Design of auto disturbance rejection controller for train traction control system based on artificial bee colony algorithm

•Simulation model of train speed tracking control system.•Nonlinear auto disturbance rejection controller based on train is proposed.•Artificial intelligence algorithm optimizes controller parameters.•Time-delay control model of train. This paper focuses on train running speed tracking control of el...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 160; p. 107812
Main Authors Wang, Biao, Yang, Jie, Jiao, Haining, Zhu, Kuan, Chen, Yuqi
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.08.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0263-2241
1873-412X
DOI10.1016/j.measurement.2020.107812

Cover

Abstract •Simulation model of train speed tracking control system.•Nonlinear auto disturbance rejection controller based on train is proposed.•Artificial intelligence algorithm optimizes controller parameters.•Time-delay control model of train. This paper focuses on train running speed tracking control of electric traction freight train. The physical model of freight train is more complex and the parameters are more unstable than other trains. Therefore, the traditional PID controller is affected by the unmodeled dynamic and unknown parameter changes, resulting in large and unstable train speed tracking error. The design of NLADRC(Nonlinear Active Disturbance Rejection Controller, NLADRC) algorithm based on the time-delay control model of train in this paper. It reduces the dependence on the train model itself and has good tracking performance. The NLADRC gives full play to the strong function and high efficiency of the nonlinear function, while the introduction of the artificial bee colony algorithm with excellent experience effectively solves the problem that the parameters of the NLADRC algorithm are difficult to be adjusted. In the simulation, part of the mechanical delay of the system are regarded as internal and external disturbance, the results show that compared with the traditional PID algorithm, this algorithm has the advantages of high tracking accuracy, strong anti-interference ability and faster response speed.
AbstractList •Simulation model of train speed tracking control system.•Nonlinear auto disturbance rejection controller based on train is proposed.•Artificial intelligence algorithm optimizes controller parameters.•Time-delay control model of train. This paper focuses on train running speed tracking control of electric traction freight train. The physical model of freight train is more complex and the parameters are more unstable than other trains. Therefore, the traditional PID controller is affected by the unmodeled dynamic and unknown parameter changes, resulting in large and unstable train speed tracking error. The design of NLADRC(Nonlinear Active Disturbance Rejection Controller, NLADRC) algorithm based on the time-delay control model of train in this paper. It reduces the dependence on the train model itself and has good tracking performance. The NLADRC gives full play to the strong function and high efficiency of the nonlinear function, while the introduction of the artificial bee colony algorithm with excellent experience effectively solves the problem that the parameters of the NLADRC algorithm are difficult to be adjusted. In the simulation, part of the mechanical delay of the system are regarded as internal and external disturbance, the results show that compared with the traditional PID algorithm, this algorithm has the advantages of high tracking accuracy, strong anti-interference ability and faster response speed.
This paper focuses on train running speed tracking control of electric traction freight train. The physical model of freight train is more complex and the parameters are more unstable than other trains. Therefore, the traditional PID controller is affected by the unmodeled dynamic and unknown parameter changes, resulting in large and unstable train speed tracking error. The design of NLADRC(Nonlinear Active Disturbance Rejection Controller, NLADRC) algorithm based on the time-delay control model of train in this paper. It reduces the dependence on the train model itself and has good tracking performance. The NLADRC gives full play to the strong function and high efficiency of the nonlinear function, while the introduction of the artificial bee colony algorithm with excellent experience effectively solves the problem that the parameters of the NLADRC algorithm are difficult to be adjusted. In the simulation, part of the mechanical delay of the system are regarded as internal and external disturbance, the results show that compared with the traditional PID algorithm, this algorithm has the advantages of high tracking accuracy, strong anti-interference ability and faster response speed.
ArticleNumber 107812
Author Yang, Jie
Wang, Biao
Chen, Yuqi
Jiao, Haining
Zhu, Kuan
Author_xml – sequence: 1
  givenname: Biao
  surname: Wang
  fullname: Wang, Biao
– sequence: 2
  givenname: Jie
  surname: Yang
  fullname: Yang, Jie
  email: yangjie@jxust.edu.cn
– sequence: 3
  givenname: Haining
  surname: Jiao
  fullname: Jiao, Haining
– sequence: 4
  givenname: Kuan
  surname: Zhu
  fullname: Zhu, Kuan
– sequence: 5
  givenname: Yuqi
  surname: Chen
  fullname: Chen, Yuqi
BookMark eNqNkU2P1DAMhiO0SMwu_Icgzh3y1bQ9ITSwgLQSF5C4RWnqLKnaZHFSpOHXk2o4AKe92JL9-rX8-JpcxRSBkJecHTnj-vV8XMHmDWGFWI6Cib3e9Vw8IQfed7JRXHy7IgcmtGyEUPwZuc55ZoxpOegD-fUOcriPNHlqt5LoFHLZcLTRAUWYwZWQInUpFkzLAkh9QlrQhrjHf7o0n3OBlY42w0Rr3WIJPrhgFzoCVNmS4pna5T5hKN_X5-Spt0uGF3_yDfl6-_7L6WNz9_nDp9Pbu8ZJNZRmFH0PgxtbJ7wGr8Z-kEppZmFyreJtK7m0UnW-m4RXYuQt2NrhXHa6VZOWN-TVxfcB048NcjFz2jDWlUYo2XdCtZpV1ZuLymHKGcEbF4rd79uvXQxnZgduZvMXcLMDNxfg1WH4z-EBw2rx_KjZ02UWKoifAdBkF6A-YQpYf2CmFB7h8htz3afa
CitedBy_id crossref_primary_10_1049_cth2_12370
crossref_primary_10_1109_ACCESS_2021_3059443
crossref_primary_10_1177_09544070231165823
crossref_primary_10_1093_tse_tdad013
crossref_primary_10_1016_j_isatra_2021_06_020
crossref_primary_10_1016_j_neucom_2021_06_063
crossref_primary_10_1155_2021_6683584
crossref_primary_10_3390_s22072491
crossref_primary_10_1016_j_measurement_2024_114638
crossref_primary_10_3390_app122010558
crossref_primary_10_1109_TITS_2023_3264503
crossref_primary_10_1177_00202940221100298
crossref_primary_10_1088_1742_6596_2457_1_012031
crossref_primary_10_1109_TVT_2024_3354801
crossref_primary_10_3390_jmse10070865
crossref_primary_10_1177_16878132221112139
crossref_primary_10_1155_2023_6627429
crossref_primary_10_1016_j_jngse_2022_104662
crossref_primary_10_1177_01423312221146600
crossref_primary_10_1016_j_chemolab_2020_104199
crossref_primary_10_3390_s23208605
crossref_primary_10_3390_en13226093
crossref_primary_10_1155_2020_3796849
Cites_doi 10.1049/iet-its.2016.0084
10.3390/en9100762
10.1109/ICIEA.2019.8833794
10.1109/CHICC.2008.4605180
10.1016/j.asoc.2007.05.007
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Aug 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Aug 2020
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2020.107812
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2020_107812
S026322412030350X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
ID FETCH-LOGICAL-c349t-b288e9cb5c2f6ef4b8934460aedc54155313a347f7d2f42b15eadc51137654d63
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Wed Aug 13 07:29:13 EDT 2025
Thu Oct 09 00:36:26 EDT 2025
Thu Apr 24 22:58:42 EDT 2025
Fri Feb 23 02:48:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nonlinear Active Disturbance Rejection Controller
Freight train
Artificial bee colony algorithm
Speed tracking
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-b288e9cb5c2f6ef4b8934460aedc54155313a347f7d2f42b15eadc51137654d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2438724560
PQPubID 2047460
ParticipantIDs proquest_journals_2438724560
crossref_citationtrail_10_1016_j_measurement_2020_107812
crossref_primary_10_1016_j_measurement_2020_107812
elsevier_sciencedirect_doi_10_1016_j_measurement_2020_107812
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Zhiqiang, L., Yun, L., & Xu, W (2008) On maglev train automatic operation control system based on auto-disturbance-rejection control algorithm. In
Jing-Qing, Wei (b0010) 1994; 14
Yang, Jia, Fu (b0040) 2017; 9
Chen, X., Ma, W., Xie, G., Hei, X., Wang, F., & Tan, S (2019) A Survey of Control Algorithm for Automatic Train Operation. In
Karaboga, Basturk (b0045) 2008; 8
Gao (b0060) 2003
Yang, Jia, Shaofeng, Ge, Yunxiao (b0050) 2016; 9
(pp. 2405-2410). IEEE. Han Jing-Qing. Nonlinear PID controller. Acta Automatica Sinica, 20(4): 487−490.
Jing-Qing (b0015) 1994; 20
Kunyang, Honghui, Jinsong (b0035) 2019; 15
2008 27th Chinese Control Conference
Jing-Qing (b0025) 1998; 13
Jing-Qing (b0020) 1995; 10
2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)
Jie, Xiaohui, Yuanqing, Zhiqiang (b0055) 2016; 42
(pp. 681-685). IEEE.
Jing-Qing (10.1016/j.measurement.2020.107812_b0020) 1995; 10
10.1016/j.measurement.2020.107812_b0030
Jing-Qing (10.1016/j.measurement.2020.107812_b0010) 1994; 14
Yang (10.1016/j.measurement.2020.107812_b0040) 2017; 9
Kunyang (10.1016/j.measurement.2020.107812_b0035) 2019; 15
Jing-Qing (10.1016/j.measurement.2020.107812_b0025) 1998; 13
Gao (10.1016/j.measurement.2020.107812_b0060) 2003
10.1016/j.measurement.2020.107812_b0005
Karaboga (10.1016/j.measurement.2020.107812_b0045) 2008; 8
Jie (10.1016/j.measurement.2020.107812_b0055) 2016; 42
Yang (10.1016/j.measurement.2020.107812_b0050) 2016; 9
Jing-Qing (10.1016/j.measurement.2020.107812_b0015) 1994; 20
References_xml – reference: 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)
– reference: (pp. 2405-2410). IEEE. Han Jing-Qing. Nonlinear PID controller. Acta Automatica Sinica, 20(4): 487−490.
– volume: 10
  start-page: 85
  year: 1995
  end-page: 88
  ident: b0020
  article-title: The “extended state observer” of a class of uncertain systems
  publication-title: Control Decision
– volume: 8
  start-page: 687
  year: 2008
  end-page: 697
  ident: b0045
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
– volume: 20
  start-page: 487
  year: 1994
  end-page: 490
  ident: b0015
  article-title: Nonlinear PID controller
  publication-title: Acta Autom. Sin.
– volume: 9
  start-page: 762
  year: 2016
  ident: b0050
  article-title: Energy-efficient speed profile approximation: an optimal switching region-based approach with adaptive resolution
  publication-title: Energies
– reference: Zhiqiang, L., Yun, L., & Xu, W (2008) On maglev train automatic operation control system based on auto-disturbance-rejection control algorithm. In
– reference: 2008 27th Chinese Control Conference
– volume: 14
  start-page: 177
  year: 1994
  end-page: 183
  ident: b0010
  article-title: Nonlinear trackingdifferentiator
  publication-title: J. Syst. Sci. Math. Sci.
– volume: 42
  start-page: 202
  year: 2016
  end-page: 212
  ident: b0055
  article-title: Research on linear / nonlinear auto disturbance rejection switching control method
  publication-title: Acta Autom. Sin.
– reference: Chen, X., Ma, W., Xie, G., Hei, X., Wang, F., & Tan, S (2019) A Survey of Control Algorithm for Automatic Train Operation. In
– start-page: 4989
  year: 2003
  end-page: 4996
  ident: b0060
  article-title: Scaling and bandwidth-parameterization based controller tuning
  publication-title: Proceedings of the 2003 American Control Conference. Denver, Colorado, USA
– volume: 13
  start-page: 19
  year: 1998
  end-page: 23
  ident: b0025
  article-title: Auto-disturbance-rejection controller and it0s applications
  publication-title: Control Decision
– volume: 9
  start-page: 76
  year: 2017
  end-page: 90
  ident: b0040
  article-title: Speed tracking based energy-efficient freight train control through multi-algorithms combination
  publication-title: IEEE Intell. Transp. Syst. Mag.
– reference: (pp. 681-685). IEEE.
– volume: 15
  start-page: 25
  year: 2019
  end-page: 31
  ident: b0035
  article-title: Research on Algorithm of high-speed train automatic driving based on sliding mode auto disturbance rejection
  publication-title: Modern Comput.
– volume: 13
  start-page: 19
  issue: 1
  year: 1998
  ident: 10.1016/j.measurement.2020.107812_b0025
  article-title: Auto-disturbance-rejection controller and it0s applications
  publication-title: Control Decision
– volume: 15
  start-page: 25
  year: 2019
  ident: 10.1016/j.measurement.2020.107812_b0035
  article-title: Research on Algorithm of high-speed train automatic driving based on sliding mode auto disturbance rejection
  publication-title: Modern Comput.
– volume: 9
  start-page: 76
  issue: 2
  year: 2017
  ident: 10.1016/j.measurement.2020.107812_b0040
  article-title: Speed tracking based energy-efficient freight train control through multi-algorithms combination
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1049/iet-its.2016.0084
– start-page: 4989
  year: 2003
  ident: 10.1016/j.measurement.2020.107812_b0060
  article-title: Scaling and bandwidth-parameterization based controller tuning
– volume: 42
  start-page: 202
  issue: 2
  year: 2016
  ident: 10.1016/j.measurement.2020.107812_b0055
  article-title: Research on linear / nonlinear auto disturbance rejection switching control method
  publication-title: Acta Autom. Sin.
– volume: 9
  start-page: 762
  issue: 10
  year: 2016
  ident: 10.1016/j.measurement.2020.107812_b0050
  article-title: Energy-efficient speed profile approximation: an optimal switching region-based approach with adaptive resolution
  publication-title: Energies
  doi: 10.3390/en9100762
– ident: 10.1016/j.measurement.2020.107812_b0005
  doi: 10.1109/ICIEA.2019.8833794
– volume: 14
  start-page: 177
  issue: 2
  year: 1994
  ident: 10.1016/j.measurement.2020.107812_b0010
  article-title: Nonlinear trackingdifferentiator
  publication-title: J. Syst. Sci. Math. Sci.
– volume: 20
  start-page: 487
  issue: 4
  year: 1994
  ident: 10.1016/j.measurement.2020.107812_b0015
  article-title: Nonlinear PID controller
  publication-title: Acta Autom. Sin.
– ident: 10.1016/j.measurement.2020.107812_b0030
  doi: 10.1109/CHICC.2008.4605180
– volume: 8
  start-page: 687
  issue: 1
  year: 2008
  ident: 10.1016/j.measurement.2020.107812_b0045
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.05.007
– volume: 10
  start-page: 85
  issue: 1
  year: 1995
  ident: 10.1016/j.measurement.2020.107812_b0020
  article-title: The “extended state observer” of a class of uncertain systems
  publication-title: Control Decision
SSID ssj0006396
Score 2.402095
Snippet •Simulation model of train speed tracking control system.•Nonlinear auto disturbance rejection controller based on train is proposed.•Artificial intelligence...
This paper focuses on train running speed tracking control of electric traction freight train. The physical model of freight train is more complex and the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107812
SubjectTerms Algorithms
Artificial bee colony algorithm
Computer simulation
Controllers
Freight
Freight train
Freight trains
Mathematical models
Nonlinear Active Disturbance Rejection Controller
Nonlinear control
Parameters
Proportional integral derivative
Rejection
Search algorithms
Speed tracking
Swarm intelligence
Tracking control
Tracking control systems
Tracking errors
Traction control systems
Trains
Title Design of auto disturbance rejection controller for train traction control system based on artificial bee colony algorithm
URI https://dx.doi.org/10.1016/j.measurement.2020.107812
https://www.proquest.com/docview/2438724560
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AKRWK
  dateStart: 19830101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1CSkN6KG0-yKZpUKBXZ21JXtnQS0gbti3NJQ3sTUiylOyy8Qav99Ac-ts7449uUigEejFYtoytN555kp5GAB-U5bRWVkQqBOygeJ5EBqNSlCG3dzwvbGJoRvf75Wh8Lb9O0skGnPdrYUhW2fn-1qc33rorGXatObyfTodXMaUaxwDE0U5FGk9oBbtUtIvB6a-1zAMj8KgdZxER3b0FJ2uN1916HA67ipzKVZbwf8Wov7x1E4Iu3sDrjjuys_b13sKGL3fg1aOMgjvwslF0uuUuPHxqtBlsEZhZ1QtWIJ6ryhLIrPKzRoFVsk6pPvcVQ_bKmg0j6PjkKmvTPTOKeAXDcmqgNvMEs94zSnxd_mRmfrOopvXt3R5cX3z-cT6Ouo0WIidkXkeWZ5nPnU0dDyMfpEUSg93E2PjCpcQ4RCKMkCqoggfJbZKi_TmkauidUlmMxD5slovSHwDLlQ0m5LEJWSK9QhOJvXRe4e3cmTQZQNY3rXZdFnL6trnu5WYz_QgVTajoFpUB8D9V79tUHM-p9LHHTz-xK40h4znVj3rMdfdzLzWXIlM0YRwf_t_T38E2nbV6wiPYrKuVf48cp7bHjREfw4uzL9_Gl78BW90AFA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RUFs4oJa2Kq_WlXpNN7GddSL1UkHRtgUuBWlvlu3Y7aIli0L2AAd-OzN5sFCpEhKXHPyIYs9k5hv78xjgs7KczsqKSIWAAYrnSWTQK0UZYnvH88ImhnZ0j46Ho1P5c5yOl2CvPwtDtMrO9rc2vbHWXcmgm83BxWQy-B1TqnF0QBz1VKTx-BmsyJQrisC-3Cx4HuiCh-1Ci4io-Qv4tCB5nS8W4jBW5FSusoT_z0n9Y64bH3TwCtY78Mi-td_3GpZ8uQFr91IKbsDzhtLpLt_A9X5DzmCzwMy8nrECBTqvLEmZVf6soWCVrKOqT33FEL6y5sYIej6oZW2-Z0Yur2BYTjPUpp5g1ntGma_LK2amf2bVpP57_hZOD76f7I2i7qaFyAmZ15HlWeZzZ1PHw9AHaRHFYJwYG1-4lCCHSIQRUgVV8CC5TVJUQIdYDc1TKouheAfL5az074HlygYT8tiELJFeoY7EXjqvsDl3Jk02IeunVrsuDTmNbap7vtmZvicVTVLRrVQ2gd91vWhzcTym09defvqBYmn0GY_pvtPLXHd_96XmUmSKdozjrae9_SO8HJ0cHerDH8e_tmGValpy4Q4s19Xc7yLgqe2HRqFvATdUAak
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+auto+disturbance+rejection+controller+for+train+traction+control+system+based+on+artificial+bee+colony+algorithm&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Wang%2C+Biao&rft.au=Yang%2C+Jie&rft.au=Jiao%2C+Haining&rft.au=Zhu%2C+Kuan&rft.date=2020-08-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=160&rft_id=info:doi/10.1016%2Fj.measurement.2020.107812&rft.externalDocID=S026322412030350X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon