A Connection Between Dynamic Region-Following Formation Control and Distributed Average Tracking

This paper studies the inherent connection between dynamic region-following formation control (DRFFC) and distributed average tracking (DAT). We propose a fixed-gain DAT algorithm with robustness to initialization errors for linear multiagent systems, which is capable of achieving DAT with a zero tr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 48; no. 6; pp. 1760 - 1772
Main Authors Chen, Fei, Ren, Wei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2017.2714688

Cover

Abstract This paper studies the inherent connection between dynamic region-following formation control (DRFFC) and distributed average tracking (DAT). We propose a fixed-gain DAT algorithm with robustness to initialization errors for linear multiagent systems, which is capable of achieving DAT with a zero tracking error for a large class of reference signals. In the case that the fixed gain cannot be chosen properly, we present an adaptive control gain design, under which each agent simply chooses its own gain and the restriction on knowing the upper bounds on the reference signals and their inputs is removed. We show that the proposed DAT algorithms can be employed to solve the DRFFC problem. This is an attempt on the applications of DAT algorithms to achieve distributed control; existing works most use DAT as distributed estimation algorithms. For single-integrator, double-integrator, higher-order linear dynamics, we derive the corresponding DRFFC algorithms from the DAT algorithm. Compared with existing DRFFC algorithms, the DAT-based DRFFC algorithms do not require the desired region to have a regular shape and is capable of generating a much richer formation behavior. Numerical examples are also included to show the validity of the derived results.
AbstractList This paper studies the inherent connection between dynamic region-following formation control (DRFFC) and distributed average tracking (DAT). We propose a fixed-gain DAT algorithm with robustness to initialization errors for linear multiagent systems, which is capable of achieving DAT with a zero tracking error for a large class of reference signals. In the case that the fixed gain cannot be chosen properly, we present an adaptive control gain design, under which each agent simply chooses its own gain and the restriction on knowing the upper bounds on the reference signals and their inputs is removed. We show that the proposed DAT algorithms can be employed to solve the DRFFC problem. This is an attempt on the applications of DAT algorithms to achieve distributed control; existing works most use DAT as distributed estimation algorithms. For single-integrator, double-integrator, higher-order linear dynamics, we derive the corresponding DRFFC algorithms from the DAT algorithm. Compared with existing DRFFC algorithms, the DAT-based DRFFC algorithms do not require the desired region to have a regular shape and is capable of generating a much richer formation behavior. Numerical examples are also included to show the validity of the derived results.
This paper studies the inherent connection between dynamic region-following formation control (DRFFC) and distributed average tracking (DAT). We propose a fixed-gain DAT algorithm with robustness to initialization errors for linear multiagent systems, which is capable of achieving DAT with a zero tracking error for a large class of reference signals. In the case that the fixed gain cannot be chosen properly, we present an adaptive control gain design, under which each agent simply chooses its own gain and the restriction on knowing the upper bounds on the reference signals and their inputs is removed. We show that the proposed DAT algorithms can be employed to solve the DRFFC problem. This is an attempt on the applications of DAT algorithms to achieve distributed control; existing works most use DAT as distributed estimation algorithms. For single-integrator, double-integrator, higher-order linear dynamics, we derive the corresponding DRFFC algorithms from the DAT algorithm. Compared with existing DRFFC algorithms, the DAT-based DRFFC algorithms do not require the desired region to have a regular shape and is capable of generating a much richer formation behavior. Numerical examples are also included to show the validity of the derived results.This paper studies the inherent connection between dynamic region-following formation control (DRFFC) and distributed average tracking (DAT). We propose a fixed-gain DAT algorithm with robustness to initialization errors for linear multiagent systems, which is capable of achieving DAT with a zero tracking error for a large class of reference signals. In the case that the fixed gain cannot be chosen properly, we present an adaptive control gain design, under which each agent simply chooses its own gain and the restriction on knowing the upper bounds on the reference signals and their inputs is removed. We show that the proposed DAT algorithms can be employed to solve the DRFFC problem. This is an attempt on the applications of DAT algorithms to achieve distributed control; existing works most use DAT as distributed estimation algorithms. For single-integrator, double-integrator, higher-order linear dynamics, we derive the corresponding DRFFC algorithms from the DAT algorithm. Compared with existing DRFFC algorithms, the DAT-based DRFFC algorithms do not require the desired region to have a regular shape and is capable of generating a much richer formation behavior. Numerical examples are also included to show the validity of the derived results.
Author Chen, Fei
Ren, Wei
Author_xml – sequence: 1
  givenname: Fei
  orcidid: 0000-0003-1350-7081
  surname: Chen
  fullname: Chen, Fei
  email: feichen@xmu.edu.cn
  organization: Department of Automation, Xiamen University, Xiamen, China
– sequence: 2
  givenname: Wei
  surname: Ren
  fullname: Ren, Wei
  email: ren@ee.ucr.edu
  organization: Department of Electrical and Computer Engineering, University of California at Riverside, Riverside, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28678725$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rGzEQhkVJaT6aH1AKRdBLLutI2tXX0XHithAIFPfQk6rVjo3SXSnVahvy7yPHrg85VJcRw_NIw7yn6CjEAAh9oGRGKdGXq8XPqxkjVM6YpI1Q6g06YVSoijHJjw53IY_R-Tjek3JUaWn1Dh0zJaSSjJ-gX3O8iCGAyz4GfAX5ESDg66dgB-_wd9iUdrWMfR8ffdjgZUyDfUGLlVPssQ0dvvZjTr6dMnR4_heS3QBeJet-F-U9eru2_Qjn-3qGfixvVouv1e3dl2-L-W3l6kbnqu2kk0xwohnlXSM6RZq2aV3dEusst9By4EIyULTmVrLGacJpt9aliq5l9Rm62L37kOKfCcZsBj866HsbIE6joZoKSZTSvKCfX6H3cUqhTGcYlQ3fjiEK9WlPTe0AnXlIfrDpyfzbXQHoDnApjmOC9QGhxGwjMtuIzDYis4-oOPKV43x-WWhO1vf_NT_uTA8Ah5-k5lpwWj8Doeeczg
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TAC_2020_3046029
crossref_primary_10_3390_machines11020128
crossref_primary_10_1109_TASE_2024_3357527
crossref_primary_10_1109_TSMC_2019_2933034
crossref_primary_10_1002_asjc_2365
crossref_primary_10_1016_j_automatica_2024_111882
crossref_primary_10_1109_TCYB_2018_2873904
crossref_primary_10_1109_ACCESS_2023_3244911
crossref_primary_10_1109_TIV_2021_3123110
crossref_primary_10_1109_TAC_2022_3179219
crossref_primary_10_1109_TCYB_2019_2916563
crossref_primary_10_1109_TCYB_2022_3159250
crossref_primary_10_1109_TSMC_2024_3354035
crossref_primary_10_1049_iet_cta_2020_0502
crossref_primary_10_1016_j_ifacol_2022_05_004
crossref_primary_10_1177_0142331220908683
crossref_primary_10_1080_00207721_2024_2344042
crossref_primary_10_1016_j_ifacol_2020_12_269
crossref_primary_10_1109_TASE_2023_3283095
crossref_primary_10_1109_TNSE_2021_3115114
crossref_primary_10_1109_TAC_2020_2983108
crossref_primary_10_1109_TCYB_2019_2938398
crossref_primary_10_1109_TCYB_2021_3104044
crossref_primary_10_1109_TCYB_2018_2872806
crossref_primary_10_1109_TCSII_2020_3047823
crossref_primary_10_1109_TCYB_2018_2859352
crossref_primary_10_1109_TCYB_2022_3223894
crossref_primary_10_1109_TAC_2018_2840452
crossref_primary_10_1002_adc2_31
crossref_primary_10_1007_s11424_021_1218_6
crossref_primary_10_1109_TSMC_2023_3261347
crossref_primary_10_1109_TCYB_2018_2875559
crossref_primary_10_1109_TAC_2021_3060714
crossref_primary_10_1109_TCYB_2023_3312696
crossref_primary_10_1109_TCYB_2019_2931196
crossref_primary_10_1016_j_sysconle_2024_105776
crossref_primary_10_1109_TCYB_2022_3213597
crossref_primary_10_1016_j_ast_2019_105571
crossref_primary_10_1109_TCYB_2021_3062035
crossref_primary_10_1177_0142331219880048
crossref_primary_10_1109_TCYB_2020_2979614
crossref_primary_10_1016_j_sysconle_2024_105858
crossref_primary_10_1109_TCNS_2021_3078120
crossref_primary_10_1002_rnc_6220
crossref_primary_10_1016_j_jfranklin_2023_01_021
crossref_primary_10_1109_MCS_2019_2900783
crossref_primary_10_1109_TCYB_2019_2960605
Cites_doi 10.1016/j.automatica.2015.11.004
10.1109/CDC.2006.377078
10.1109/CDC.2010.5717485
10.1002/rnc.3486
10.1109/TCYB.2015.2514119
10.1016/j.ins.2015.06.005
10.1109/87.761053
10.1109/ACC.2008.4587141
10.1109/TAC.2012.2199176
10.1016/j.automatica.2009.10.021
10.1109/MCS.2008.929280
10.1109/CDC.2014.7040354
10.1002/047134608X.W8314
10.1109/TIE.2017.2701778
10.1109/TCNS.2015.2468991
10.1080/00207721.2016.1165896
10.1016/j.automatica.2014.03.017
10.1016/j.automatica.2010.03.006
10.1016/j.automatica.2016.09.005
10.1109/TAC.2004.841121
10.1109/TCSI.2013.2268091
10.1109/CDC.2002.1184307
10.1016/j.automatica.2012.06.031
10.1515/9781400831470
10.1016/j.automatica.2014.12.016
10.1016/j.automatica.2013.04.021
10.1109/TAC.2014.2337451
10.1016/j.automatica.2012.11.041
10.1016/j.robot.2014.08.018
10.1016/j.automatica.2016.07.028
10.1109/TIE.2016.2613929
10.1109/MCS.2008.919306
10.1007/978-1-4613-0163-9
10.1016/j.automatica.2016.02.029
10.1109/ROBOT.2009.5152422
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2017.2714688
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 1772
ExternalDocumentID 28678725
10_1109_TCYB_2017_2714688
7959651
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of Fujian Province
  grantid: 2017J01119
  funderid: 10.13039/501100003392
– fundername: 111 Project
  grantid: B17048
– fundername: National Science Foundation
  grantid: CMMI-1537729
  funderid: 10.13039/100000001
– fundername: State Key Laboratory of Intelligent Control and Decision of Complex Systems
– fundername: National Natural Science Foundation of China
  grantid: 61473240; 61528301
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-bd7c726509215d46d804b4bc3b0aca5aeb5e5672e8135a724c9051df9c906db23
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Sat Sep 27 19:05:38 EDT 2025
Sun Jun 29 16:17:13 EDT 2025
Wed Feb 19 02:42:31 EST 2025
Thu Apr 24 22:55:43 EDT 2025
Wed Oct 01 05:14:38 EDT 2025
Wed Aug 27 02:50:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-bd7c726509215d46d804b4bc3b0aca5aeb5e5672e8135a724c9051df9c906db23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1350-7081
PMID 28678725
PQID 2174526506
PQPubID 85422
PageCount 13
ParticipantIDs crossref_primary_10_1109_TCYB_2017_2714688
crossref_citationtrail_10_1109_TCYB_2017_2714688
proquest_miscellaneous_1916708895
pubmed_primary_28678725
ieee_primary_7959651
proquest_journals_2174526506
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref2
ref39
ref17
ref38
ref16
spanos (ref19) 2005
ref18
chen (ref1) 2013
lü (ref10) 2016; 64
ref24
wen (ref41) 2016
ref23
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
khalil (ref35) 2002
ref40
spanos (ref26) 2005
liu (ref25) 2013
References_xml – volume: 64
  start-page: 112
  year: 2016
  ident: ref10
  article-title: Nonsmooth leader-following formation control of nonidentical multi-agent systems with directed communication topologies
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.11.004
– ident: ref20
  doi: 10.1109/CDC.2006.377078
– ident: ref21
  doi: 10.1109/CDC.2010.5717485
– ident: ref31
  doi: 10.1002/rnc.3486
– ident: ref6
  doi: 10.1109/TCYB.2015.2514119
– ident: ref38
  doi: 10.1016/j.ins.2015.06.005
– ident: ref30
  doi: 10.1109/87.761053
– ident: ref36
  doi: 10.1109/ACC.2008.4587141
– ident: ref22
  doi: 10.1109/TAC.2012.2199176
– ident: ref24
  doi: 10.1016/j.automatica.2009.10.021
– ident: ref12
  doi: 10.1109/MCS.2008.929280
– ident: ref14
  doi: 10.1109/CDC.2014.7040354
– start-page: 99
  year: 2005
  ident: ref26
  article-title: Distributed sensor fusion using dynamic consensus
  publication-title: Proc 16th IFAC World Congr
– year: 2016
  ident: ref41
  article-title: Robust containment of uncertain linear multi-agent systems under adaptive protocols
  publication-title: Int J Robust Nonlin Control
– ident: ref4
  doi: 10.1002/047134608X.W8314
– ident: ref11
  doi: 10.1109/TIE.2017.2701778
– ident: ref3
  doi: 10.1109/TCNS.2015.2468991
– start-page: 6953
  year: 2013
  ident: ref1
  article-title: Robust distributed average tracking for coupled general linear systems
  publication-title: Proc Chin Control Conf
– ident: ref15
  doi: 10.1080/00207721.2016.1165896
– ident: ref39
  doi: 10.1016/j.automatica.2014.03.017
– ident: ref34
  doi: 10.1016/j.automatica.2010.03.006
– ident: ref28
  doi: 10.1016/j.automatica.2016.09.005
– ident: ref7
  doi: 10.1109/TAC.2004.841121
– ident: ref37
  doi: 10.1109/TCSI.2013.2268091
– ident: ref13
  doi: 10.1109/CDC.2002.1184307
– ident: ref27
  doi: 10.1016/j.automatica.2012.06.031
– ident: ref2
  doi: 10.1515/9781400831470
– ident: ref9
  doi: 10.1016/j.automatica.2014.12.016
– ident: ref40
  doi: 10.1016/j.automatica.2013.04.021
– start-page: 1
  year: 2013
  ident: ref25
  article-title: Distributed task migration for thermal hot spot reduction in many-core microprocessors
  publication-title: 10th IEEE Int ASIC Conf
– ident: ref23
  doi: 10.1109/TAC.2014.2337451
– ident: ref33
  doi: 10.1016/j.automatica.2012.11.041
– ident: ref16
  doi: 10.1016/j.robot.2014.08.018
– ident: ref17
  doi: 10.1016/j.automatica.2016.07.028
– ident: ref5
  doi: 10.1109/TIE.2016.2613929
– year: 2002
  ident: ref35
  publication-title: Nonlinear Systems
– ident: ref32
  doi: 10.1109/MCS.2008.919306
– ident: ref29
  doi: 10.1007/978-1-4613-0163-9
– ident: ref8
  doi: 10.1016/j.automatica.2016.02.029
– ident: ref18
  doi: 10.1109/ROBOT.2009.5152422
– start-page: 1
  year: 2005
  ident: ref19
  article-title: Dynamic consensus on mobile networks
  publication-title: Proc 16th IFAC World Congr
SSID ssj0000816898
Score 2.4444928
Snippet This paper studies the inherent connection between dynamic region-following formation control (DRFFC) and distributed average tracking (DAT). We propose a...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1760
SubjectTerms Adaptive control
Algorithm design and analysis
Algorithms
Distributed average tracking (DAT)
dynamic region-following formation control (DRFFC)
Heuristic algorithms
Linear systems
Multi-agent systems
multiagent system
Multiagent systems
Reference signals
Robot sensing systems
Robustness
Robustness (mathematics)
Tracking control
Tracking errors
Upper bounds
Title A Connection Between Dynamic Region-Following Formation Control and Distributed Average Tracking
URI https://ieeexplore.ieee.org/document/7959651
https://www.ncbi.nlm.nih.gov/pubmed/28678725
https://www.proquest.com/docview/2174526506
https://www.proquest.com/docview/1916708895
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJy5QSoG0UBmph4LIkocfyXF5rBASPSCQ6Cn4tRdQFnV3Vam_nhnHiVDVVj3FUuzE0cxkxvY38wF8QZUwuaWM5dpPUz61OjW5q1MhtNS8NtLWlI18801e3fPrB_GwAidDLoz3PoDP_Iia4SzfzeyStspOiRdbUr70qqpkl6s17KcEAolAfVtgI8WoQsVDzDyrT-_Ov58RjkuNCkXJRkTTV1T4o1bEkf3GIwWKlb9Hm8HrTDbhpp9vBzZ5Gi0XZmR__VbK8X8_6B1sxPCTjTt92YIV376HrWjgc_Y1VqE-2obHMQsgmJD3wM46OBe76Ajs2a0nHHM6QS2a_UTvxyZ9EiSNIvA7061jF1SWlxi1vGNjNBr8eTH0jpb25z_A_eTy7vwqjXQMqS15vUiNU1YVVHEPwwTHpasybrixpcm01UJ7I7yQqvBVXgqtCm6p9peb1ngl1qpyB9baWev3gBXcUHXkymF4yqVwWlrr0YlitFDaLK8SyHqRNDbWKifKjOcmrFmyuiGBNiTQJgo0geNhyEtXqONfnbdJGEPHKIcE9nu5N9GU5w2t2YhDIJMJHA630QjpZEW3fracN7jolYoAYyKB3U5fhmf3avbxz-_8BOs4s6pDn-3D2uLH0h9gnLMwn4OCvwJoifVk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAXoJRHoICROAAi2zz8SI7bltUC3R7QVion49deQFnE7gqJX8-M40QIAeIUS7ETRzOTGdvfzAfwHFXClo4yltuwyvnKmdyWvs2FMNLw1krXUjby4kLOL_m7K3G1B6_HXJgQQgSfhQk141m-X7sdbZUdEy-2pHzpa4JzLvpsrXFHJVJIRPLbChs5xhUqHWOWRXu8PP14QkguNakUpRsRUV_V4K9aEUv2Lz4pkqz8Pd6Mfmd2CxbDjHu4yefJbmsn7sdvxRz_95Nuw80UgLJprzEHsBe6O3CQTHzDXqQ61C8P4dOURRhMzHxgJz2gi531FPbsQyAkcz5DPVp_R__HZkMaJI0i-DsznWdnVJiXOLWCZ1M0G_x9MfSPjnbo78Ll7M3ydJ4nQobc1bzd5tYrpyqquYeBgufSNwW33LraFsYZYYIVQUhVhaashVEVd1T9y69avBJvVX0P9rt1Fx4Aq7il-siNxwCVS-GNdC6gG8V4oXZF2WRQDCLRLlUrJ9KMLzquWopWk0A1CVQngWbwahzytS_V8a_OhySMsWOSQwZHg9x1MuaNplUbsQgUMoNn4200QzpbMV1Y7zYal71SEWRMZHC_15fx2YOaPfzzO5_C9flyca7P3168fwQ3cJZNj0U7gv3tt114jFHP1j6Jyv4TaT74sQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Connection+Between+Dynamic+Region-Following+Formation+Control+and+Distributed+Average+Tracking&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Chen%2C+Fei&rft.au=Ren%2C+Wei&rft.date=2018-06-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=48&rft.issue=6&rft.spage=1760&rft_id=info:doi/10.1109%2FTCYB.2017.2714688&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon