A Connection Between Dynamic Region-Following Formation Control and Distributed Average Tracking
This paper studies the inherent connection between dynamic region-following formation control (DRFFC) and distributed average tracking (DAT). We propose a fixed-gain DAT algorithm with robustness to initialization errors for linear multiagent systems, which is capable of achieving DAT with a zero tr...
Saved in:
| Published in | IEEE transactions on cybernetics Vol. 48; no. 6; pp. 1760 - 1772 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2267 2168-2275 2168-2275 |
| DOI | 10.1109/TCYB.2017.2714688 |
Cover
| Abstract | This paper studies the inherent connection between dynamic region-following formation control (DRFFC) and distributed average tracking (DAT). We propose a fixed-gain DAT algorithm with robustness to initialization errors for linear multiagent systems, which is capable of achieving DAT with a zero tracking error for a large class of reference signals. In the case that the fixed gain cannot be chosen properly, we present an adaptive control gain design, under which each agent simply chooses its own gain and the restriction on knowing the upper bounds on the reference signals and their inputs is removed. We show that the proposed DAT algorithms can be employed to solve the DRFFC problem. This is an attempt on the applications of DAT algorithms to achieve distributed control; existing works most use DAT as distributed estimation algorithms. For single-integrator, double-integrator, higher-order linear dynamics, we derive the corresponding DRFFC algorithms from the DAT algorithm. Compared with existing DRFFC algorithms, the DAT-based DRFFC algorithms do not require the desired region to have a regular shape and is capable of generating a much richer formation behavior. Numerical examples are also included to show the validity of the derived results. |
|---|---|
| AbstractList | This paper studies the inherent connection between dynamic region-following formation control (DRFFC) and distributed average tracking (DAT). We propose a fixed-gain DAT algorithm with robustness to initialization errors for linear multiagent systems, which is capable of achieving DAT with a zero tracking error for a large class of reference signals. In the case that the fixed gain cannot be chosen properly, we present an adaptive control gain design, under which each agent simply chooses its own gain and the restriction on knowing the upper bounds on the reference signals and their inputs is removed. We show that the proposed DAT algorithms can be employed to solve the DRFFC problem. This is an attempt on the applications of DAT algorithms to achieve distributed control; existing works most use DAT as distributed estimation algorithms. For single-integrator, double-integrator, higher-order linear dynamics, we derive the corresponding DRFFC algorithms from the DAT algorithm. Compared with existing DRFFC algorithms, the DAT-based DRFFC algorithms do not require the desired region to have a regular shape and is capable of generating a much richer formation behavior. Numerical examples are also included to show the validity of the derived results. This paper studies the inherent connection between dynamic region-following formation control (DRFFC) and distributed average tracking (DAT). We propose a fixed-gain DAT algorithm with robustness to initialization errors for linear multiagent systems, which is capable of achieving DAT with a zero tracking error for a large class of reference signals. In the case that the fixed gain cannot be chosen properly, we present an adaptive control gain design, under which each agent simply chooses its own gain and the restriction on knowing the upper bounds on the reference signals and their inputs is removed. We show that the proposed DAT algorithms can be employed to solve the DRFFC problem. This is an attempt on the applications of DAT algorithms to achieve distributed control; existing works most use DAT as distributed estimation algorithms. For single-integrator, double-integrator, higher-order linear dynamics, we derive the corresponding DRFFC algorithms from the DAT algorithm. Compared with existing DRFFC algorithms, the DAT-based DRFFC algorithms do not require the desired region to have a regular shape and is capable of generating a much richer formation behavior. Numerical examples are also included to show the validity of the derived results.This paper studies the inherent connection between dynamic region-following formation control (DRFFC) and distributed average tracking (DAT). We propose a fixed-gain DAT algorithm with robustness to initialization errors for linear multiagent systems, which is capable of achieving DAT with a zero tracking error for a large class of reference signals. In the case that the fixed gain cannot be chosen properly, we present an adaptive control gain design, under which each agent simply chooses its own gain and the restriction on knowing the upper bounds on the reference signals and their inputs is removed. We show that the proposed DAT algorithms can be employed to solve the DRFFC problem. This is an attempt on the applications of DAT algorithms to achieve distributed control; existing works most use DAT as distributed estimation algorithms. For single-integrator, double-integrator, higher-order linear dynamics, we derive the corresponding DRFFC algorithms from the DAT algorithm. Compared with existing DRFFC algorithms, the DAT-based DRFFC algorithms do not require the desired region to have a regular shape and is capable of generating a much richer formation behavior. Numerical examples are also included to show the validity of the derived results. |
| Author | Chen, Fei Ren, Wei |
| Author_xml | – sequence: 1 givenname: Fei orcidid: 0000-0003-1350-7081 surname: Chen fullname: Chen, Fei email: feichen@xmu.edu.cn organization: Department of Automation, Xiamen University, Xiamen, China – sequence: 2 givenname: Wei surname: Ren fullname: Ren, Wei email: ren@ee.ucr.edu organization: Department of Electrical and Computer Engineering, University of California at Riverside, Riverside, CA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28678725$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1rGzEQhkVJaT6aH1AKRdBLLutI2tXX0XHithAIFPfQk6rVjo3SXSnVahvy7yPHrg85VJcRw_NIw7yn6CjEAAh9oGRGKdGXq8XPqxkjVM6YpI1Q6g06YVSoijHJjw53IY_R-Tjek3JUaWn1Dh0zJaSSjJ-gX3O8iCGAyz4GfAX5ESDg66dgB-_wd9iUdrWMfR8ffdjgZUyDfUGLlVPssQ0dvvZjTr6dMnR4_heS3QBeJet-F-U9eru2_Qjn-3qGfixvVouv1e3dl2-L-W3l6kbnqu2kk0xwohnlXSM6RZq2aV3dEusst9By4EIyULTmVrLGacJpt9aliq5l9Rm62L37kOKfCcZsBj866HsbIE6joZoKSZTSvKCfX6H3cUqhTGcYlQ3fjiEK9WlPTe0AnXlIfrDpyfzbXQHoDnApjmOC9QGhxGwjMtuIzDYis4-oOPKV43x-WWhO1vf_NT_uTA8Ah5-k5lpwWj8Doeeczg |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1109_TAC_2020_3046029 crossref_primary_10_3390_machines11020128 crossref_primary_10_1109_TASE_2024_3357527 crossref_primary_10_1109_TSMC_2019_2933034 crossref_primary_10_1002_asjc_2365 crossref_primary_10_1016_j_automatica_2024_111882 crossref_primary_10_1109_TCYB_2018_2873904 crossref_primary_10_1109_ACCESS_2023_3244911 crossref_primary_10_1109_TIV_2021_3123110 crossref_primary_10_1109_TAC_2022_3179219 crossref_primary_10_1109_TCYB_2019_2916563 crossref_primary_10_1109_TCYB_2022_3159250 crossref_primary_10_1109_TSMC_2024_3354035 crossref_primary_10_1049_iet_cta_2020_0502 crossref_primary_10_1016_j_ifacol_2022_05_004 crossref_primary_10_1177_0142331220908683 crossref_primary_10_1080_00207721_2024_2344042 crossref_primary_10_1016_j_ifacol_2020_12_269 crossref_primary_10_1109_TASE_2023_3283095 crossref_primary_10_1109_TNSE_2021_3115114 crossref_primary_10_1109_TAC_2020_2983108 crossref_primary_10_1109_TCYB_2019_2938398 crossref_primary_10_1109_TCYB_2021_3104044 crossref_primary_10_1109_TCYB_2018_2872806 crossref_primary_10_1109_TCSII_2020_3047823 crossref_primary_10_1109_TCYB_2018_2859352 crossref_primary_10_1109_TCYB_2022_3223894 crossref_primary_10_1109_TAC_2018_2840452 crossref_primary_10_1002_adc2_31 crossref_primary_10_1007_s11424_021_1218_6 crossref_primary_10_1109_TSMC_2023_3261347 crossref_primary_10_1109_TCYB_2018_2875559 crossref_primary_10_1109_TAC_2021_3060714 crossref_primary_10_1109_TCYB_2023_3312696 crossref_primary_10_1109_TCYB_2019_2931196 crossref_primary_10_1016_j_sysconle_2024_105776 crossref_primary_10_1109_TCYB_2022_3213597 crossref_primary_10_1016_j_ast_2019_105571 crossref_primary_10_1109_TCYB_2021_3062035 crossref_primary_10_1177_0142331219880048 crossref_primary_10_1109_TCYB_2020_2979614 crossref_primary_10_1016_j_sysconle_2024_105858 crossref_primary_10_1109_TCNS_2021_3078120 crossref_primary_10_1002_rnc_6220 crossref_primary_10_1016_j_jfranklin_2023_01_021 crossref_primary_10_1109_MCS_2019_2900783 crossref_primary_10_1109_TCYB_2019_2960605 |
| Cites_doi | 10.1016/j.automatica.2015.11.004 10.1109/CDC.2006.377078 10.1109/CDC.2010.5717485 10.1002/rnc.3486 10.1109/TCYB.2015.2514119 10.1016/j.ins.2015.06.005 10.1109/87.761053 10.1109/ACC.2008.4587141 10.1109/TAC.2012.2199176 10.1016/j.automatica.2009.10.021 10.1109/MCS.2008.929280 10.1109/CDC.2014.7040354 10.1002/047134608X.W8314 10.1109/TIE.2017.2701778 10.1109/TCNS.2015.2468991 10.1080/00207721.2016.1165896 10.1016/j.automatica.2014.03.017 10.1016/j.automatica.2010.03.006 10.1016/j.automatica.2016.09.005 10.1109/TAC.2004.841121 10.1109/TCSI.2013.2268091 10.1109/CDC.2002.1184307 10.1016/j.automatica.2012.06.031 10.1515/9781400831470 10.1016/j.automatica.2014.12.016 10.1016/j.automatica.2013.04.021 10.1109/TAC.2014.2337451 10.1016/j.automatica.2012.11.041 10.1016/j.robot.2014.08.018 10.1016/j.automatica.2016.07.028 10.1109/TIE.2016.2613929 10.1109/MCS.2008.919306 10.1007/978-1-4613-0163-9 10.1016/j.automatica.2016.02.029 10.1109/ROBOT.2009.5152422 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2017.2714688 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 1772 |
| ExternalDocumentID | 28678725 10_1109_TCYB_2017_2714688 7959651 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of Fujian Province grantid: 2017J01119 funderid: 10.13039/501100003392 – fundername: 111 Project grantid: B17048 – fundername: National Science Foundation grantid: CMMI-1537729 funderid: 10.13039/100000001 – fundername: State Key Laboratory of Intelligent Control and Decision of Complex Systems – fundername: National Natural Science Foundation of China grantid: 61473240; 61528301 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-bd7c726509215d46d804b4bc3b0aca5aeb5e5672e8135a724c9051df9c906db23 |
| IEDL.DBID | RIE |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sat Sep 27 19:05:38 EDT 2025 Sun Jun 29 16:17:13 EDT 2025 Wed Feb 19 02:42:31 EST 2025 Thu Apr 24 22:55:43 EDT 2025 Wed Oct 01 05:14:38 EDT 2025 Wed Aug 27 02:50:26 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-bd7c726509215d46d804b4bc3b0aca5aeb5e5672e8135a724c9051df9c906db23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1350-7081 |
| PMID | 28678725 |
| PQID | 2174526506 |
| PQPubID | 85422 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TCYB_2017_2714688 crossref_citationtrail_10_1109_TCYB_2017_2714688 proquest_miscellaneous_1916708895 pubmed_primary_28678725 ieee_primary_7959651 proquest_journals_2174526506 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref2 ref39 ref17 ref38 ref16 spanos (ref19) 2005 ref18 chen (ref1) 2013 lü (ref10) 2016; 64 ref24 wen (ref41) 2016 ref23 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 khalil (ref35) 2002 ref40 spanos (ref26) 2005 liu (ref25) 2013 |
| References_xml | – volume: 64 start-page: 112 year: 2016 ident: ref10 article-title: Nonsmooth leader-following formation control of nonidentical multi-agent systems with directed communication topologies publication-title: Automatica doi: 10.1016/j.automatica.2015.11.004 – ident: ref20 doi: 10.1109/CDC.2006.377078 – ident: ref21 doi: 10.1109/CDC.2010.5717485 – ident: ref31 doi: 10.1002/rnc.3486 – ident: ref6 doi: 10.1109/TCYB.2015.2514119 – ident: ref38 doi: 10.1016/j.ins.2015.06.005 – ident: ref30 doi: 10.1109/87.761053 – ident: ref36 doi: 10.1109/ACC.2008.4587141 – ident: ref22 doi: 10.1109/TAC.2012.2199176 – ident: ref24 doi: 10.1016/j.automatica.2009.10.021 – ident: ref12 doi: 10.1109/MCS.2008.929280 – ident: ref14 doi: 10.1109/CDC.2014.7040354 – start-page: 99 year: 2005 ident: ref26 article-title: Distributed sensor fusion using dynamic consensus publication-title: Proc 16th IFAC World Congr – year: 2016 ident: ref41 article-title: Robust containment of uncertain linear multi-agent systems under adaptive protocols publication-title: Int J Robust Nonlin Control – ident: ref4 doi: 10.1002/047134608X.W8314 – ident: ref11 doi: 10.1109/TIE.2017.2701778 – ident: ref3 doi: 10.1109/TCNS.2015.2468991 – start-page: 6953 year: 2013 ident: ref1 article-title: Robust distributed average tracking for coupled general linear systems publication-title: Proc Chin Control Conf – ident: ref15 doi: 10.1080/00207721.2016.1165896 – ident: ref39 doi: 10.1016/j.automatica.2014.03.017 – ident: ref34 doi: 10.1016/j.automatica.2010.03.006 – ident: ref28 doi: 10.1016/j.automatica.2016.09.005 – ident: ref7 doi: 10.1109/TAC.2004.841121 – ident: ref37 doi: 10.1109/TCSI.2013.2268091 – ident: ref13 doi: 10.1109/CDC.2002.1184307 – ident: ref27 doi: 10.1016/j.automatica.2012.06.031 – ident: ref2 doi: 10.1515/9781400831470 – ident: ref9 doi: 10.1016/j.automatica.2014.12.016 – ident: ref40 doi: 10.1016/j.automatica.2013.04.021 – start-page: 1 year: 2013 ident: ref25 article-title: Distributed task migration for thermal hot spot reduction in many-core microprocessors publication-title: 10th IEEE Int ASIC Conf – ident: ref23 doi: 10.1109/TAC.2014.2337451 – ident: ref33 doi: 10.1016/j.automatica.2012.11.041 – ident: ref16 doi: 10.1016/j.robot.2014.08.018 – ident: ref17 doi: 10.1016/j.automatica.2016.07.028 – ident: ref5 doi: 10.1109/TIE.2016.2613929 – year: 2002 ident: ref35 publication-title: Nonlinear Systems – ident: ref32 doi: 10.1109/MCS.2008.919306 – ident: ref29 doi: 10.1007/978-1-4613-0163-9 – ident: ref8 doi: 10.1016/j.automatica.2016.02.029 – ident: ref18 doi: 10.1109/ROBOT.2009.5152422 – start-page: 1 year: 2005 ident: ref19 article-title: Dynamic consensus on mobile networks publication-title: Proc 16th IFAC World Congr |
| SSID | ssj0000816898 |
| Score | 2.4444928 |
| Snippet | This paper studies the inherent connection between dynamic region-following formation control (DRFFC) and distributed average tracking (DAT). We propose a... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1760 |
| SubjectTerms | Adaptive control Algorithm design and analysis Algorithms Distributed average tracking (DAT) dynamic region-following formation control (DRFFC) Heuristic algorithms Linear systems Multi-agent systems multiagent system Multiagent systems Reference signals Robot sensing systems Robustness Robustness (mathematics) Tracking control Tracking errors Upper bounds |
| Title | A Connection Between Dynamic Region-Following Formation Control and Distributed Average Tracking |
| URI | https://ieeexplore.ieee.org/document/7959651 https://www.ncbi.nlm.nih.gov/pubmed/28678725 https://www.proquest.com/docview/2174526506 https://www.proquest.com/docview/1916708895 |
| Volume | 48 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJy5QSoG0UBmph4LIkocfyXF5rBASPSCQ6Cn4tRdQFnV3Vam_nhnHiVDVVj3FUuzE0cxkxvY38wF8QZUwuaWM5dpPUz61OjW5q1MhtNS8NtLWlI18801e3fPrB_GwAidDLoz3PoDP_Iia4SzfzeyStspOiRdbUr70qqpkl6s17KcEAolAfVtgI8WoQsVDzDyrT-_Ov58RjkuNCkXJRkTTV1T4o1bEkf3GIwWKlb9Hm8HrTDbhpp9vBzZ5Gi0XZmR__VbK8X8_6B1sxPCTjTt92YIV376HrWjgc_Y1VqE-2obHMQsgmJD3wM46OBe76Ajs2a0nHHM6QS2a_UTvxyZ9EiSNIvA7061jF1SWlxi1vGNjNBr8eTH0jpb25z_A_eTy7vwqjXQMqS15vUiNU1YVVHEPwwTHpasybrixpcm01UJ7I7yQqvBVXgqtCm6p9peb1ngl1qpyB9baWev3gBXcUHXkymF4yqVwWlrr0YlitFDaLK8SyHqRNDbWKifKjOcmrFmyuiGBNiTQJgo0geNhyEtXqONfnbdJGEPHKIcE9nu5N9GU5w2t2YhDIJMJHA630QjpZEW3fracN7jolYoAYyKB3U5fhmf3avbxz-_8BOs4s6pDn-3D2uLH0h9gnLMwn4OCvwJoifVk |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAXoJRHoICROAAi2zz8SI7bltUC3R7QVion49deQFnE7gqJX8-M40QIAeIUS7ETRzOTGdvfzAfwHFXClo4yltuwyvnKmdyWvs2FMNLw1krXUjby4kLOL_m7K3G1B6_HXJgQQgSfhQk141m-X7sdbZUdEy-2pHzpa4JzLvpsrXFHJVJIRPLbChs5xhUqHWOWRXu8PP14QkguNakUpRsRUV_V4K9aEUv2Lz4pkqz8Pd6Mfmd2CxbDjHu4yefJbmsn7sdvxRz_95Nuw80UgLJprzEHsBe6O3CQTHzDXqQ61C8P4dOURRhMzHxgJz2gi531FPbsQyAkcz5DPVp_R__HZkMaJI0i-DsznWdnVJiXOLWCZ1M0G_x9MfSPjnbo78Ll7M3ydJ4nQobc1bzd5tYrpyqquYeBgufSNwW33LraFsYZYYIVQUhVhaashVEVd1T9y69avBJvVX0P9rt1Fx4Aq7il-siNxwCVS-GNdC6gG8V4oXZF2WRQDCLRLlUrJ9KMLzquWopWk0A1CVQngWbwahzytS_V8a_OhySMsWOSQwZHg9x1MuaNplUbsQgUMoNn4200QzpbMV1Y7zYal71SEWRMZHC_15fx2YOaPfzzO5_C9flyca7P3168fwQ3cJZNj0U7gv3tt114jFHP1j6Jyv4TaT74sQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Connection+Between+Dynamic+Region-Following+Formation+Control+and+Distributed+Average+Tracking&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Chen%2C+Fei&rft.au=Ren%2C+Wei&rft.date=2018-06-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=48&rft.issue=6&rft.spage=1760&rft_id=info:doi/10.1109%2FTCYB.2017.2714688&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |