Design of auto disturbance rejection controller for train traction control system based on artificial bee colony algorithm
•Simulation model of train speed tracking control system.•Nonlinear auto disturbance rejection controller based on train is proposed.•Artificial intelligence algorithm optimizes controller parameters.•Time-delay control model of train. This paper focuses on train running speed tracking control of el...
        Saved in:
      
    
          | Published in | Measurement : journal of the International Measurement Confederation Vol. 160; p. 107812 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Elsevier Ltd
    
        01.08.2020
     Elsevier Science Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0263-2241 1873-412X  | 
| DOI | 10.1016/j.measurement.2020.107812 | 
Cover
| Abstract | •Simulation model of train speed tracking control system.•Nonlinear auto disturbance rejection controller based on train is proposed.•Artificial intelligence algorithm optimizes controller parameters.•Time-delay control model of train.
This paper focuses on train running speed tracking control of electric traction freight train. The physical model of freight train is more complex and the parameters are more unstable than other trains. Therefore, the traditional PID controller is affected by the unmodeled dynamic and unknown parameter changes, resulting in large and unstable train speed tracking error. The design of NLADRC(Nonlinear Active Disturbance Rejection Controller, NLADRC) algorithm based on the time-delay control model of train in this paper. It reduces the dependence on the train model itself and has good tracking performance. The NLADRC gives full play to the strong function and high efficiency of the nonlinear function, while the introduction of the artificial bee colony algorithm with excellent experience effectively solves the problem that the parameters of the NLADRC algorithm are difficult to be adjusted. In the simulation, part of the mechanical delay of the system are regarded as internal and external disturbance, the results show that compared with the traditional PID algorithm, this algorithm has the advantages of high tracking accuracy, strong anti-interference ability and faster response speed. | 
    
|---|---|
| AbstractList | •Simulation model of train speed tracking control system.•Nonlinear auto disturbance rejection controller based on train is proposed.•Artificial intelligence algorithm optimizes controller parameters.•Time-delay control model of train.
This paper focuses on train running speed tracking control of electric traction freight train. The physical model of freight train is more complex and the parameters are more unstable than other trains. Therefore, the traditional PID controller is affected by the unmodeled dynamic and unknown parameter changes, resulting in large and unstable train speed tracking error. The design of NLADRC(Nonlinear Active Disturbance Rejection Controller, NLADRC) algorithm based on the time-delay control model of train in this paper. It reduces the dependence on the train model itself and has good tracking performance. The NLADRC gives full play to the strong function and high efficiency of the nonlinear function, while the introduction of the artificial bee colony algorithm with excellent experience effectively solves the problem that the parameters of the NLADRC algorithm are difficult to be adjusted. In the simulation, part of the mechanical delay of the system are regarded as internal and external disturbance, the results show that compared with the traditional PID algorithm, this algorithm has the advantages of high tracking accuracy, strong anti-interference ability and faster response speed. This paper focuses on train running speed tracking control of electric traction freight train. The physical model of freight train is more complex and the parameters are more unstable than other trains. Therefore, the traditional PID controller is affected by the unmodeled dynamic and unknown parameter changes, resulting in large and unstable train speed tracking error. The design of NLADRC(Nonlinear Active Disturbance Rejection Controller, NLADRC) algorithm based on the time-delay control model of train in this paper. It reduces the dependence on the train model itself and has good tracking performance. The NLADRC gives full play to the strong function and high efficiency of the nonlinear function, while the introduction of the artificial bee colony algorithm with excellent experience effectively solves the problem that the parameters of the NLADRC algorithm are difficult to be adjusted. In the simulation, part of the mechanical delay of the system are regarded as internal and external disturbance, the results show that compared with the traditional PID algorithm, this algorithm has the advantages of high tracking accuracy, strong anti-interference ability and faster response speed.  | 
    
| ArticleNumber | 107812 | 
    
| Author | Yang, Jie Wang, Biao Chen, Yuqi Jiao, Haining Zhu, Kuan  | 
    
| Author_xml | – sequence: 1 givenname: Biao surname: Wang fullname: Wang, Biao – sequence: 2 givenname: Jie surname: Yang fullname: Yang, Jie email: yangjie@jxust.edu.cn – sequence: 3 givenname: Haining surname: Jiao fullname: Jiao, Haining – sequence: 4 givenname: Kuan surname: Zhu fullname: Zhu, Kuan – sequence: 5 givenname: Yuqi surname: Chen fullname: Chen, Yuqi  | 
    
| BookMark | eNqNkU2P1DAMhiO0SMwu_Icgzh3y1bQ9ITSwgLQSF5C4RWnqLKnaZHFSpOHXk2o4AKe92JL9-rX8-JpcxRSBkJecHTnj-vV8XMHmDWGFWI6Cib3e9Vw8IQfed7JRXHy7IgcmtGyEUPwZuc55ZoxpOegD-fUOcriPNHlqt5LoFHLZcLTRAUWYwZWQInUpFkzLAkh9QlrQhrjHf7o0n3OBlY42w0Rr3WIJPrhgFzoCVNmS4pna5T5hKN_X5-Spt0uGF3_yDfl6-_7L6WNz9_nDp9Pbu8ZJNZRmFH0PgxtbJ7wGr8Z-kEppZmFyreJtK7m0UnW-m4RXYuQt2NrhXHa6VZOWN-TVxfcB048NcjFz2jDWlUYo2XdCtZpV1ZuLymHKGcEbF4rd79uvXQxnZgduZvMXcLMDNxfg1WH4z-EBw2rx_KjZ02UWKoifAdBkF6A-YQpYf2CmFB7h8htz3afa | 
    
| CitedBy_id | crossref_primary_10_1049_cth2_12370 crossref_primary_10_1109_ACCESS_2021_3059443 crossref_primary_10_1177_09544070231165823 crossref_primary_10_1093_tse_tdad013 crossref_primary_10_1016_j_isatra_2021_06_020 crossref_primary_10_1016_j_neucom_2021_06_063 crossref_primary_10_1155_2021_6683584 crossref_primary_10_3390_s22072491 crossref_primary_10_1016_j_measurement_2024_114638 crossref_primary_10_3390_app122010558 crossref_primary_10_1109_TITS_2023_3264503 crossref_primary_10_1177_00202940221100298 crossref_primary_10_1088_1742_6596_2457_1_012031 crossref_primary_10_1109_TVT_2024_3354801 crossref_primary_10_3390_jmse10070865 crossref_primary_10_1177_16878132221112139 crossref_primary_10_1155_2023_6627429 crossref_primary_10_1016_j_jngse_2022_104662 crossref_primary_10_1177_01423312221146600 crossref_primary_10_1016_j_chemolab_2020_104199 crossref_primary_10_3390_s23208605 crossref_primary_10_3390_en13226093 crossref_primary_10_1155_2020_3796849  | 
    
| Cites_doi | 10.1049/iet-its.2016.0084 10.3390/en9100762 10.1109/ICIEA.2019.8833794 10.1109/CHICC.2008.4605180 10.1016/j.asoc.2007.05.007  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier Ltd Copyright Elsevier Science Ltd. Aug 2020  | 
    
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Aug 2020  | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.measurement.2020.107812 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics  | 
    
| EISSN | 1873-412X | 
    
| ExternalDocumentID | 10_1016_j_measurement_2020_107812 S026322412030350X  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF  | 
    
| ID | FETCH-LOGICAL-c349t-b288e9cb5c2f6ef4b8934460aedc54155313a347f7d2f42b15eadc51137654d63 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0263-2241 | 
    
| IngestDate | Wed Aug 13 07:29:13 EDT 2025 Thu Oct 09 00:36:26 EDT 2025 Thu Apr 24 22:58:42 EDT 2025 Fri Feb 23 02:48:13 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Nonlinear Active Disturbance Rejection Controller Freight train Artificial bee colony algorithm Speed tracking  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c349t-b288e9cb5c2f6ef4b8934460aedc54155313a347f7d2f42b15eadc51137654d63 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2438724560 | 
    
| PQPubID | 2047460 | 
    
| ParticipantIDs | proquest_journals_2438724560 crossref_citationtrail_10_1016_j_measurement_2020_107812 crossref_primary_10_1016_j_measurement_2020_107812 elsevier_sciencedirect_doi_10_1016_j_measurement_2020_107812  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | August 2020 2020-08-00 20200801  | 
    
| PublicationDateYYYYMMDD | 2020-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2020 text: August 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London | 
    
| PublicationTitle | Measurement : journal of the International Measurement Confederation | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier Ltd Elsevier Science Ltd  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd  | 
    
| References | Zhiqiang, L., Yun, L., & Xu, W (2008) On maglev train automatic operation control system based on auto-disturbance-rejection control algorithm. In Jing-Qing, Wei (b0010) 1994; 14 Yang, Jia, Fu (b0040) 2017; 9 Chen, X., Ma, W., Xie, G., Hei, X., Wang, F., & Tan, S (2019) A Survey of Control Algorithm for Automatic Train Operation. In Karaboga, Basturk (b0045) 2008; 8 Gao (b0060) 2003 Yang, Jia, Shaofeng, Ge, Yunxiao (b0050) 2016; 9 (pp. 2405-2410). IEEE. Han Jing-Qing. Nonlinear PID controller. Acta Automatica Sinica, 20(4): 487−490. Jing-Qing (b0015) 1994; 20 Kunyang, Honghui, Jinsong (b0035) 2019; 15 2008 27th Chinese Control Conference Jing-Qing (b0025) 1998; 13 Jing-Qing (b0020) 1995; 10 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA) Jie, Xiaohui, Yuanqing, Zhiqiang (b0055) 2016; 42 (pp. 681-685). IEEE. Jing-Qing (10.1016/j.measurement.2020.107812_b0020) 1995; 10 10.1016/j.measurement.2020.107812_b0030 Jing-Qing (10.1016/j.measurement.2020.107812_b0010) 1994; 14 Yang (10.1016/j.measurement.2020.107812_b0040) 2017; 9 Kunyang (10.1016/j.measurement.2020.107812_b0035) 2019; 15 Jing-Qing (10.1016/j.measurement.2020.107812_b0025) 1998; 13 Gao (10.1016/j.measurement.2020.107812_b0060) 2003 10.1016/j.measurement.2020.107812_b0005 Karaboga (10.1016/j.measurement.2020.107812_b0045) 2008; 8 Jie (10.1016/j.measurement.2020.107812_b0055) 2016; 42 Yang (10.1016/j.measurement.2020.107812_b0050) 2016; 9 Jing-Qing (10.1016/j.measurement.2020.107812_b0015) 1994; 20  | 
    
| References_xml | – reference: 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA) – reference: (pp. 2405-2410). IEEE. Han Jing-Qing. Nonlinear PID controller. Acta Automatica Sinica, 20(4): 487−490. – volume: 10 start-page: 85 year: 1995 end-page: 88 ident: b0020 article-title: The “extended state observer” of a class of uncertain systems publication-title: Control Decision – volume: 8 start-page: 687 year: 2008 end-page: 697 ident: b0045 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. – volume: 20 start-page: 487 year: 1994 end-page: 490 ident: b0015 article-title: Nonlinear PID controller publication-title: Acta Autom. Sin. – volume: 9 start-page: 762 year: 2016 ident: b0050 article-title: Energy-efficient speed profile approximation: an optimal switching region-based approach with adaptive resolution publication-title: Energies – reference: Zhiqiang, L., Yun, L., & Xu, W (2008) On maglev train automatic operation control system based on auto-disturbance-rejection control algorithm. In – reference: 2008 27th Chinese Control Conference – volume: 14 start-page: 177 year: 1994 end-page: 183 ident: b0010 article-title: Nonlinear trackingdifferentiator publication-title: J. Syst. Sci. Math. Sci. – volume: 42 start-page: 202 year: 2016 end-page: 212 ident: b0055 article-title: Research on linear / nonlinear auto disturbance rejection switching control method publication-title: Acta Autom. Sin. – reference: Chen, X., Ma, W., Xie, G., Hei, X., Wang, F., & Tan, S (2019) A Survey of Control Algorithm for Automatic Train Operation. In – start-page: 4989 year: 2003 end-page: 4996 ident: b0060 article-title: Scaling and bandwidth-parameterization based controller tuning publication-title: Proceedings of the 2003 American Control Conference. Denver, Colorado, USA – volume: 13 start-page: 19 year: 1998 end-page: 23 ident: b0025 article-title: Auto-disturbance-rejection controller and it0s applications publication-title: Control Decision – volume: 9 start-page: 76 year: 2017 end-page: 90 ident: b0040 article-title: Speed tracking based energy-efficient freight train control through multi-algorithms combination publication-title: IEEE Intell. Transp. Syst. Mag. – reference: (pp. 681-685). IEEE. – volume: 15 start-page: 25 year: 2019 end-page: 31 ident: b0035 article-title: Research on Algorithm of high-speed train automatic driving based on sliding mode auto disturbance rejection publication-title: Modern Comput. – volume: 13 start-page: 19 issue: 1 year: 1998 ident: 10.1016/j.measurement.2020.107812_b0025 article-title: Auto-disturbance-rejection controller and it0s applications publication-title: Control Decision – volume: 15 start-page: 25 year: 2019 ident: 10.1016/j.measurement.2020.107812_b0035 article-title: Research on Algorithm of high-speed train automatic driving based on sliding mode auto disturbance rejection publication-title: Modern Comput. – volume: 9 start-page: 76 issue: 2 year: 2017 ident: 10.1016/j.measurement.2020.107812_b0040 article-title: Speed tracking based energy-efficient freight train control through multi-algorithms combination publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1049/iet-its.2016.0084 – start-page: 4989 year: 2003 ident: 10.1016/j.measurement.2020.107812_b0060 article-title: Scaling and bandwidth-parameterization based controller tuning – volume: 42 start-page: 202 issue: 2 year: 2016 ident: 10.1016/j.measurement.2020.107812_b0055 article-title: Research on linear / nonlinear auto disturbance rejection switching control method publication-title: Acta Autom. Sin. – volume: 9 start-page: 762 issue: 10 year: 2016 ident: 10.1016/j.measurement.2020.107812_b0050 article-title: Energy-efficient speed profile approximation: an optimal switching region-based approach with adaptive resolution publication-title: Energies doi: 10.3390/en9100762 – ident: 10.1016/j.measurement.2020.107812_b0005 doi: 10.1109/ICIEA.2019.8833794 – volume: 14 start-page: 177 issue: 2 year: 1994 ident: 10.1016/j.measurement.2020.107812_b0010 article-title: Nonlinear trackingdifferentiator publication-title: J. Syst. Sci. Math. Sci. – volume: 20 start-page: 487 issue: 4 year: 1994 ident: 10.1016/j.measurement.2020.107812_b0015 article-title: Nonlinear PID controller publication-title: Acta Autom. Sin. – ident: 10.1016/j.measurement.2020.107812_b0030 doi: 10.1109/CHICC.2008.4605180 – volume: 8 start-page: 687 issue: 1 year: 2008 ident: 10.1016/j.measurement.2020.107812_b0045 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.05.007 – volume: 10 start-page: 85 issue: 1 year: 1995 ident: 10.1016/j.measurement.2020.107812_b0020 article-title: The “extended state observer” of a class of uncertain systems publication-title: Control Decision  | 
    
| SSID | ssj0006396 | 
    
| Score | 2.402095 | 
    
| Snippet | •Simulation model of train speed tracking control system.•Nonlinear auto disturbance rejection controller based on train is proposed.•Artificial intelligence... This paper focuses on train running speed tracking control of electric traction freight train. The physical model of freight train is more complex and the...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 107812 | 
    
| SubjectTerms | Algorithms Artificial bee colony algorithm Computer simulation Controllers Freight Freight train Freight trains Mathematical models Nonlinear Active Disturbance Rejection Controller Nonlinear control Parameters Proportional integral derivative Rejection Search algorithms Speed tracking Swarm intelligence Tracking control Tracking control systems Tracking errors Traction control systems Trains  | 
    
| Title | Design of auto disturbance rejection controller for train traction control system based on artificial bee colony algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.measurement.2020.107812 https://www.proquest.com/docview/2438724560  | 
    
| Volume | 160 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AKRWK dateStart: 19830101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1CSkN6KG0-yKZpUKBXZ21JXtnQS0gbti3NJQ3sTUiylOyy8Qav99Ac-ts7449uUigEejFYtoytN555kp5GAB-U5bRWVkQqBOygeJ5EBqNSlCG3dzwvbGJoRvf75Wh8Lb9O0skGnPdrYUhW2fn-1qc33rorGXatObyfTodXMaUaxwDE0U5FGk9oBbtUtIvB6a-1zAMj8KgdZxER3b0FJ2uN1916HA67ipzKVZbwf8Wov7x1E4Iu3sDrjjuys_b13sKGL3fg1aOMgjvwslF0uuUuPHxqtBlsEZhZ1QtWIJ6ryhLIrPKzRoFVsk6pPvcVQ_bKmg0j6PjkKmvTPTOKeAXDcmqgNvMEs94zSnxd_mRmfrOopvXt3R5cX3z-cT6Ouo0WIidkXkeWZ5nPnU0dDyMfpEUSg93E2PjCpcQ4RCKMkCqoggfJbZKi_TmkauidUlmMxD5slovSHwDLlQ0m5LEJWSK9QhOJvXRe4e3cmTQZQNY3rXZdFnL6trnu5WYz_QgVTajoFpUB8D9V79tUHM-p9LHHTz-xK40h4znVj3rMdfdzLzWXIlM0YRwf_t_T38E2nbV6wiPYrKuVf48cp7bHjREfw4uzL9_Gl78BW90AFA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RUFs4oJa2Kq_WlXpNN7GddSL1UkHRtgUuBWlvlu3Y7aIli0L2AAd-OzN5sFCpEhKXHPyIYs9k5hv78xjgs7KczsqKSIWAAYrnSWTQK0UZYnvH88ImhnZ0j46Ho1P5c5yOl2CvPwtDtMrO9rc2vbHWXcmgm83BxWQy-B1TqnF0QBz1VKTx-BmsyJQrisC-3Cx4HuiCh-1Ci4io-Qv4tCB5nS8W4jBW5FSusoT_z0n9Y64bH3TwCtY78Mi-td_3GpZ8uQFr91IKbsDzhtLpLt_A9X5DzmCzwMy8nrECBTqvLEmZVf6soWCVrKOqT33FEL6y5sYIej6oZW2-Z0Yur2BYTjPUpp5g1ntGma_LK2amf2bVpP57_hZOD76f7I2i7qaFyAmZ15HlWeZzZ1PHw9AHaRHFYJwYG1-4lCCHSIQRUgVV8CC5TVJUQIdYDc1TKouheAfL5az074HlygYT8tiELJFeoY7EXjqvsDl3Jk02IeunVrsuDTmNbap7vtmZvicVTVLRrVQ2gd91vWhzcTym09defvqBYmn0GY_pvtPLXHd_96XmUmSKdozjrae9_SO8HJ0cHerDH8e_tmGValpy4Q4s19Xc7yLgqe2HRqFvATdUAak | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+auto+disturbance+rejection+controller+for+train+traction+control+system+based+on+artificial+bee+colony+algorithm&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Wang%2C+Biao&rft.au=Yang%2C+Jie&rft.au=Jiao%2C+Haining&rft.au=Zhu%2C+Kuan&rft.date=2020-08-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=160&rft_id=info:doi/10.1016%2Fj.measurement.2020.107812&rft.externalDocID=S026322412030350X | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |