue: 10
  year: 2009
  end-page: 3611
  ident: CR27
  article-title: COM-Poisson cure rate survival models and an application to a cutaneous melanoma data
  publication-title: J Stat Plan Inference
  doi: 10.1016/j.jspi.2009.04.014
– volume: 138
  start-page: 1287
  issue: 5
  year: 2008
  end-page: 1296
  ident: CR12
  article-title: Connections of the Poisson weight function to overdispersion and underdispersion
  publication-title: J Stat Plan Inference
  doi: 10.1016/j.jspi.2007.05.028
– volume: 23
  start-page: 1733
  issue: 11
  year: 2004
  end-page: 1747
  ident: CR33
  article-title: Cure fraction estimation from the mixture cure models for grouped survival data
  publication-title: Stat Med
  doi: 10.1002/sim.1774
– volume: 47
  start-page: 501
  issue: 259
  year: 1952
  end-page: 515
  ident: CR5
  article-title: Survival curve for cancer patients following treatment
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1952.10501187
– volume: 85
  start-page: 2860
  issue: 14
  year: 2015
  end-page: 2873
  ident: CR29
  article-title: Latent cure rate model under repair system and threshold effect
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2014.943223
– volume: 87
  start-page: 1107
  issue: 6
  year: 2017
  end-page: 1129
  ident: CR22
  article-title: An EM type estimation procedure for the destructive exponentially weighted Poisson regression cure model under generalized gamma lifetime
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2016.1247843
– volume: 67
  start-page: 41
  year: 2013
  end-page: 67
  ident: CR2
  article-title: Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2013.04.018
– volume: 98
  start-page: 1063
  issue: 464
  year: 2003
  end-page: 1078
  ident: CR31
  article-title: Estimating cure rates from survival data
  publication-title: J Am Stat Assoc
  doi: 10.1198/01622145030000001007
– volume: 79
  start-page: 531
  issue: 3
  year: 1992
  end-page: 541
  ident: CR13
  article-title: A mixture model combining logistic regression with proportional hazards regression
  publication-title: Biometrika
  doi: 10.1093/biomet/79.3.531
– volume: 12
  start-page: 132
  issue: 2
  year: 1962
  end-page: 136
  ident: CR9
  article-title: A queuing model with state dependent service rates
  publication-title: J Ind Eng
– volume: 56
  start-page: 1703
  issue: 6
  year: 2012
  end-page: 1713
  ident: CR6
  article-title: Correlated destructive generalized power series cure rate models and associated inference with an application to a cutaneous melanoma data
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2011.10.013
– volume: 54
  start-page: 507
  issue: 3
  year: 2005
  end-page: 554
  ident: CR25
  article-title: Generalized additive models for location, scale and shape
  publication-title: J Roy Stat Soc Ser C (Appl Stat)
  doi: 10.1111/j.1467-9876.2005.00510.x
– volume: 30
  start-page: 151
  issue: 1
  year: 2015
  end-page: 189
  ident: CR3
  article-title: An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood-and information-based methods
  publication-title: Comput Stat
  doi: 10.1007/s00180-014-0527-9
– volume: 78
  start-page: 2604
  issue: 16
  year: 2008
  end-page: 2608
  ident: CR24
  article-title: Identifiability of a mixture cure frailty model
  publication-title: Stat Probab Lett
  doi: 10.1016/j.spl.2008.07.044
– volume: 57
  start-page: 425
  year: 1995
  end-page: 437
  ident: CR14
  article-title: A gradient algorithm locally equivalent to the EM algorithm
  publication-title: J R Stat Soc Ser B
– volume: 57
  start-page: 425
  year: 1995
  ident: 638_CR14
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1995.tb02037.x
– volume: 6
  start-page: 698
  issue: 4
  year: 2012
  ident: 638_CR1
  publication-title: J Stat Theory Pract
  doi: 10.1080/15598608.2012.719803
– volume: 12
  start-page: 132
  issue: 2
  year: 1962
  ident: 638_CR9
  publication-title: J Ind Eng
– volume: 86
  start-page: 1497
  issue: 8
  year: 2016
  ident: 638_CR11
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2015.1071375
– volume: 5
  start-page: 236
  issue: 3
  year: 1996
  ident: 638_CR10
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.1996.10474708
– volume: 54
  start-page: 507
  issue: 3
  year: 2005
  ident: 638_CR25
  publication-title: J Roy Stat Soc Ser C (Appl Stat)
  doi: 10.1111/j.1467-9876.2005.00510.x
– volume: 139
  start-page: 3605
  issue: 10
  year: 2009
  ident: 638_CR27
  publication-title: J Stat Plan Inference
  doi: 10.1016/j.jspi.2009.04.014
– volume: 53
  start-page: 165
  issue: 1
  year: 2012
  ident: 638_CR7
  publication-title: Stat Pap
  doi: 10.1007/s00362-010-0326-5
– volume-title: Stochastic models of tumor latency and their biostatistical applications
  year: 1996
  ident: 638_CR32
  doi: 10.1142/2420
– volume: 54
  start-page: 389
  issue: 4
  year: 2001
  ident: 638_CR16
  publication-title: Stat Probab Lett
  doi: 10.1016/S0167-7152(01)00105-5
– volume: 56
  start-page: 1703
  issue: 6
  year: 2012
  ident: 638_CR6
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2011.10.013
– volume: 54
  start-page: 127
  issue: 1
  year: 2005
  ident: 638_CR30
  publication-title: J Roy Stat Soc Ser C (Appl Stat)
  doi: 10.1111/j.1467-9876.2005.00474.x
– volume: 23
  start-page: 1733
  issue: 11
  year: 2004
  ident: 638_CR33
  publication-title: Stat Med
  doi: 10.1002/sim.1774
– volume: 30
  start-page: 151
  issue: 1
  year: 2015
  ident: 638_CR3
  publication-title: Comput Stat
  doi: 10.1007/s00180-014-0527-9
– volume-title: Survival analysis with long-term survivors
  year: 1996
  ident: 638_CR19
– volume: 116
  start-page: 9
  year: 2016
  ident: 638_CR21
  publication-title: Stat Probab Lett
  doi: 10.1016/j.spl.2016.04.005
– volume: 79
  start-page: 531
  issue: 3
  year: 1992
  ident: 638_CR13
  publication-title: Biometrika
  doi: 10.1093/biomet/79.3.531
– volume: 87
  start-page: 1107
  issue: 6
  year: 2017
  ident: 638_CR22
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2016.1247843
– volume: 44
  start-page: 226
  issue: 2
  year: 1982
  ident: 638_CR17
  publication-title: J R Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– volume: 25
  start-page: 1535
  issue: 4
  year: 2016
  ident: 638_CR4
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280213491641
– year: 2015
  ident: 638_CR20
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2015.1053918
– volume: 79
  start-page: 753
  issue: 6
  year: 2009
  ident: 638_CR26
  publication-title: Stat Probab Lett
  doi: 10.1016/j.spl.2008.10.029
– volume: 94
  start-page: 909
  issue: 447
  year: 1999
  ident: 638_CR8
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1999.10474196
– volume: 138
  start-page: 1287
  issue: 5
  year: 2008
  ident: 638_CR12
  publication-title: J Stat Plan Inference
  doi: 10.1016/j.jspi.2007.05.028
– volume: 17
  start-page: 333
  issue: 3
  year: 2011
  ident: 638_CR28
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-010-9189-2
– volume: 98
  start-page: 1063
  issue: 464
  year: 2003
  ident: 638_CR31
  publication-title: J Am Stat Assoc
  doi: 10.1198/01622145030000001007
– volume: 21
  start-page: 3235
  issue: 21
  year: 2002
  ident: 638_CR15
  publication-title: Stat Med
  doi: 10.1002/sim.1260
– volume: 78
  start-page: 2604
  issue: 16
  year: 2008
  ident: 638_CR24
  publication-title: Stat Probab Lett
  doi: 10.1016/j.spl.2008.07.044
– volume: 67
  start-page: 41
  year: 2013
  ident: 638_CR2
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2013.04.018
– volume: 47
  start-page: 501
  issue: 259
  year: 1952
  ident: 638_CR5
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1952.10501187
– volume: 32
  start-page: 429
  issue: 2
  year: 2017
  ident: 638_CR23
  publication-title: Comput Stat
  doi: 10.1007/s00180-016-0660-8
– volume: 91
  start-page: 331
  issue: 2
  year: 2004
  ident: 638_CR18
  publication-title: Biometrika
  doi: 10.1093/biomet/91.2.331
– volume: 85
  start-page: 2860
  issue: 14
  year: 2015
  ident: 638_CR29
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2014.943223
SSID ssj0017622
Score 2.232184
Snippet In this paper, we consider a competitive scenario and assume the initial number of competing causes to undergo a destruction after an initial treatment. This...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 143
SubjectTerms Computer simulation
Dispersion
Economic Theory/Quantitative Economics/Mathematical Methods
Mathematics and Statistics
Poisson density functions
Probability Theory and Stochastic Processes
Regression analysis
Regression models
Statistical analysis
Statistics
Weibull distribution
Title An EM algorithm for the destructive COM-Poisson regression cure rate model
URI https://link.springer.com/article/10.1007/s00184-017-0638-8
https://www.proquest.com/docview/1992701851
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1435-926X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017622
  issn: 0026-1335
  databaseCode: AFBBN
  dateStart: 19581201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1435-926X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017622
  issn: 0026-1335
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1435-926X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017622
  issn: 0026-1335
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu5QBQQFRKJUHJlCkpIkTZ6yqlqoowEClMkWJfS4DpKgt_H7O-eJDgMScFw93Pt-z7vwO4Ny8VfRcnVqer5EuKC5aIXJyiOB95Tjo81y7M7rxJzNvOufz8h33uup2r0qS-UldP3Yz8-NMx4Rp16IoFdvQ5EbNizbxrD-oSwcU3aVEuBHYc3lVyvxpia_J6INhfiuK5rlmvAe7JUlkg8Kr-7CFWRt2olphdd2GlmGJhcjyAUwHGRtFLHlaLOmu__jMiIkyAjOFpT7sG7LhbWTdLcnOy4ytcFH0v2ZMvq6QGb0Ilg_FOYTZeHQ_nFjlkARLul64sVKdIPdRcI6UjAOVCB3INA214Ci1SDCU3EmV7CsyFeUrwniBndhSSSclsHsEjWyZ4TEwx0WpfJmGQWh7SqrECTSGGlGH_SAQXgfsylqxLBXEzSCLp7jWPs4NHJOBY2PgWHTgov7lpZDP-AvcrVwQl5G0jk17bEBA7nTgsnLLp8-_LXbyL_QptIgJiaIduwsN8g2eEdvYpD1oDq4erke9fJe9AwInzA0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADb8R45sAJVLQ-0ibHCQ3Go8BhSHCqmsQZCOjQNjjw60n64iFA4to6UWvHtSt__gywa3sVA18LJwg1mh8UHx2O1BiEUU-5LoY05-6ML8LudXB6Q2_KPu5RhXavSpL5l7pudrPz4yxiwsK1jJeySZgKzBWvAVPt49uzTl08MP5dkoRbij2fVsXMnzb5Go4-csxvZdE82hzNQ696zgJk8nDwMhYH8u0bheM_X2QB5srsk7SL47IIE5gtwWxcU7eOlmDGpp8Fe_MynLYz0olJ-tgfDO_Hd0_EpLjECBOFJfHsK5LDy9i5GhgDDjIyxH4BrM2IfBkisUQUJJ-2swLXR53eYdcppy840g_42BE6RRoioxRNlI9UynQkheCaUZSapcgldYWSnuKeDYRGJohaaUsq6Qoj7K9CIxtkuAbE9VGqUAoe8VagpErdSCPXiJp7UcSCJrQqIySypCa3EzIek5pUOddZYnSWWJ0lrAl79ZLngpfjL-HNyrJJ6aKjxOJuIyNI3SbsV4b6dPu3zdb_Jb0D091efJ6cn1ycbcCMSbdYgfnehIaxE26ZlGYstssj_A7zD-oq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SAgOiKcYDMiBE6hifaRNjtPYBIPBDkzarWoTZxygQ2zw-3H64iFA4tyvOdix7MifPwOc2FnFwDepE4QG6YHioyORk0ME97TrYshz7c7BbXg5CvpjPi73nM4qtnvVkixmGqxKUzY_f9bmvB58s7vkLHvCUrcoYsUiLAdWJ4Eu9Mhr120EivRSLtyK7fm8amv-dMTXxPRRbX5rkOZ5p7cB62XByNqFhzdhAbMtWBvUaquzLVi1FWMhuLwN_XbGugOWPE6m9O5_eGJUlTICM42lVuwbss7dwBlOyebTjL3gpODCZky9viCz2hEsX5CzA6Ne975z6ZQLExzlB3LupCZBHqLgHCkxRzoRJlJpKo3gqIxIUCruplp5Wno2dxEmiFpJS2nlpgT2d2Epm2a4B8z1UelQpTKSrUArnbiRQWkQjfSiSAQNaFXWilWpJm6XWjzGtQ5ybuCYDBxbA8eiAaf1L8-FlMZf4GblgriMqllsqbIRAbnbgLPKLZ8-_3bY_r_Qx7AyvOjFN1e31wewSgWSKFjaTVgiN-EhFSHz9Ci_aO9j69Gh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+EM+algorithm+for+the+destructive+COM-Poisson+regression+cure+rate+model&rft.jtitle=Metrika&rft.au=Pal%2C+Suvra&rft.au=Majakwara%2C+Jacob&rft.au=Balakrishnan%2C+N.&rft.date=2018-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0026-1335&rft.eissn=1435-926X&rft.volume=81&rft.issue=2&rft.spage=143&rft.epage=171&rft_id=info:doi/10.1007%2Fs00184-017-0638-8&rft.externalDocID=10_1007_s00184_017_0638_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1335&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1335&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1335&client=summon