Key principal components with recursive local outlier factor for multimode chemical process monitoring
•A novel multimode process monitoring method (KPCs-RLOF) is developed.•A novel mode identification approach is proposed on the basis of the sequential information in the time scale and the density information in the spatial scale.•A new strategy named cumulative percent expression is developed to se...
Saved in:
| Published in | Journal of process control Vol. 47; pp. 136 - 149 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.11.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0959-1524 1873-2771 |
| DOI | 10.1016/j.jprocont.2016.09.006 |
Cover
| Abstract | •A novel multimode process monitoring method (KPCs-RLOF) is developed.•A novel mode identification approach is proposed on the basis of the sequential information in the time scale and the density information in the spatial scale.•A new strategy named cumulative percent expression is developed to select key PCs.
Owing to various manufacturing strategies and demands of markets, chemical processes often involve multiple operating modes. How to identify mode from multimode process data collected under both stable and transitional modes is an important issue. This paper proposes a novel mode identification algorithm-recursive local outlier factor (RLOF) based on the sequential information in the time scale and the density information in the spatial scale. In this algorithm, not only the number of modes does not need to be determined in advance, but also details of mode switching can be acquired. In addition, the principal components (PCs) chosen by the variance of overall dataset in principal component analysis (PCA) cannot guarantee that all variables express information as completely as possible. Using the defined cumulative percent expression (CPE), this study chooses key PCs (KPCs) according to each variable. Moreover, fault diagnosis is realized via the contribution of every variable to key PCs. Finally, the monitoring performance is evaluated under the Tennessee Eastman (TE) benchmark and the continuous stirred tank reactor (CSTR) process. |
|---|---|
| AbstractList | •A novel multimode process monitoring method (KPCs-RLOF) is developed.•A novel mode identification approach is proposed on the basis of the sequential information in the time scale and the density information in the spatial scale.•A new strategy named cumulative percent expression is developed to select key PCs.
Owing to various manufacturing strategies and demands of markets, chemical processes often involve multiple operating modes. How to identify mode from multimode process data collected under both stable and transitional modes is an important issue. This paper proposes a novel mode identification algorithm-recursive local outlier factor (RLOF) based on the sequential information in the time scale and the density information in the spatial scale. In this algorithm, not only the number of modes does not need to be determined in advance, but also details of mode switching can be acquired. In addition, the principal components (PCs) chosen by the variance of overall dataset in principal component analysis (PCA) cannot guarantee that all variables express information as completely as possible. Using the defined cumulative percent expression (CPE), this study chooses key PCs (KPCs) according to each variable. Moreover, fault diagnosis is realized via the contribution of every variable to key PCs. Finally, the monitoring performance is evaluated under the Tennessee Eastman (TE) benchmark and the continuous stirred tank reactor (CSTR) process. |
| Author | Shi, Hongbo Tan, Shuai Song, Bing |
| Author_xml | – sequence: 1 givenname: Bing surname: Song fullname: Song, Bing – sequence: 2 givenname: Shuai surname: Tan fullname: Tan, Shuai – sequence: 3 givenname: Hongbo surname: Shi fullname: Shi, Hongbo email: hbshi@ecust.edu.cn |
| BookMark | eNqFkN1KAzEQhYMo2FZfQfYFdp3sbwNeKMU_LHij1yE7O7Epu5uSpJW-vSnVG296MRyGmXOY-absfLQjMXbDIePA69t1tt44i3YMWR77DEQGUJ-xCZ83RZo3DT9nExCVSHmVl5ds6v0aAIomrydMv9E-2TgzotmoPkE7bGL6GHzybcIqcYRb582Okt5inNtt6A25RCsMNkqsYdsHM9iOElzRYA5bh3PI-2Swo4lrZvy6Yhda9Z6uf3XGPp8ePxYv6fL9-XXxsEyxKEVI23lRt5UgBVQWotUVllxr3TZzIXJOlS67qoEWoCQU0CpsUJVCg-AiLzqFxYzdHXPRWe8daYkmqGAiHKdMLznIAzO5ln_M5IGZBCEjs2iv_9kjmkG5_Wnj_dFI8bldJCQ9GhqROhMRBtlZcyriB9qikWU |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2965623 crossref_primary_10_1002_cjce_24494 crossref_primary_10_1021_acs_iecr_2c03674 crossref_primary_10_3390_en15176146 crossref_primary_10_1109_TCST_2023_3287793 crossref_primary_10_1109_TIE_2018_2868316 crossref_primary_10_1002_cjce_23778 crossref_primary_10_1002_cjce_23559 crossref_primary_10_1016_j_jprocont_2020_03_006 crossref_primary_10_1021_acs_iecr_9b05600 crossref_primary_10_1016_j_isatra_2020_06_008 crossref_primary_10_1515_revce_2017_0046 crossref_primary_10_1016_j_chemolab_2019_03_012 crossref_primary_10_1016_j_ifacol_2018_09_320 crossref_primary_10_1021_acs_iecr_7b02981 crossref_primary_10_1007_s11771_018_3961_y crossref_primary_10_1177_0020294019858103 crossref_primary_10_1016_j_jprocont_2018_08_009 crossref_primary_10_1007_s42452_022_05076_y crossref_primary_10_1002_cem_3048 crossref_primary_10_1155_2024_5564380 crossref_primary_10_1109_TIM_2023_3318673 crossref_primary_10_1016_j_conengprac_2020_104572 crossref_primary_10_1016_j_jprocont_2022_11_011 crossref_primary_10_1016_j_jprocont_2021_05_007 crossref_primary_10_1155_2021_5517062 crossref_primary_10_1016_j_ces_2022_117556 crossref_primary_10_1016_j_jprocont_2023_103052 crossref_primary_10_1109_TIE_2018_2801804 crossref_primary_10_1016_j_isatra_2018_07_038 crossref_primary_10_1155_2017_3583610 |
| Cites_doi | 10.1016/j.eswa.2007.11.018 10.1016/j.chemolab.2011.10.013 10.1016/j.chemolab.2014.01.009 10.1016/S0952-1976(01)00032-X 10.1016/j.ces.2012.02.022 10.1016/j.conengprac.2010.12.005 10.1002/aic.14282 10.1021/ie300203u 10.1021/ie504380c 10.1016/j.jprocont.2011.06.004 10.1016/j.jprocont.2013.09.017 10.1016/0098-1354(93)80018-I 10.1002/aic.690470115 10.1016/j.chemolab.2013.06.004 10.1016/j.ces.2014.10.029 10.1016/j.compchemeng.2006.09.004 10.1002/cem.1262 10.1016/j.ces.2011.10.011 10.1021/ie202720y 10.1016/j.jprocont.2014.04.001 10.1002/aic.690440712 10.1016/S0169-7439(99)00061-1 10.1016/S0169-7439(03)00063-7 10.1016/j.ces.2003.09.012 10.1021/ie502344q 10.1016/j.ces.2003.12.003 10.1016/j.ces.2011.07.001 10.1016/j.jprocont.2015.12.002 10.1016/j.jprocont.2013.06.010 10.1002/aic.10568 10.1016/j.chemolab.2013.12.003 10.1016/j.chemolab.2014.03.013 10.1016/S0959-1524(00)00008-1 10.1021/ie102048f 10.1002/aic.12200 10.1016/j.conengprac.2008.04.004 10.1016/j.jprocont.2010.07.002 10.1002/aic.11617 10.1021/ie0497893 10.1016/j.chemolab.2012.05.010 10.1021/acs.iecr.5b00373 10.1016/j.jprocont.2011.08.002 10.1002/aic.14475 10.1016/S0959-1524(99)00043-8 10.1016/j.jprocont.2013.09.019 10.1016/j.chemolab.2014.09.019 10.1016/0098-1354(94)00043-N 10.1002/aic.11546 10.1002/aic.14335 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jprocont.2016.09.006 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1873-2771 |
| EndPage | 149 |
| ExternalDocumentID | 10_1016_j_jprocont_2016_09_006 S0959152416301202 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W JJJVA KOM LX7 LY7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SDP SES SET SEW SPC SPCBC SSG SST SSZ T5K UNMZH WUQ XFK ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c349t-b836b59ea0e439bf5c41fffb789921e5f4d570b004ec90bac7ca49f091923dac3 |
| IEDL.DBID | .~1 |
| ISSN | 0959-1524 |
| IngestDate | Wed Oct 01 03:56:20 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Fri Feb 23 02:16:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multimode process monitoring Recursive local outlier factor Key principal components Cumulative percent expression Principal component analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-b836b59ea0e439bf5c41fffb789921e5f4d570b004ec90bac7ca49f091923dac3 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jprocont_2016_09_006 crossref_primary_10_1016_j_jprocont_2016_09_006 elsevier_sciencedirect_doi_10_1016_j_jprocont_2016_09_006 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-11-01 |
| PublicationDateYYYYMMDD | 2016-11-01 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of process control |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhao, Wang, Qin, Gao (bib0140) 2015; 54 Sebzalli, Wang (bib0085) 2001; 14 Song, Ma, Shi (bib0045) 2014; 135 Ma, Hu, Shi (bib0035) 2012; 118 Ge, Gao, Song (bib0135) 2011; 66 Zhao, Sun (bib0230) 2013; 23 Ge, Song (bib0040) 2008; 16 Majid, Taylor, Chen, Stam, Mulder, Young (bib0155) 2011; 19 Zhao, Zhang, Xu (bib0125) 2004; 43 Lee, Yoo, Choi, Vanrolleghem, Lee (bib0160) 2004; 59 Rashid, Yu (bib0065) 2012; 51 Zhang, Wang, Tan, Wang, Chang (bib0105) 2015; 541 Bakshi (bib0165) 1998; 44 Tong, Farra, Palazoglu, Yan (bib0100) 2014; 60 Zhu, Ge, Song (bib0075) 2015; 122 Togkalidou, Braatz, Johnson, Davidson, Andrews (bib0190) 2001; 47 Zhu, Song, Palazoglu (bib0095) 2012; 22 Lu, Yang, Gao, Wang (bib0225) 2004; 59 Xie, Shi (bib0055) 2012; 51 Tan, Wang, Peng, Chang, Wang (bib0120) 2012; 51 Downs, Vogel (bib0240) 1993; 17 Song, Shi, Ma, Wang (bib0110) 2014; 53 Zhang, Qin (bib0215) 2008; 54 Yoon, MacGregor (bib0245) 2001; 11 Lee, Kang, Kang (bib0205) 2011; 21 Ge, Song (bib0005) 2010; 56 Lu, Yao, Gao, Wang (bib0025) 2005; 51 Tamura, Tsujita (bib0185) 2007; 31 Yu (bib0050) 2011; 68 Zhao (bib0145) 2014; 60 Chen, Wang (bib0080) 2009; 36 Ma, Shi, Ma, Wang (bib0070) 2013; 127 Tong, Palazoglu, Yan (bib0090) 2013; 23 Wang, Tan, Peng, Chang (bib0115) 2012; 110 Jiang, Yan (bib0195) 2014; 60 Dobos, Abonyi (bib0150) 2012; 75 Ricker (bib0235) 1995; 19 Kim, Lee (bib0170) 2003; 67 Chiang, Russell, Braatz (bib0200) 2000; 50 Zhao, Gao (bib0220) 2014; 133 Ma, Song, Shi, Yang (bib0060) 2014; 139 Yao, Chen, Gao (bib0030) 2010; 20 Ge, Song (bib0020) 2013; 23 Ge, Song (bib0130) 2009; 23 Camacho, Ferrer (bib0180) 2014; 131 Qin, Dunia (bib0175) 2000; 10 Zhao (bib0015) 2014; 24 Zhao, Wang (bib0210) 2016; 38 Zhang, Qin (bib0010) 2008; 54 Zhao (10.1016/j.jprocont.2016.09.006_bib0210) 2016; 38 Jiang (10.1016/j.jprocont.2016.09.006_bib0195) 2014; 60 Rashid (10.1016/j.jprocont.2016.09.006_bib0065) 2012; 51 Dobos (10.1016/j.jprocont.2016.09.006_bib0150) 2012; 75 Bakshi (10.1016/j.jprocont.2016.09.006_bib0165) 1998; 44 Yu (10.1016/j.jprocont.2016.09.006_bib0050) 2011; 68 Tamura (10.1016/j.jprocont.2016.09.006_bib0185) 2007; 31 Sebzalli (10.1016/j.jprocont.2016.09.006_bib0085) 2001; 14 Downs (10.1016/j.jprocont.2016.09.006_bib0240) 1993; 17 Zhu (10.1016/j.jprocont.2016.09.006_bib0095) 2012; 22 Song (10.1016/j.jprocont.2016.09.006_bib0045) 2014; 135 Chiang (10.1016/j.jprocont.2016.09.006_bib0200) 2000; 50 Tan (10.1016/j.jprocont.2016.09.006_bib0120) 2012; 51 Lu (10.1016/j.jprocont.2016.09.006_bib0225) 2004; 59 Ma (10.1016/j.jprocont.2016.09.006_bib0035) 2012; 118 Tong (10.1016/j.jprocont.2016.09.006_bib0090) 2013; 23 Zhang (10.1016/j.jprocont.2016.09.006_bib0105) 2015; 541 Ge (10.1016/j.jprocont.2016.09.006_bib0130) 2009; 23 Xie (10.1016/j.jprocont.2016.09.006_bib0055) 2012; 51 Lee (10.1016/j.jprocont.2016.09.006_bib0160) 2004; 59 Ricker (10.1016/j.jprocont.2016.09.006_bib0235) 1995; 19 Ma (10.1016/j.jprocont.2016.09.006_bib0060) 2014; 139 Zhao (10.1016/j.jprocont.2016.09.006_bib0220) 2014; 133 Chen (10.1016/j.jprocont.2016.09.006_bib0080) 2009; 36 Zhao (10.1016/j.jprocont.2016.09.006_bib0125) 2004; 43 Zhao (10.1016/j.jprocont.2016.09.006_bib0145) 2014; 60 Majid (10.1016/j.jprocont.2016.09.006_bib0155) 2011; 19 Zhao (10.1016/j.jprocont.2016.09.006_bib0015) 2014; 24 Lu (10.1016/j.jprocont.2016.09.006_bib0025) 2005; 51 Tong (10.1016/j.jprocont.2016.09.006_bib0100) 2014; 60 Zhao (10.1016/j.jprocont.2016.09.006_bib0140) 2015; 54 Ge (10.1016/j.jprocont.2016.09.006_bib0135) 2011; 66 Togkalidou (10.1016/j.jprocont.2016.09.006_bib0190) 2001; 47 Zhang (10.1016/j.jprocont.2016.09.006_bib0010) 2008; 54 Ma (10.1016/j.jprocont.2016.09.006_bib0070) 2013; 127 Ge (10.1016/j.jprocont.2016.09.006_bib0040) 2008; 16 Song (10.1016/j.jprocont.2016.09.006_bib0110) 2014; 53 Zhao (10.1016/j.jprocont.2016.09.006_bib0230) 2013; 23 Yao (10.1016/j.jprocont.2016.09.006_bib0030) 2010; 20 Lee (10.1016/j.jprocont.2016.09.006_bib0205) 2011; 21 Ge (10.1016/j.jprocont.2016.09.006_bib0020) 2013; 23 Kim (10.1016/j.jprocont.2016.09.006_bib0170) 2003; 67 Ge (10.1016/j.jprocont.2016.09.006_bib0005) 2010; 56 Zhang (10.1016/j.jprocont.2016.09.006_bib0215) 2008; 54 Yoon (10.1016/j.jprocont.2016.09.006_bib0245) 2001; 11 Camacho (10.1016/j.jprocont.2016.09.006_bib0180) 2014; 131 Zhu (10.1016/j.jprocont.2016.09.006_bib0075) 2015; 122 Wang (10.1016/j.jprocont.2016.09.006_bib0115) 2012; 110 Qin (10.1016/j.jprocont.2016.09.006_bib0175) 2000; 10 |
| References_xml | – volume: 23 start-page: 1497 year: 2013 end-page: 1503 ident: bib0090 article-title: An adaptive multimode process monitoring strategy based on modeclustering and mode unfolding publication-title: J. Process Control – volume: 10 start-page: 245 year: 2000 end-page: 250 ident: bib0175 article-title: Determining the number of principal components for best reconstruction publication-title: J. Process Control – volume: 75 start-page: 96 year: 2012 end-page: 105 ident: bib0150 article-title: Online detection of homogeneous operation ranges by dynamic principal component analysis based time series segmentation publication-title: Chem. Eng. Sci. – volume: 59 start-page: 223 year: 2004 end-page: 234 ident: bib0160 article-title: Nonlinear process monitoring using kernel principal component analysis publication-title: Chem. Eng. Sci. – volume: 17 start-page: 245 year: 1993 end-page: 255 ident: bib0240 article-title: A plant-wide industrial process control problem publication-title: Comput. Chem. Eng. – volume: 23 start-page: 1090 year: 2013 end-page: 1096 ident: bib0020 article-title: Bagging support vector data description model for batch process monitoring publication-title: J. Process Control – volume: 131 start-page: 37 year: 2014 end-page: 50 ident: bib0180 article-title: Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: practical aspects publication-title: Chemom. Intell. Lab. Syst. – volume: 54 start-page: 2404 year: 2008 end-page: 2412 ident: bib0010 article-title: Adaptive actuator/component fault compensation for nonlinear systems publication-title: AIChE J. – volume: 60 start-page: 949 year: 2014 end-page: 965 ident: bib0195 article-title: Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring publication-title: AIChE J. – volume: 110 start-page: 144 year: 2012 end-page: 155 ident: bib0115 article-title: Process monitoring based on mode identification for multi-mode process with transitions publication-title: Chemom. Intell. Lab. Syst. – volume: 133 start-page: 1 year: 2014 end-page: 16 ident: bib0220 article-title: Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring publication-title: Chemom. Intell. Lab. Syst. – volume: 21 start-page: 1011 year: 2011 end-page: 1021 ident: bib0205 article-title: Integrating independent component analysis and local outlier factor for plant-wide process monitoring publication-title: J. Process Control – volume: 56 start-page: 2838 year: 2010 end-page: 2849 ident: bib0005 article-title: Mixture Bayesian regularization method of PPCA for multimode process monitoring publication-title: AIChE J. – volume: 43 start-page: 7025 year: 2004 end-page: 7035 ident: bib0125 article-title: Monitoring of processes with multiple operation modes through multiple principle component analysis models publication-title: Ind. Eng. Chem. Res. – volume: 47 start-page: 160 year: 2001 end-page: 168 ident: bib0190 article-title: Experimental design and inferential modeling in pharmaceutical crystallization publication-title: AIChE J. – volume: 16 start-page: 1427 year: 2008 end-page: 1437 ident: bib0040 article-title: Online monitoring of nonlinear multiple mode processes based on adaptive local model approach publication-title: Control Eng. Pract. – volume: 22 start-page: 247 year: 2012 end-page: 262 ident: bib0095 article-title: Process pattern construction and multi-mode monitoring publication-title: J. Process Control – volume: 54 start-page: 3204 year: 2008 end-page: 3220 ident: bib0215 article-title: Improved nonlinear fault detection technique and statistical analysis publication-title: AIChE J. – volume: 20 start-page: 1188 year: 2010 end-page: 1197 ident: bib0030 article-title: Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information publication-title: J. Process Control – volume: 60 start-page: 2805 year: 2014 end-page: 2814 ident: bib0100 article-title: Fault detection and isolation in hybrid process systems using a combined data-driven and observer-design methodology publication-title: AIChE J. – volume: 23 start-page: 1515 year: 2013 end-page: 1527 ident: bib0230 article-title: Comprehensive subspace decomposition and isolation of principal reconstruction directions for online fault diagnosis publication-title: J. Process Control – volume: 11 start-page: 387 year: 2001 end-page: 400 ident: bib0245 article-title: Fault diagnosis with multivariate statistical models part I: using steady state fault signatures publication-title: J. Process Control – volume: 60 start-page: 559 year: 2014 end-page: 573 ident: bib0145 article-title: Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring publication-title: AIChE J. – volume: 51 start-page: 5506 year: 2012 end-page: 5514 ident: bib0065 article-title: Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection publication-title: Ind. Eng. Chem. Res. – volume: 135 start-page: 17 year: 2014 end-page: 30 ident: bib0045 article-title: Multimode process monitoring using improved dynamic neighborhood preserving embedding publication-title: Chemom. Intell. Lab. Syst. – volume: 51 start-page: 3300 year: 2005 end-page: 3304 ident: bib0025 article-title: Two-dimentional dynamic PCA for batch process monitoring publication-title: AIChE J. – volume: 51 start-page: 5497 year: 2012 end-page: 5505 ident: bib0055 article-title: Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models publication-title: Ind. Eng. Chem. Res. – volume: 66 start-page: 5173 year: 2011 end-page: 5183 ident: bib0135 article-title: Two-dimensional Bayesian monitoring method for nonlinear multimode processes publication-title: Chem. Eng. Sci. – volume: 127 start-page: 89 year: 2013 end-page: 101 ident: bib0070 article-title: Dynamic process monitoring using adaptive local outlier factor publication-title: Chemom. Intell. Lab. Syst. – volume: 67 start-page: 109 year: 2003 end-page: 123 ident: bib0170 article-title: Process monitoring based on probabilistic PCA publication-title: Chemom. Intell. Lab. Syst. – volume: 122 start-page: 573 year: 2015 end-page: 584 ident: bib0075 article-title: Robust supervised probabilistic principal component analysis model for soft sensing of key process variables publication-title: Chem. Eng. Sci. – volume: 54 start-page: 3154 year: 2015 end-page: 3166 ident: bib0140 article-title: Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitorin publication-title: Ind. Eng. Chem. Res. – volume: 14 start-page: 607 year: 2001 end-page: 616 ident: bib0085 article-title: Knowledge discovery from process operational data using PCA and fuzzy clustering publication-title: Eng. Appl. Artif. Intell. – volume: 139 start-page: 84 year: 2014 end-page: 96 ident: bib0060 article-title: Neighborhood based global coordination for multimode process monitoring publication-title: Chemom. Intell. Lab. Syst. – volume: 24 start-page: 856 year: 2014 end-page: 870 ident: bib0015 article-title: Phase analysis and statistical modeling with limited batches for multimode and multiphase process monitoring publication-title: J. Process Control – volume: 51 start-page: 374 year: 2012 end-page: 388 ident: bib0120 article-title: Multimode process monitoring based on mode identification publication-title: Ind. Eng. Chem. Res. – volume: 23 start-page: 636 year: 2009 end-page: 650 ident: bib0130 article-title: Multimode process monitoring based on Bayesian method publication-title: J. Chemom. – volume: 44 start-page: 1596 year: 1998 end-page: 1610 ident: bib0165 article-title: Multiscale PCA with application to multivariate statistical process monitoring publication-title: AIChE J. – volume: 38 start-page: 31 year: 2016 end-page: 41 ident: bib0210 article-title: Efficient faulty variable selection and parsimonious reconstructionmodelling for fault isolation publication-title: J. Process Control – volume: 59 start-page: 855 year: 2004 end-page: 864 ident: bib0225 article-title: Multirate dynamic inferential modeling for multivariable processes publication-title: Chem. Eng. Sci. – volume: 541 start-page: 11866 year: 2015 end-page: 11880 ident: bib0105 article-title: Novel monitoring strategy combining the advantages of the multiple modeling strategy and Gaussian mixture model for multimode processes publication-title: Ind. Eng. Chem. Res. – volume: 118 start-page: 287 year: 2012 end-page: 300 ident: bib0035 article-title: A novel local neighborhood standardization strategy and its application in fault detection of multimode processes publication-title: Chemom. Intell. Lab. Syst. – volume: 53 start-page: 16453 year: 2014 end-page: 16464 ident: bib0110 article-title: Multi-subspace principal component analysis with local outlier factor for multimode process monitoring publication-title: Ind. Eng. Chem. Res. – volume: 68 start-page: 506 year: 2011 end-page: 519 ident: bib0050 article-title: A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes publication-title: Chem. Eng. Sci. – volume: 36 start-page: 1300 year: 2009 end-page: 1307 ident: bib0080 article-title: A fuzzy c-means clustering-based fragile watermarking scheme for image authentication publication-title: Expert Syst. Appl. – volume: 19 start-page: 367 year: 2011 end-page: 379 ident: bib0155 article-title: Aluminium process fault detection by multiway principal component analysis publication-title: Control Eng. Pract. – volume: 31 start-page: 1035 year: 2007 end-page: 1046 ident: bib0185 article-title: A study on the number of principal components and sensitivity of fault detection using PCA publication-title: Comput. Chem. Eng. – volume: 50 start-page: 243 year: 2000 end-page: 252 ident: bib0200 article-title: Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis publication-title: Chemom. Intell. Lab. Syst. – volume: 19 start-page: 949 year: 1995 end-page: 959 ident: bib0235 article-title: Optimal steady-state operation of the Tennessee Eastman challenge process publication-title: Comput. Chem. Eng. – volume: 36 start-page: 1300 year: 2009 ident: 10.1016/j.jprocont.2016.09.006_bib0080 article-title: A fuzzy c-means clustering-based fragile watermarking scheme for image authentication publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.11.018 – volume: 110 start-page: 144 year: 2012 ident: 10.1016/j.jprocont.2016.09.006_bib0115 article-title: Process monitoring based on mode identification for multi-mode process with transitions publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2011.10.013 – volume: 133 start-page: 1 year: 2014 ident: 10.1016/j.jprocont.2016.09.006_bib0220 article-title: Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2014.01.009 – volume: 14 start-page: 607 year: 2001 ident: 10.1016/j.jprocont.2016.09.006_bib0085 article-title: Knowledge discovery from process operational data using PCA and fuzzy clustering publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/S0952-1976(01)00032-X – volume: 75 start-page: 96 year: 2012 ident: 10.1016/j.jprocont.2016.09.006_bib0150 article-title: Online detection of homogeneous operation ranges by dynamic principal component analysis based time series segmentation publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.02.022 – volume: 19 start-page: 367 year: 2011 ident: 10.1016/j.jprocont.2016.09.006_bib0155 article-title: Aluminium process fault detection by multiway principal component analysis publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2010.12.005 – volume: 60 start-page: 559 year: 2014 ident: 10.1016/j.jprocont.2016.09.006_bib0145 article-title: Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring publication-title: AIChE J. doi: 10.1002/aic.14282 – volume: 51 start-page: 5506 year: 2012 ident: 10.1016/j.jprocont.2016.09.006_bib0065 article-title: Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie300203u – volume: 54 start-page: 3154 year: 2015 ident: 10.1016/j.jprocont.2016.09.006_bib0140 article-title: Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitorin publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie504380c – volume: 21 start-page: 1011 year: 2011 ident: 10.1016/j.jprocont.2016.09.006_bib0205 article-title: Integrating independent component analysis and local outlier factor for plant-wide process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2011.06.004 – volume: 23 start-page: 1497 year: 2013 ident: 10.1016/j.jprocont.2016.09.006_bib0090 article-title: An adaptive multimode process monitoring strategy based on modeclustering and mode unfolding publication-title: J. Process Control doi: 10.1016/j.jprocont.2013.09.017 – volume: 17 start-page: 245 year: 1993 ident: 10.1016/j.jprocont.2016.09.006_bib0240 article-title: A plant-wide industrial process control problem publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(93)80018-I – volume: 47 start-page: 160 year: 2001 ident: 10.1016/j.jprocont.2016.09.006_bib0190 article-title: Experimental design and inferential modeling in pharmaceutical crystallization publication-title: AIChE J. doi: 10.1002/aic.690470115 – volume: 127 start-page: 89 year: 2013 ident: 10.1016/j.jprocont.2016.09.006_bib0070 article-title: Dynamic process monitoring using adaptive local outlier factor publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2013.06.004 – volume: 122 start-page: 573 year: 2015 ident: 10.1016/j.jprocont.2016.09.006_bib0075 article-title: Robust supervised probabilistic principal component analysis model for soft sensing of key process variables publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.10.029 – volume: 31 start-page: 1035 year: 2007 ident: 10.1016/j.jprocont.2016.09.006_bib0185 article-title: A study on the number of principal components and sensitivity of fault detection using PCA publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2006.09.004 – volume: 23 start-page: 636 year: 2009 ident: 10.1016/j.jprocont.2016.09.006_bib0130 article-title: Multimode process monitoring based on Bayesian method publication-title: J. Chemom. doi: 10.1002/cem.1262 – volume: 68 start-page: 506 year: 2011 ident: 10.1016/j.jprocont.2016.09.006_bib0050 article-title: A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.10.011 – volume: 51 start-page: 5497 year: 2012 ident: 10.1016/j.jprocont.2016.09.006_bib0055 article-title: Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie202720y – volume: 24 start-page: 856 year: 2014 ident: 10.1016/j.jprocont.2016.09.006_bib0015 article-title: Phase analysis and statistical modeling with limited batches for multimode and multiphase process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2014.04.001 – volume: 44 start-page: 1596 year: 1998 ident: 10.1016/j.jprocont.2016.09.006_bib0165 article-title: Multiscale PCA with application to multivariate statistical process monitoring publication-title: AIChE J. doi: 10.1002/aic.690440712 – volume: 50 start-page: 243 year: 2000 ident: 10.1016/j.jprocont.2016.09.006_bib0200 article-title: Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(99)00061-1 – volume: 67 start-page: 109 year: 2003 ident: 10.1016/j.jprocont.2016.09.006_bib0170 article-title: Process monitoring based on probabilistic PCA publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(03)00063-7 – volume: 59 start-page: 223 year: 2004 ident: 10.1016/j.jprocont.2016.09.006_bib0160 article-title: Nonlinear process monitoring using kernel principal component analysis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2003.09.012 – volume: 53 start-page: 16453 year: 2014 ident: 10.1016/j.jprocont.2016.09.006_bib0110 article-title: Multi-subspace principal component analysis with local outlier factor for multimode process monitoring publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie502344q – volume: 59 start-page: 855 year: 2004 ident: 10.1016/j.jprocont.2016.09.006_bib0225 article-title: Multirate dynamic inferential modeling for multivariable processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2003.12.003 – volume: 66 start-page: 5173 year: 2011 ident: 10.1016/j.jprocont.2016.09.006_bib0135 article-title: Two-dimensional Bayesian monitoring method for nonlinear multimode processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.07.001 – volume: 38 start-page: 31 year: 2016 ident: 10.1016/j.jprocont.2016.09.006_bib0210 article-title: Efficient faulty variable selection and parsimonious reconstructionmodelling for fault isolation publication-title: J. Process Control doi: 10.1016/j.jprocont.2015.12.002 – volume: 23 start-page: 1090 year: 2013 ident: 10.1016/j.jprocont.2016.09.006_bib0020 article-title: Bagging support vector data description model for batch process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2013.06.010 – volume: 51 start-page: 3300 year: 2005 ident: 10.1016/j.jprocont.2016.09.006_bib0025 article-title: Two-dimentional dynamic PCA for batch process monitoring publication-title: AIChE J. doi: 10.1002/aic.10568 – volume: 131 start-page: 37 year: 2014 ident: 10.1016/j.jprocont.2016.09.006_bib0180 article-title: Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: practical aspects publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2013.12.003 – volume: 135 start-page: 17 year: 2014 ident: 10.1016/j.jprocont.2016.09.006_bib0045 article-title: Multimode process monitoring using improved dynamic neighborhood preserving embedding publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2014.03.013 – volume: 11 start-page: 387 year: 2001 ident: 10.1016/j.jprocont.2016.09.006_bib0245 article-title: Fault diagnosis with multivariate statistical models part I: using steady state fault signatures publication-title: J. Process Control doi: 10.1016/S0959-1524(00)00008-1 – volume: 51 start-page: 374 year: 2012 ident: 10.1016/j.jprocont.2016.09.006_bib0120 article-title: Multimode process monitoring based on mode identification publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie102048f – volume: 56 start-page: 2838 year: 2010 ident: 10.1016/j.jprocont.2016.09.006_bib0005 article-title: Mixture Bayesian regularization method of PPCA for multimode process monitoring publication-title: AIChE J. doi: 10.1002/aic.12200 – volume: 16 start-page: 1427 year: 2008 ident: 10.1016/j.jprocont.2016.09.006_bib0040 article-title: Online monitoring of nonlinear multiple mode processes based on adaptive local model approach publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2008.04.004 – volume: 20 start-page: 1188 year: 2010 ident: 10.1016/j.jprocont.2016.09.006_bib0030 article-title: Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information publication-title: J. Process Control doi: 10.1016/j.jprocont.2010.07.002 – volume: 54 start-page: 3204 year: 2008 ident: 10.1016/j.jprocont.2016.09.006_bib0215 article-title: Improved nonlinear fault detection technique and statistical analysis publication-title: AIChE J. doi: 10.1002/aic.11617 – volume: 43 start-page: 7025 year: 2004 ident: 10.1016/j.jprocont.2016.09.006_bib0125 article-title: Monitoring of processes with multiple operation modes through multiple principle component analysis models publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0497893 – volume: 118 start-page: 287 year: 2012 ident: 10.1016/j.jprocont.2016.09.006_bib0035 article-title: A novel local neighborhood standardization strategy and its application in fault detection of multimode processes publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2012.05.010 – volume: 541 start-page: 11866 year: 2015 ident: 10.1016/j.jprocont.2016.09.006_bib0105 article-title: Novel monitoring strategy combining the advantages of the multiple modeling strategy and Gaussian mixture model for multimode processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b00373 – volume: 22 start-page: 247 year: 2012 ident: 10.1016/j.jprocont.2016.09.006_bib0095 article-title: Process pattern construction and multi-mode monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2011.08.002 – volume: 60 start-page: 2805 year: 2014 ident: 10.1016/j.jprocont.2016.09.006_bib0100 article-title: Fault detection and isolation in hybrid process systems using a combined data-driven and observer-design methodology publication-title: AIChE J. doi: 10.1002/aic.14475 – volume: 10 start-page: 245 year: 2000 ident: 10.1016/j.jprocont.2016.09.006_bib0175 article-title: Determining the number of principal components for best reconstruction publication-title: J. Process Control doi: 10.1016/S0959-1524(99)00043-8 – volume: 23 start-page: 1515 year: 2013 ident: 10.1016/j.jprocont.2016.09.006_bib0230 article-title: Comprehensive subspace decomposition and isolation of principal reconstruction directions for online fault diagnosis publication-title: J. Process Control doi: 10.1016/j.jprocont.2013.09.019 – volume: 139 start-page: 84 year: 2014 ident: 10.1016/j.jprocont.2016.09.006_bib0060 article-title: Neighborhood based global coordination for multimode process monitoring publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2014.09.019 – volume: 19 start-page: 949 year: 1995 ident: 10.1016/j.jprocont.2016.09.006_bib0235 article-title: Optimal steady-state operation of the Tennessee Eastman challenge process publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(94)00043-N – volume: 54 start-page: 2404 year: 2008 ident: 10.1016/j.jprocont.2016.09.006_bib0010 article-title: Adaptive actuator/component fault compensation for nonlinear systems publication-title: AIChE J. doi: 10.1002/aic.11546 – volume: 60 start-page: 949 year: 2014 ident: 10.1016/j.jprocont.2016.09.006_bib0195 article-title: Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring publication-title: AIChE J. doi: 10.1002/aic.14335 |
| SSID | ssj0003726 |
| Score | 2.3463774 |
| Snippet | •A novel multimode process monitoring method (KPCs-RLOF) is developed.•A novel mode identification approach is proposed on the basis of the sequential... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 136 |
| SubjectTerms | Cumulative percent expression Key principal components Multimode process monitoring Principal component analysis Recursive local outlier factor |
| Title | Key principal components with recursive local outlier factor for multimode chemical process monitoring |
| URI | https://dx.doi.org/10.1016/j.jprocont.2016.09.006 |
| Volume | 47 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003726 issn: 0959-1524 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003726 issn: 0959-1524 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003726 issn: 0959-1524 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003726 issn: 0959-1524 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003726 issn: 0959-1524 databaseCode: AKRWK dateStart: 19910101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5VZYGBRwFRHpUH1jQJtvMYq4qqUNEFKnWzEseWWkEaVWVg4bfjcxwoElIHxkQ5Jbo4d58v390HcJvQjAWJZJ6KlDQblCjxMs24F0SqoKGmYW7HFz9No_GMPc75vAXDphcGaZUu9tcx3UZrd8Z33vSrxcJ_xgqWyT6IKLADFOMwYzGqGPQ_f2geNLaSa7bchVdvdQkv-0vMEqsSOZVhZOedovLRXwlqK-mMjuHQoUUyqB_oBFqq7MBRo8RA3IfZgYOtsYKnoCfqg1R1Fd1YI2t8VSJhgmDVlayxxI6sdWITGUFOkLk3qaV3iEGxxNIMUSSHSDdQgFR1RwF5s0EAb3QGs9H9y3DsOT0FT1KWbrw8oVHOU5UFysCQXHPJQq11Hps9112ouGYFjwP8jpVMgzyTscxYqg2iMCiwyCQ9h3ZpnvcCiFQpS2gRxlmCf4TjjBXSAGBmtuaKhzrpAm-cKKQbNo6aF6-iYZUtReN8gc4XQSqM87vgf9tV9biNnRZp847Er4UjTE7YYXv5D9sr2Mejui3xGtqb9bu6Mfhkk_fsAuzB3uBhMp5-AVrE6Ws |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGICBRwFRnh5Y0yS1nceIKqpCHwut1M1yHFtqBWlUlYGF347PcaBISB1Yk5wcXey77y7f3SF0nxBBg0RST0VKmgAlSjyhKfOCSOUk1CTMbPvi0TjqT-nzjM0aqFvXwgCt0tn-yqZba-2u-E6bfjmf-y-QwTLeBxAFVIAaO7xLWSeGCKz9-cPzILGduWbzXfD4Rpnwor0AN7EsgFQZRrbhKYw--stDbXid3jE6dHARP1RvdIIaqmiio3oUA3Yns4kONvoKniI9UB-4rNLoRhpo48sCGBMY0q54BTl2oK1j68kwkILM2riavYMNjMWWZwhTcrB0HQVwWZUU4DdrBWChMzTtPU66fc8NVPAkoenayxISZSxVIlAGh2SaSRpqrbPYBF2dUDFNcxYHcJCVTINMyFgKmmoDKQwMzIUk52inMO97gbBUKU1IHsYigV_CsaC5NAiYmthcsVAnLcRqJXLpuo3D0ItXXtPKFrxWPgfl8yDlRvkt5H_LlVW_ja0Saf2N-K-dw41T2CJ7-Q_ZO7TXn4yGfPg0HlyhfbhT1Sheo5316l3dGLCyzm7tZvwCzOTrAA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Key+principal+components+with+recursive+local+outlier+factor+for+multimode+chemical+process+monitoring&rft.jtitle=Journal+of+process+control&rft.au=Song%2C+Bing&rft.au=Tan%2C+Shuai&rft.au=Shi%2C+Hongbo&rft.date=2016-11-01&rft.issn=0959-1524&rft.volume=47&rft.spage=136&rft.epage=149&rft_id=info:doi/10.1016%2Fj.jprocont.2016.09.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jprocont_2016_09_006 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon |