Key principal components with recursive local outlier factor for multimode chemical process monitoring

•A novel multimode process monitoring method (KPCs-RLOF) is developed.•A novel mode identification approach is proposed on the basis of the sequential information in the time scale and the density information in the spatial scale.•A new strategy named cumulative percent expression is developed to se...

Full description

Saved in:
Bibliographic Details
Published inJournal of process control Vol. 47; pp. 136 - 149
Main Authors Song, Bing, Tan, Shuai, Shi, Hongbo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2016
Subjects
Online AccessGet full text
ISSN0959-1524
1873-2771
DOI10.1016/j.jprocont.2016.09.006

Cover

Abstract •A novel multimode process monitoring method (KPCs-RLOF) is developed.•A novel mode identification approach is proposed on the basis of the sequential information in the time scale and the density information in the spatial scale.•A new strategy named cumulative percent expression is developed to select key PCs. Owing to various manufacturing strategies and demands of markets, chemical processes often involve multiple operating modes. How to identify mode from multimode process data collected under both stable and transitional modes is an important issue. This paper proposes a novel mode identification algorithm-recursive local outlier factor (RLOF) based on the sequential information in the time scale and the density information in the spatial scale. In this algorithm, not only the number of modes does not need to be determined in advance, but also details of mode switching can be acquired. In addition, the principal components (PCs) chosen by the variance of overall dataset in principal component analysis (PCA) cannot guarantee that all variables express information as completely as possible. Using the defined cumulative percent expression (CPE), this study chooses key PCs (KPCs) according to each variable. Moreover, fault diagnosis is realized via the contribution of every variable to key PCs. Finally, the monitoring performance is evaluated under the Tennessee Eastman (TE) benchmark and the continuous stirred tank reactor (CSTR) process.
AbstractList •A novel multimode process monitoring method (KPCs-RLOF) is developed.•A novel mode identification approach is proposed on the basis of the sequential information in the time scale and the density information in the spatial scale.•A new strategy named cumulative percent expression is developed to select key PCs. Owing to various manufacturing strategies and demands of markets, chemical processes often involve multiple operating modes. How to identify mode from multimode process data collected under both stable and transitional modes is an important issue. This paper proposes a novel mode identification algorithm-recursive local outlier factor (RLOF) based on the sequential information in the time scale and the density information in the spatial scale. In this algorithm, not only the number of modes does not need to be determined in advance, but also details of mode switching can be acquired. In addition, the principal components (PCs) chosen by the variance of overall dataset in principal component analysis (PCA) cannot guarantee that all variables express information as completely as possible. Using the defined cumulative percent expression (CPE), this study chooses key PCs (KPCs) according to each variable. Moreover, fault diagnosis is realized via the contribution of every variable to key PCs. Finally, the monitoring performance is evaluated under the Tennessee Eastman (TE) benchmark and the continuous stirred tank reactor (CSTR) process.
Author Shi, Hongbo
Tan, Shuai
Song, Bing
Author_xml – sequence: 1
  givenname: Bing
  surname: Song
  fullname: Song, Bing
– sequence: 2
  givenname: Shuai
  surname: Tan
  fullname: Tan, Shuai
– sequence: 3
  givenname: Hongbo
  surname: Shi
  fullname: Shi, Hongbo
  email: hbshi@ecust.edu.cn
BookMark eNqFkN1KAzEQhYMo2FZfQfYFdp3sbwNeKMU_LHij1yE7O7Epu5uSpJW-vSnVG296MRyGmXOY-absfLQjMXbDIePA69t1tt44i3YMWR77DEQGUJ-xCZ83RZo3DT9nExCVSHmVl5ds6v0aAIomrydMv9E-2TgzotmoPkE7bGL6GHzybcIqcYRb582Okt5inNtt6A25RCsMNkqsYdsHM9iOElzRYA5bh3PI-2Swo4lrZvy6Yhda9Z6uf3XGPp8ePxYv6fL9-XXxsEyxKEVI23lRt5UgBVQWotUVllxr3TZzIXJOlS67qoEWoCQU0CpsUJVCg-AiLzqFxYzdHXPRWe8daYkmqGAiHKdMLznIAzO5ln_M5IGZBCEjs2iv_9kjmkG5_Wnj_dFI8bldJCQ9GhqROhMRBtlZcyriB9qikWU
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2965623
crossref_primary_10_1002_cjce_24494
crossref_primary_10_1021_acs_iecr_2c03674
crossref_primary_10_3390_en15176146
crossref_primary_10_1109_TCST_2023_3287793
crossref_primary_10_1109_TIE_2018_2868316
crossref_primary_10_1002_cjce_23778
crossref_primary_10_1002_cjce_23559
crossref_primary_10_1016_j_jprocont_2020_03_006
crossref_primary_10_1021_acs_iecr_9b05600
crossref_primary_10_1016_j_isatra_2020_06_008
crossref_primary_10_1515_revce_2017_0046
crossref_primary_10_1016_j_chemolab_2019_03_012
crossref_primary_10_1016_j_ifacol_2018_09_320
crossref_primary_10_1021_acs_iecr_7b02981
crossref_primary_10_1007_s11771_018_3961_y
crossref_primary_10_1177_0020294019858103
crossref_primary_10_1016_j_jprocont_2018_08_009
crossref_primary_10_1007_s42452_022_05076_y
crossref_primary_10_1002_cem_3048
crossref_primary_10_1155_2024_5564380
crossref_primary_10_1109_TIM_2023_3318673
crossref_primary_10_1016_j_conengprac_2020_104572
crossref_primary_10_1016_j_jprocont_2022_11_011
crossref_primary_10_1016_j_jprocont_2021_05_007
crossref_primary_10_1155_2021_5517062
crossref_primary_10_1016_j_ces_2022_117556
crossref_primary_10_1016_j_jprocont_2023_103052
crossref_primary_10_1109_TIE_2018_2801804
crossref_primary_10_1016_j_isatra_2018_07_038
crossref_primary_10_1155_2017_3583610
Cites_doi 10.1016/j.eswa.2007.11.018
10.1016/j.chemolab.2011.10.013
10.1016/j.chemolab.2014.01.009
10.1016/S0952-1976(01)00032-X
10.1016/j.ces.2012.02.022
10.1016/j.conengprac.2010.12.005
10.1002/aic.14282
10.1021/ie300203u
10.1021/ie504380c
10.1016/j.jprocont.2011.06.004
10.1016/j.jprocont.2013.09.017
10.1016/0098-1354(93)80018-I
10.1002/aic.690470115
10.1016/j.chemolab.2013.06.004
10.1016/j.ces.2014.10.029
10.1016/j.compchemeng.2006.09.004
10.1002/cem.1262
10.1016/j.ces.2011.10.011
10.1021/ie202720y
10.1016/j.jprocont.2014.04.001
10.1002/aic.690440712
10.1016/S0169-7439(99)00061-1
10.1016/S0169-7439(03)00063-7
10.1016/j.ces.2003.09.012
10.1021/ie502344q
10.1016/j.ces.2003.12.003
10.1016/j.ces.2011.07.001
10.1016/j.jprocont.2015.12.002
10.1016/j.jprocont.2013.06.010
10.1002/aic.10568
10.1016/j.chemolab.2013.12.003
10.1016/j.chemolab.2014.03.013
10.1016/S0959-1524(00)00008-1
10.1021/ie102048f
10.1002/aic.12200
10.1016/j.conengprac.2008.04.004
10.1016/j.jprocont.2010.07.002
10.1002/aic.11617
10.1021/ie0497893
10.1016/j.chemolab.2012.05.010
10.1021/acs.iecr.5b00373
10.1016/j.jprocont.2011.08.002
10.1002/aic.14475
10.1016/S0959-1524(99)00043-8
10.1016/j.jprocont.2013.09.019
10.1016/j.chemolab.2014.09.019
10.1016/0098-1354(94)00043-N
10.1002/aic.11546
10.1002/aic.14335
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jprocont.2016.09.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-2771
EndPage 149
ExternalDocumentID 10_1016_j_jprocont_2016_09_006
S0959152416301202
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX7
LY7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
UNMZH
WUQ
XFK
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c349t-b836b59ea0e439bf5c41fffb789921e5f4d570b004ec90bac7ca49f091923dac3
IEDL.DBID .~1
ISSN 0959-1524
IngestDate Wed Oct 01 03:56:20 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Fri Feb 23 02:16:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multimode process monitoring
Recursive local outlier factor
Key principal components
Cumulative percent expression
Principal component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-b836b59ea0e439bf5c41fffb789921e5f4d570b004ec90bac7ca49f091923dac3
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_jprocont_2016_09_006
crossref_primary_10_1016_j_jprocont_2016_09_006
elsevier_sciencedirect_doi_10_1016_j_jprocont_2016_09_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of process control
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhao, Wang, Qin, Gao (bib0140) 2015; 54
Sebzalli, Wang (bib0085) 2001; 14
Song, Ma, Shi (bib0045) 2014; 135
Ma, Hu, Shi (bib0035) 2012; 118
Ge, Gao, Song (bib0135) 2011; 66
Zhao, Sun (bib0230) 2013; 23
Ge, Song (bib0040) 2008; 16
Majid, Taylor, Chen, Stam, Mulder, Young (bib0155) 2011; 19
Zhao, Zhang, Xu (bib0125) 2004; 43
Lee, Yoo, Choi, Vanrolleghem, Lee (bib0160) 2004; 59
Rashid, Yu (bib0065) 2012; 51
Zhang, Wang, Tan, Wang, Chang (bib0105) 2015; 541
Bakshi (bib0165) 1998; 44
Tong, Farra, Palazoglu, Yan (bib0100) 2014; 60
Zhu, Ge, Song (bib0075) 2015; 122
Togkalidou, Braatz, Johnson, Davidson, Andrews (bib0190) 2001; 47
Zhu, Song, Palazoglu (bib0095) 2012; 22
Lu, Yang, Gao, Wang (bib0225) 2004; 59
Xie, Shi (bib0055) 2012; 51
Tan, Wang, Peng, Chang, Wang (bib0120) 2012; 51
Downs, Vogel (bib0240) 1993; 17
Song, Shi, Ma, Wang (bib0110) 2014; 53
Zhang, Qin (bib0215) 2008; 54
Yoon, MacGregor (bib0245) 2001; 11
Lee, Kang, Kang (bib0205) 2011; 21
Ge, Song (bib0005) 2010; 56
Lu, Yao, Gao, Wang (bib0025) 2005; 51
Tamura, Tsujita (bib0185) 2007; 31
Yu (bib0050) 2011; 68
Zhao (bib0145) 2014; 60
Chen, Wang (bib0080) 2009; 36
Ma, Shi, Ma, Wang (bib0070) 2013; 127
Tong, Palazoglu, Yan (bib0090) 2013; 23
Wang, Tan, Peng, Chang (bib0115) 2012; 110
Jiang, Yan (bib0195) 2014; 60
Dobos, Abonyi (bib0150) 2012; 75
Ricker (bib0235) 1995; 19
Kim, Lee (bib0170) 2003; 67
Chiang, Russell, Braatz (bib0200) 2000; 50
Zhao, Gao (bib0220) 2014; 133
Ma, Song, Shi, Yang (bib0060) 2014; 139
Yao, Chen, Gao (bib0030) 2010; 20
Ge, Song (bib0020) 2013; 23
Ge, Song (bib0130) 2009; 23
Camacho, Ferrer (bib0180) 2014; 131
Qin, Dunia (bib0175) 2000; 10
Zhao (bib0015) 2014; 24
Zhao, Wang (bib0210) 2016; 38
Zhang, Qin (bib0010) 2008; 54
Zhao (10.1016/j.jprocont.2016.09.006_bib0210) 2016; 38
Jiang (10.1016/j.jprocont.2016.09.006_bib0195) 2014; 60
Rashid (10.1016/j.jprocont.2016.09.006_bib0065) 2012; 51
Dobos (10.1016/j.jprocont.2016.09.006_bib0150) 2012; 75
Bakshi (10.1016/j.jprocont.2016.09.006_bib0165) 1998; 44
Yu (10.1016/j.jprocont.2016.09.006_bib0050) 2011; 68
Tamura (10.1016/j.jprocont.2016.09.006_bib0185) 2007; 31
Sebzalli (10.1016/j.jprocont.2016.09.006_bib0085) 2001; 14
Downs (10.1016/j.jprocont.2016.09.006_bib0240) 1993; 17
Zhu (10.1016/j.jprocont.2016.09.006_bib0095) 2012; 22
Song (10.1016/j.jprocont.2016.09.006_bib0045) 2014; 135
Chiang (10.1016/j.jprocont.2016.09.006_bib0200) 2000; 50
Tan (10.1016/j.jprocont.2016.09.006_bib0120) 2012; 51
Lu (10.1016/j.jprocont.2016.09.006_bib0225) 2004; 59
Ma (10.1016/j.jprocont.2016.09.006_bib0035) 2012; 118
Tong (10.1016/j.jprocont.2016.09.006_bib0090) 2013; 23
Zhang (10.1016/j.jprocont.2016.09.006_bib0105) 2015; 541
Ge (10.1016/j.jprocont.2016.09.006_bib0130) 2009; 23
Xie (10.1016/j.jprocont.2016.09.006_bib0055) 2012; 51
Lee (10.1016/j.jprocont.2016.09.006_bib0160) 2004; 59
Ricker (10.1016/j.jprocont.2016.09.006_bib0235) 1995; 19
Ma (10.1016/j.jprocont.2016.09.006_bib0060) 2014; 139
Zhao (10.1016/j.jprocont.2016.09.006_bib0220) 2014; 133
Chen (10.1016/j.jprocont.2016.09.006_bib0080) 2009; 36
Zhao (10.1016/j.jprocont.2016.09.006_bib0125) 2004; 43
Zhao (10.1016/j.jprocont.2016.09.006_bib0145) 2014; 60
Majid (10.1016/j.jprocont.2016.09.006_bib0155) 2011; 19
Zhao (10.1016/j.jprocont.2016.09.006_bib0015) 2014; 24
Lu (10.1016/j.jprocont.2016.09.006_bib0025) 2005; 51
Tong (10.1016/j.jprocont.2016.09.006_bib0100) 2014; 60
Zhao (10.1016/j.jprocont.2016.09.006_bib0140) 2015; 54
Ge (10.1016/j.jprocont.2016.09.006_bib0135) 2011; 66
Togkalidou (10.1016/j.jprocont.2016.09.006_bib0190) 2001; 47
Zhang (10.1016/j.jprocont.2016.09.006_bib0010) 2008; 54
Ma (10.1016/j.jprocont.2016.09.006_bib0070) 2013; 127
Ge (10.1016/j.jprocont.2016.09.006_bib0040) 2008; 16
Song (10.1016/j.jprocont.2016.09.006_bib0110) 2014; 53
Zhao (10.1016/j.jprocont.2016.09.006_bib0230) 2013; 23
Yao (10.1016/j.jprocont.2016.09.006_bib0030) 2010; 20
Lee (10.1016/j.jprocont.2016.09.006_bib0205) 2011; 21
Ge (10.1016/j.jprocont.2016.09.006_bib0020) 2013; 23
Kim (10.1016/j.jprocont.2016.09.006_bib0170) 2003; 67
Ge (10.1016/j.jprocont.2016.09.006_bib0005) 2010; 56
Zhang (10.1016/j.jprocont.2016.09.006_bib0215) 2008; 54
Yoon (10.1016/j.jprocont.2016.09.006_bib0245) 2001; 11
Camacho (10.1016/j.jprocont.2016.09.006_bib0180) 2014; 131
Zhu (10.1016/j.jprocont.2016.09.006_bib0075) 2015; 122
Wang (10.1016/j.jprocont.2016.09.006_bib0115) 2012; 110
Qin (10.1016/j.jprocont.2016.09.006_bib0175) 2000; 10
References_xml – volume: 23
  start-page: 1497
  year: 2013
  end-page: 1503
  ident: bib0090
  article-title: An adaptive multimode process monitoring strategy based on modeclustering and mode unfolding
  publication-title: J. Process Control
– volume: 10
  start-page: 245
  year: 2000
  end-page: 250
  ident: bib0175
  article-title: Determining the number of principal components for best reconstruction
  publication-title: J. Process Control
– volume: 75
  start-page: 96
  year: 2012
  end-page: 105
  ident: bib0150
  article-title: Online detection of homogeneous operation ranges by dynamic principal component analysis based time series segmentation
  publication-title: Chem. Eng. Sci.
– volume: 59
  start-page: 223
  year: 2004
  end-page: 234
  ident: bib0160
  article-title: Nonlinear process monitoring using kernel principal component analysis
  publication-title: Chem. Eng. Sci.
– volume: 17
  start-page: 245
  year: 1993
  end-page: 255
  ident: bib0240
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
– volume: 23
  start-page: 1090
  year: 2013
  end-page: 1096
  ident: bib0020
  article-title: Bagging support vector data description model for batch process monitoring
  publication-title: J. Process Control
– volume: 131
  start-page: 37
  year: 2014
  end-page: 50
  ident: bib0180
  article-title: Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: practical aspects
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 54
  start-page: 2404
  year: 2008
  end-page: 2412
  ident: bib0010
  article-title: Adaptive actuator/component fault compensation for nonlinear systems
  publication-title: AIChE J.
– volume: 60
  start-page: 949
  year: 2014
  end-page: 965
  ident: bib0195
  article-title: Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring
  publication-title: AIChE J.
– volume: 110
  start-page: 144
  year: 2012
  end-page: 155
  ident: bib0115
  article-title: Process monitoring based on mode identification for multi-mode process with transitions
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 133
  start-page: 1
  year: 2014
  end-page: 16
  ident: bib0220
  article-title: Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 21
  start-page: 1011
  year: 2011
  end-page: 1021
  ident: bib0205
  article-title: Integrating independent component analysis and local outlier factor for plant-wide process monitoring
  publication-title: J. Process Control
– volume: 56
  start-page: 2838
  year: 2010
  end-page: 2849
  ident: bib0005
  article-title: Mixture Bayesian regularization method of PPCA for multimode process monitoring
  publication-title: AIChE J.
– volume: 43
  start-page: 7025
  year: 2004
  end-page: 7035
  ident: bib0125
  article-title: Monitoring of processes with multiple operation modes through multiple principle component analysis models
  publication-title: Ind. Eng. Chem. Res.
– volume: 47
  start-page: 160
  year: 2001
  end-page: 168
  ident: bib0190
  article-title: Experimental design and inferential modeling in pharmaceutical crystallization
  publication-title: AIChE J.
– volume: 16
  start-page: 1427
  year: 2008
  end-page: 1437
  ident: bib0040
  article-title: Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
  publication-title: Control Eng. Pract.
– volume: 22
  start-page: 247
  year: 2012
  end-page: 262
  ident: bib0095
  article-title: Process pattern construction and multi-mode monitoring
  publication-title: J. Process Control
– volume: 54
  start-page: 3204
  year: 2008
  end-page: 3220
  ident: bib0215
  article-title: Improved nonlinear fault detection technique and statistical analysis
  publication-title: AIChE J.
– volume: 20
  start-page: 1188
  year: 2010
  end-page: 1197
  ident: bib0030
  article-title: Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information
  publication-title: J. Process Control
– volume: 60
  start-page: 2805
  year: 2014
  end-page: 2814
  ident: bib0100
  article-title: Fault detection and isolation in hybrid process systems using a combined data-driven and observer-design methodology
  publication-title: AIChE J.
– volume: 23
  start-page: 1515
  year: 2013
  end-page: 1527
  ident: bib0230
  article-title: Comprehensive subspace decomposition and isolation of principal reconstruction directions for online fault diagnosis
  publication-title: J. Process Control
– volume: 11
  start-page: 387
  year: 2001
  end-page: 400
  ident: bib0245
  article-title: Fault diagnosis with multivariate statistical models part I: using steady state fault signatures
  publication-title: J. Process Control
– volume: 60
  start-page: 559
  year: 2014
  end-page: 573
  ident: bib0145
  article-title: Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring
  publication-title: AIChE J.
– volume: 51
  start-page: 5506
  year: 2012
  end-page: 5514
  ident: bib0065
  article-title: Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection
  publication-title: Ind. Eng. Chem. Res.
– volume: 135
  start-page: 17
  year: 2014
  end-page: 30
  ident: bib0045
  article-title: Multimode process monitoring using improved dynamic neighborhood preserving embedding
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 51
  start-page: 3300
  year: 2005
  end-page: 3304
  ident: bib0025
  article-title: Two-dimentional dynamic PCA for batch process monitoring
  publication-title: AIChE J.
– volume: 51
  start-page: 5497
  year: 2012
  end-page: 5505
  ident: bib0055
  article-title: Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models
  publication-title: Ind. Eng. Chem. Res.
– volume: 66
  start-page: 5173
  year: 2011
  end-page: 5183
  ident: bib0135
  article-title: Two-dimensional Bayesian monitoring method for nonlinear multimode processes
  publication-title: Chem. Eng. Sci.
– volume: 127
  start-page: 89
  year: 2013
  end-page: 101
  ident: bib0070
  article-title: Dynamic process monitoring using adaptive local outlier factor
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 67
  start-page: 109
  year: 2003
  end-page: 123
  ident: bib0170
  article-title: Process monitoring based on probabilistic PCA
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 122
  start-page: 573
  year: 2015
  end-page: 584
  ident: bib0075
  article-title: Robust supervised probabilistic principal component analysis model for soft sensing of key process variables
  publication-title: Chem. Eng. Sci.
– volume: 54
  start-page: 3154
  year: 2015
  end-page: 3166
  ident: bib0140
  article-title: Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitorin
  publication-title: Ind. Eng. Chem. Res.
– volume: 14
  start-page: 607
  year: 2001
  end-page: 616
  ident: bib0085
  article-title: Knowledge discovery from process operational data using PCA and fuzzy clustering
  publication-title: Eng. Appl. Artif. Intell.
– volume: 139
  start-page: 84
  year: 2014
  end-page: 96
  ident: bib0060
  article-title: Neighborhood based global coordination for multimode process monitoring
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 24
  start-page: 856
  year: 2014
  end-page: 870
  ident: bib0015
  article-title: Phase analysis and statistical modeling with limited batches for multimode and multiphase process monitoring
  publication-title: J. Process Control
– volume: 51
  start-page: 374
  year: 2012
  end-page: 388
  ident: bib0120
  article-title: Multimode process monitoring based on mode identification
  publication-title: Ind. Eng. Chem. Res.
– volume: 23
  start-page: 636
  year: 2009
  end-page: 650
  ident: bib0130
  article-title: Multimode process monitoring based on Bayesian method
  publication-title: J. Chemom.
– volume: 44
  start-page: 1596
  year: 1998
  end-page: 1610
  ident: bib0165
  article-title: Multiscale PCA with application to multivariate statistical process monitoring
  publication-title: AIChE J.
– volume: 38
  start-page: 31
  year: 2016
  end-page: 41
  ident: bib0210
  article-title: Efficient faulty variable selection and parsimonious reconstructionmodelling for fault isolation
  publication-title: J. Process Control
– volume: 59
  start-page: 855
  year: 2004
  end-page: 864
  ident: bib0225
  article-title: Multirate dynamic inferential modeling for multivariable processes
  publication-title: Chem. Eng. Sci.
– volume: 541
  start-page: 11866
  year: 2015
  end-page: 11880
  ident: bib0105
  article-title: Novel monitoring strategy combining the advantages of the multiple modeling strategy and Gaussian mixture model for multimode processes
  publication-title: Ind. Eng. Chem. Res.
– volume: 118
  start-page: 287
  year: 2012
  end-page: 300
  ident: bib0035
  article-title: A novel local neighborhood standardization strategy and its application in fault detection of multimode processes
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 53
  start-page: 16453
  year: 2014
  end-page: 16464
  ident: bib0110
  article-title: Multi-subspace principal component analysis with local outlier factor for multimode process monitoring
  publication-title: Ind. Eng. Chem. Res.
– volume: 68
  start-page: 506
  year: 2011
  end-page: 519
  ident: bib0050
  article-title: A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
  publication-title: Chem. Eng. Sci.
– volume: 36
  start-page: 1300
  year: 2009
  end-page: 1307
  ident: bib0080
  article-title: A fuzzy c-means clustering-based fragile watermarking scheme for image authentication
  publication-title: Expert Syst. Appl.
– volume: 19
  start-page: 367
  year: 2011
  end-page: 379
  ident: bib0155
  article-title: Aluminium process fault detection by multiway principal component analysis
  publication-title: Control Eng. Pract.
– volume: 31
  start-page: 1035
  year: 2007
  end-page: 1046
  ident: bib0185
  article-title: A study on the number of principal components and sensitivity of fault detection using PCA
  publication-title: Comput. Chem. Eng.
– volume: 50
  start-page: 243
  year: 2000
  end-page: 252
  ident: bib0200
  article-title: Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 19
  start-page: 949
  year: 1995
  end-page: 959
  ident: bib0235
  article-title: Optimal steady-state operation of the Tennessee Eastman challenge process
  publication-title: Comput. Chem. Eng.
– volume: 36
  start-page: 1300
  year: 2009
  ident: 10.1016/j.jprocont.2016.09.006_bib0080
  article-title: A fuzzy c-means clustering-based fragile watermarking scheme for image authentication
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.11.018
– volume: 110
  start-page: 144
  year: 2012
  ident: 10.1016/j.jprocont.2016.09.006_bib0115
  article-title: Process monitoring based on mode identification for multi-mode process with transitions
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2011.10.013
– volume: 133
  start-page: 1
  year: 2014
  ident: 10.1016/j.jprocont.2016.09.006_bib0220
  article-title: Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2014.01.009
– volume: 14
  start-page: 607
  year: 2001
  ident: 10.1016/j.jprocont.2016.09.006_bib0085
  article-title: Knowledge discovery from process operational data using PCA and fuzzy clustering
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/S0952-1976(01)00032-X
– volume: 75
  start-page: 96
  year: 2012
  ident: 10.1016/j.jprocont.2016.09.006_bib0150
  article-title: Online detection of homogeneous operation ranges by dynamic principal component analysis based time series segmentation
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.02.022
– volume: 19
  start-page: 367
  year: 2011
  ident: 10.1016/j.jprocont.2016.09.006_bib0155
  article-title: Aluminium process fault detection by multiway principal component analysis
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2010.12.005
– volume: 60
  start-page: 559
  year: 2014
  ident: 10.1016/j.jprocont.2016.09.006_bib0145
  article-title: Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring
  publication-title: AIChE J.
  doi: 10.1002/aic.14282
– volume: 51
  start-page: 5506
  year: 2012
  ident: 10.1016/j.jprocont.2016.09.006_bib0065
  article-title: Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie300203u
– volume: 54
  start-page: 3154
  year: 2015
  ident: 10.1016/j.jprocont.2016.09.006_bib0140
  article-title: Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitorin
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie504380c
– volume: 21
  start-page: 1011
  year: 2011
  ident: 10.1016/j.jprocont.2016.09.006_bib0205
  article-title: Integrating independent component analysis and local outlier factor for plant-wide process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2011.06.004
– volume: 23
  start-page: 1497
  year: 2013
  ident: 10.1016/j.jprocont.2016.09.006_bib0090
  article-title: An adaptive multimode process monitoring strategy based on modeclustering and mode unfolding
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.09.017
– volume: 17
  start-page: 245
  year: 1993
  ident: 10.1016/j.jprocont.2016.09.006_bib0240
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(93)80018-I
– volume: 47
  start-page: 160
  year: 2001
  ident: 10.1016/j.jprocont.2016.09.006_bib0190
  article-title: Experimental design and inferential modeling in pharmaceutical crystallization
  publication-title: AIChE J.
  doi: 10.1002/aic.690470115
– volume: 127
  start-page: 89
  year: 2013
  ident: 10.1016/j.jprocont.2016.09.006_bib0070
  article-title: Dynamic process monitoring using adaptive local outlier factor
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2013.06.004
– volume: 122
  start-page: 573
  year: 2015
  ident: 10.1016/j.jprocont.2016.09.006_bib0075
  article-title: Robust supervised probabilistic principal component analysis model for soft sensing of key process variables
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.10.029
– volume: 31
  start-page: 1035
  year: 2007
  ident: 10.1016/j.jprocont.2016.09.006_bib0185
  article-title: A study on the number of principal components and sensitivity of fault detection using PCA
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2006.09.004
– volume: 23
  start-page: 636
  year: 2009
  ident: 10.1016/j.jprocont.2016.09.006_bib0130
  article-title: Multimode process monitoring based on Bayesian method
  publication-title: J. Chemom.
  doi: 10.1002/cem.1262
– volume: 68
  start-page: 506
  year: 2011
  ident: 10.1016/j.jprocont.2016.09.006_bib0050
  article-title: A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.10.011
– volume: 51
  start-page: 5497
  year: 2012
  ident: 10.1016/j.jprocont.2016.09.006_bib0055
  article-title: Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie202720y
– volume: 24
  start-page: 856
  year: 2014
  ident: 10.1016/j.jprocont.2016.09.006_bib0015
  article-title: Phase analysis and statistical modeling with limited batches for multimode and multiphase process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2014.04.001
– volume: 44
  start-page: 1596
  year: 1998
  ident: 10.1016/j.jprocont.2016.09.006_bib0165
  article-title: Multiscale PCA with application to multivariate statistical process monitoring
  publication-title: AIChE J.
  doi: 10.1002/aic.690440712
– volume: 50
  start-page: 243
  year: 2000
  ident: 10.1016/j.jprocont.2016.09.006_bib0200
  article-title: Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(99)00061-1
– volume: 67
  start-page: 109
  year: 2003
  ident: 10.1016/j.jprocont.2016.09.006_bib0170
  article-title: Process monitoring based on probabilistic PCA
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(03)00063-7
– volume: 59
  start-page: 223
  year: 2004
  ident: 10.1016/j.jprocont.2016.09.006_bib0160
  article-title: Nonlinear process monitoring using kernel principal component analysis
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2003.09.012
– volume: 53
  start-page: 16453
  year: 2014
  ident: 10.1016/j.jprocont.2016.09.006_bib0110
  article-title: Multi-subspace principal component analysis with local outlier factor for multimode process monitoring
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie502344q
– volume: 59
  start-page: 855
  year: 2004
  ident: 10.1016/j.jprocont.2016.09.006_bib0225
  article-title: Multirate dynamic inferential modeling for multivariable processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2003.12.003
– volume: 66
  start-page: 5173
  year: 2011
  ident: 10.1016/j.jprocont.2016.09.006_bib0135
  article-title: Two-dimensional Bayesian monitoring method for nonlinear multimode processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.07.001
– volume: 38
  start-page: 31
  year: 2016
  ident: 10.1016/j.jprocont.2016.09.006_bib0210
  article-title: Efficient faulty variable selection and parsimonious reconstructionmodelling for fault isolation
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2015.12.002
– volume: 23
  start-page: 1090
  year: 2013
  ident: 10.1016/j.jprocont.2016.09.006_bib0020
  article-title: Bagging support vector data description model for batch process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.06.010
– volume: 51
  start-page: 3300
  year: 2005
  ident: 10.1016/j.jprocont.2016.09.006_bib0025
  article-title: Two-dimentional dynamic PCA for batch process monitoring
  publication-title: AIChE J.
  doi: 10.1002/aic.10568
– volume: 131
  start-page: 37
  year: 2014
  ident: 10.1016/j.jprocont.2016.09.006_bib0180
  article-title: Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: practical aspects
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2013.12.003
– volume: 135
  start-page: 17
  year: 2014
  ident: 10.1016/j.jprocont.2016.09.006_bib0045
  article-title: Multimode process monitoring using improved dynamic neighborhood preserving embedding
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2014.03.013
– volume: 11
  start-page: 387
  year: 2001
  ident: 10.1016/j.jprocont.2016.09.006_bib0245
  article-title: Fault diagnosis with multivariate statistical models part I: using steady state fault signatures
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(00)00008-1
– volume: 51
  start-page: 374
  year: 2012
  ident: 10.1016/j.jprocont.2016.09.006_bib0120
  article-title: Multimode process monitoring based on mode identification
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie102048f
– volume: 56
  start-page: 2838
  year: 2010
  ident: 10.1016/j.jprocont.2016.09.006_bib0005
  article-title: Mixture Bayesian regularization method of PPCA for multimode process monitoring
  publication-title: AIChE J.
  doi: 10.1002/aic.12200
– volume: 16
  start-page: 1427
  year: 2008
  ident: 10.1016/j.jprocont.2016.09.006_bib0040
  article-title: Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2008.04.004
– volume: 20
  start-page: 1188
  year: 2010
  ident: 10.1016/j.jprocont.2016.09.006_bib0030
  article-title: Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2010.07.002
– volume: 54
  start-page: 3204
  year: 2008
  ident: 10.1016/j.jprocont.2016.09.006_bib0215
  article-title: Improved nonlinear fault detection technique and statistical analysis
  publication-title: AIChE J.
  doi: 10.1002/aic.11617
– volume: 43
  start-page: 7025
  year: 2004
  ident: 10.1016/j.jprocont.2016.09.006_bib0125
  article-title: Monitoring of processes with multiple operation modes through multiple principle component analysis models
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0497893
– volume: 118
  start-page: 287
  year: 2012
  ident: 10.1016/j.jprocont.2016.09.006_bib0035
  article-title: A novel local neighborhood standardization strategy and its application in fault detection of multimode processes
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2012.05.010
– volume: 541
  start-page: 11866
  year: 2015
  ident: 10.1016/j.jprocont.2016.09.006_bib0105
  article-title: Novel monitoring strategy combining the advantages of the multiple modeling strategy and Gaussian mixture model for multimode processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b00373
– volume: 22
  start-page: 247
  year: 2012
  ident: 10.1016/j.jprocont.2016.09.006_bib0095
  article-title: Process pattern construction and multi-mode monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2011.08.002
– volume: 60
  start-page: 2805
  year: 2014
  ident: 10.1016/j.jprocont.2016.09.006_bib0100
  article-title: Fault detection and isolation in hybrid process systems using a combined data-driven and observer-design methodology
  publication-title: AIChE J.
  doi: 10.1002/aic.14475
– volume: 10
  start-page: 245
  year: 2000
  ident: 10.1016/j.jprocont.2016.09.006_bib0175
  article-title: Determining the number of principal components for best reconstruction
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(99)00043-8
– volume: 23
  start-page: 1515
  year: 2013
  ident: 10.1016/j.jprocont.2016.09.006_bib0230
  article-title: Comprehensive subspace decomposition and isolation of principal reconstruction directions for online fault diagnosis
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.09.019
– volume: 139
  start-page: 84
  year: 2014
  ident: 10.1016/j.jprocont.2016.09.006_bib0060
  article-title: Neighborhood based global coordination for multimode process monitoring
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2014.09.019
– volume: 19
  start-page: 949
  year: 1995
  ident: 10.1016/j.jprocont.2016.09.006_bib0235
  article-title: Optimal steady-state operation of the Tennessee Eastman challenge process
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(94)00043-N
– volume: 54
  start-page: 2404
  year: 2008
  ident: 10.1016/j.jprocont.2016.09.006_bib0010
  article-title: Adaptive actuator/component fault compensation for nonlinear systems
  publication-title: AIChE J.
  doi: 10.1002/aic.11546
– volume: 60
  start-page: 949
  year: 2014
  ident: 10.1016/j.jprocont.2016.09.006_bib0195
  article-title: Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring
  publication-title: AIChE J.
  doi: 10.1002/aic.14335
SSID ssj0003726
Score 2.3463774
Snippet •A novel multimode process monitoring method (KPCs-RLOF) is developed.•A novel mode identification approach is proposed on the basis of the sequential...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 136
SubjectTerms Cumulative percent expression
Key principal components
Multimode process monitoring
Principal component analysis
Recursive local outlier factor
Title Key principal components with recursive local outlier factor for multimode chemical process monitoring
URI https://dx.doi.org/10.1016/j.jprocont.2016.09.006
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003726
  issn: 0959-1524
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003726
  issn: 0959-1524
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003726
  issn: 0959-1524
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003726
  issn: 0959-1524
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003726
  issn: 0959-1524
  databaseCode: AKRWK
  dateStart: 19910101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5VZYGBRwFRHpUH1jQJtvMYq4qqUNEFKnWzEseWWkEaVWVg4bfjcxwoElIHxkQ5Jbo4d58v390HcJvQjAWJZJ6KlDQblCjxMs24F0SqoKGmYW7HFz9No_GMPc75vAXDphcGaZUu9tcx3UZrd8Z33vSrxcJ_xgqWyT6IKLADFOMwYzGqGPQ_f2geNLaSa7bchVdvdQkv-0vMEqsSOZVhZOedovLRXwlqK-mMjuHQoUUyqB_oBFqq7MBRo8RA3IfZgYOtsYKnoCfqg1R1Fd1YI2t8VSJhgmDVlayxxI6sdWITGUFOkLk3qaV3iEGxxNIMUSSHSDdQgFR1RwF5s0EAb3QGs9H9y3DsOT0FT1KWbrw8oVHOU5UFysCQXHPJQq11Hps9112ouGYFjwP8jpVMgzyTscxYqg2iMCiwyCQ9h3ZpnvcCiFQpS2gRxlmCf4TjjBXSAGBmtuaKhzrpAm-cKKQbNo6aF6-iYZUtReN8gc4XQSqM87vgf9tV9biNnRZp847Er4UjTE7YYXv5D9sr2Mejui3xGtqb9bu6Mfhkk_fsAuzB3uBhMp5-AVrE6Ws
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGICBRwFRnh5Y0yS1nceIKqpCHwut1M1yHFtqBWlUlYGF347PcaBISB1Yk5wcXey77y7f3SF0nxBBg0RST0VKmgAlSjyhKfOCSOUk1CTMbPvi0TjqT-nzjM0aqFvXwgCt0tn-yqZba-2u-E6bfjmf-y-QwTLeBxAFVIAaO7xLWSeGCKz9-cPzILGduWbzXfD4Rpnwor0AN7EsgFQZRrbhKYw--stDbXid3jE6dHARP1RvdIIaqmiio3oUA3Yns4kONvoKniI9UB-4rNLoRhpo48sCGBMY0q54BTl2oK1j68kwkILM2riavYMNjMWWZwhTcrB0HQVwWZUU4DdrBWChMzTtPU66fc8NVPAkoenayxISZSxVIlAGh2SaSRpqrbPYBF2dUDFNcxYHcJCVTINMyFgKmmoDKQwMzIUk52inMO97gbBUKU1IHsYigV_CsaC5NAiYmthcsVAnLcRqJXLpuo3D0ItXXtPKFrxWPgfl8yDlRvkt5H_LlVW_ja0Saf2N-K-dw41T2CJ7-Q_ZO7TXn4yGfPg0HlyhfbhT1Sheo5316l3dGLCyzm7tZvwCzOTrAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Key+principal+components+with+recursive+local+outlier+factor+for+multimode+chemical+process+monitoring&rft.jtitle=Journal+of+process+control&rft.au=Song%2C+Bing&rft.au=Tan%2C+Shuai&rft.au=Shi%2C+Hongbo&rft.date=2016-11-01&rft.issn=0959-1524&rft.volume=47&rft.spage=136&rft.epage=149&rft_id=info:doi/10.1016%2Fj.jprocont.2016.09.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jprocont_2016_09_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon