Stability and Bifurcation Analysis of a Diffusive miR-9/Hes1 Network With Time Delay

In this paper, a model of miR-9/Hes1 interaction network involving one time delay and diffusion effect under the Neumann boundary conditions is studied. First of all, the stability of the positive equilibrium and the existence of local Hopf bifurcation and Turing-Hopf bifurcation are investigated by...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on computational biology and bioinformatics Vol. 19; no. 3; pp. 1870 - 1880
Main Authors Li, Chengxian, Liu, Haihong, Zhang, Tonghua, Zhang, Yuan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-5963
1557-9964
1557-9964
DOI10.1109/TCBB.2021.3050006

Cover

Abstract In this paper, a model of miR-9/Hes1 interaction network involving one time delay and diffusion effect under the Neumann boundary conditions is studied. First of all, the stability of the positive equilibrium and the existence of local Hopf bifurcation and Turing-Hopf bifurcation are investigated by analyzing the associated characteristic equation. Second, a algorithm for determining the direction, stability and period of the corresponding bifurcating periodic solutions is presented. The obtained results suggest that the quiescent progenitors (high steady-state Hes1) can be easily excited into oscillation by time delay whereas the differentiated state (low steady-state Hes1) is basically unaffected, and the integrated effect of delay and diffusion can induce the occurrence of spatially inhomogeneous patterns. More importantly, spatially homogeneous/inhomogeneous periodic solutions can exist simultaneously when the diffusion coefficients of Hes1 mRNA and Hes1 protein are appropriately small, conversely, there is only spatially homogeneous periodic solutions. Intriguingly, both temporal patterns and spatial-temporal patterns show that time delay can prompt Hes1 protein to shift from the high concentration state to the low concentration one ("ON" <inline-formula><tex-math notation="LaTeX">\rightarrow</tex-math> <mml:math><mml:mo>→</mml:mo></mml:math><inline-graphic xlink:href="liu-ieq1-3050006.gif"/> </inline-formula> "OFF"), where Hes1 protein shows low level whereas miR-9 shows high level. Finally, some numerical examples are presented to verify and visualize theoretical results.
AbstractList In this paper, a model of miR-9/Hes1 interaction network involving one time delay and diffusion effect under the Neumann boundary conditions is studied. First of all, the stability of the positive equilibrium and the existence of local Hopf bifurcation and Turing-Hopf bifurcation are investigated by analyzing the associated characteristic equation. Second, a algorithm for determining the direction, stability and period of the corresponding bifurcating periodic solutions is presented. The obtained results suggest that the quiescent progenitors (high steady-state Hes1) can be easily excited into oscillation by time delay whereas the differentiated state (low steady-state Hes1) is basically unaffected, and the integrated effect of delay and diffusion can induce the occurrence of spatially inhomogeneous patterns. More importantly, spatially homogeneous/inhomogeneous periodic solutions can exist simultaneously when the diffusion coefficients of Hes1 mRNA and Hes1 protein are appropriately small, conversely, there is only spatially homogeneous periodic solutions. Intriguingly, both temporal patterns and spatial-temporal patterns show that time delay can prompt Hes1 protein to shift from the high concentration state to the low concentration one ("ON" → "OFF"), where Hes1 protein shows low level whereas miR-9 shows high level. Finally, some numerical examples are presented to verify and visualize theoretical results.
In this paper, a model of miR-9/Hes1 interaction network involving one time delay and diffusion effect under the Neumann boundary conditions is studied. First of all, the stability of the positive equilibrium and the existence of local Hopf bifurcation and Turing-Hopf bifurcation are investigated by analyzing the associated characteristic equation. Second, a algorithm for determining the direction, stability and period of the corresponding bifurcating periodic solutions is presented. The obtained results suggest that the quiescent progenitors (high steady-state Hes1) can be easily excited into oscillation by time delay whereas the differentiated state (low steady-state Hes1) is basically unaffected, and the integrated effect of delay and diffusion can induce the occurrence of spatially inhomogeneous patterns. More importantly, spatially homogeneous/inhomogeneous periodic solutions can exist simultaneously when the diffusion coefficients of Hes1 mRNA and Hes1 protein are appropriately small, conversely, there is only spatially homogeneous periodic solutions. Intriguingly, both temporal patterns and spatial-temporal patterns show that time delay can prompt Hes1 protein to shift from the high concentration state to the low concentration one ("ON" → "OFF"), where Hes1 protein shows low level whereas miR-9 shows high level. Finally, some numerical examples are presented to verify and visualize theoretical results.In this paper, a model of miR-9/Hes1 interaction network involving one time delay and diffusion effect under the Neumann boundary conditions is studied. First of all, the stability of the positive equilibrium and the existence of local Hopf bifurcation and Turing-Hopf bifurcation are investigated by analyzing the associated characteristic equation. Second, a algorithm for determining the direction, stability and period of the corresponding bifurcating periodic solutions is presented. The obtained results suggest that the quiescent progenitors (high steady-state Hes1) can be easily excited into oscillation by time delay whereas the differentiated state (low steady-state Hes1) is basically unaffected, and the integrated effect of delay and diffusion can induce the occurrence of spatially inhomogeneous patterns. More importantly, spatially homogeneous/inhomogeneous periodic solutions can exist simultaneously when the diffusion coefficients of Hes1 mRNA and Hes1 protein are appropriately small, conversely, there is only spatially homogeneous periodic solutions. Intriguingly, both temporal patterns and spatial-temporal patterns show that time delay can prompt Hes1 protein to shift from the high concentration state to the low concentration one ("ON" → "OFF"), where Hes1 protein shows low level whereas miR-9 shows high level. Finally, some numerical examples are presented to verify and visualize theoretical results.
In this paper, a model of miR-9/Hes1 interaction network involving one time delay and diffusion effect under the Neumann boundary conditions is studied. First of all, the stability of the positive equilibrium and the existence of local Hopf bifurcation and Turing-Hopf bifurcation are investigated by analyzing the associated characteristic equation. Second, a algorithm for determining the direction, stability and period of the corresponding bifurcating periodic solutions is presented. The obtained results suggest that the quiescent progenitors (high steady-state Hes1) can be easily excited into oscillation by time delay whereas the differentiated state (low steady-state Hes1) is basically unaffected, and the integrated effect of delay and diffusion can induce the occurrence of spatially inhomogeneous patterns. More importantly, spatially homogeneous/inhomogeneous periodic solutions can exist simultaneously when the diffusion coefficients of Hes1 mRNA and Hes1 protein are appropriately small, conversely, there is only spatially homogeneous periodic solutions. Intriguingly, both temporal patterns and spatial-temporal patterns show that time delay can prompt Hes1 protein to shift from the high concentration state to the low concentration one ("ON" <inline-formula><tex-math notation="LaTeX">\rightarrow</tex-math> <mml:math><mml:mo>→</mml:mo></mml:math><inline-graphic xlink:href="liu-ieq1-3050006.gif"/> </inline-formula> "OFF"), where Hes1 protein shows low level whereas miR-9 shows high level. Finally, some numerical examples are presented to verify and visualize theoretical results.
In this paper, a model of miR-9/Hes1 interaction network involving one time delay and diffusion effect under the Neumann boundary conditions is studied. First of all, the stability of the positive equilibrium and the existence of local Hopf bifurcation and Turing-Hopf bifurcation are investigated by analyzing the associated characteristic equation. Second, a algorithm for determining the direction, stability and period of the corresponding bifurcating periodic solutions is presented. The obtained results suggest that the quiescent progenitors (high steady-state Hes1) can be easily excited into oscillation by time delay whereas the differentiated state (low steady-state Hes1) is basically unaffected, and the integrated effect of delay and diffusion can induce the occurrence of spatially inhomogeneous patterns. More importantly, spatially homogeneous/inhomogeneous periodic solutions can exist simultaneously when the diffusion coefficients of Hes1 mRNA and Hes1 protein are appropriately small, conversely, there is only spatially homogeneous periodic solutions. Intriguingly, both temporal patterns and spatial-temporal patterns show that time delay can prompt Hes1 protein to shift from the high concentration state to the low concentration one (“ON” [Formula Omitted] “OFF”), where Hes1 protein shows low level whereas miR-9 shows high level. Finally, some numerical examples are presented to verify and visualize theoretical results.
Author Zhang, Tonghua
Zhang, Yuan
Li, Chengxian
Liu, Haihong
Author_xml – sequence: 1
  givenname: Chengxian
  surname: Li
  fullname: Li, Chengxian
  email: 463540844@qq.com
  organization: School of Preparatory Education, Yunnan Minzu University, Kunming, China
– sequence: 2
  givenname: Haihong
  orcidid: 0000-0001-7651-1526
  surname: Liu
  fullname: Liu, Haihong
  email: lhh2020111@163.com
  organization: Department of Mathematics, Yunnan Normal University, Kunming, China
– sequence: 3
  givenname: Tonghua
  orcidid: 0000-0003-0510-1428
  surname: Zhang
  fullname: Zhang, Tonghua
  email: tonghuazhang@swin.edu.au
  organization: Department of Mathematics, Swinburne University of Technology, Melbourne, VIC, Australia
– sequence: 4
  givenname: Yuan
  orcidid: 0000-0002-8963-9526
  surname: Zhang
  fullname: Zhang, Yuan
  email: zhyuan90@sina.com
  organization: Department of Mathematics, Yuxi Normal University, Yuxi, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33417562$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPGzEUha0KVCD0B1RIlaVu2Ezi98RLkrSAhKhUUnVp2TN3hOk8wPa0yr_HaQILFqzuXXznPs45QQf90ANCnymZUkr0bL1cLKaMMDrlRBJC1Ad0TKUsC62VONj2QhZSK36ETmJ8IIQJTcRHdMS5oKVU7Bit75J1vvVpg21f44VvxlDZ5IceX_S23UQf8dBgi1e-acbo_wLu_M9Cz64gUnwL6d8Q_uDfPt3jte8Ar6C1m1N02Ng2wqd9naBf37-tl1fFzY_L6-XFTVFxoVPhqNCcsKaWNbVSMyeqStu5JlI4xkQ1J9KRfKrMV1POnNN1CQo4NFpYVxI-Qee7uY9heBohJtP5WEHb2h6GMRomSiWVpExk9Osb9GEYQ_4wU6pkeZXi80x92VOj66A2j8F3NmzMi18ZKHdAFYYYAzSm8um_XSlY3xpKzDYZs03GbJMx-2Sykr5Rvgx_T3O203gAeOU1p6qcS_4M65iVOw
CODEN ITCBCY
CitedBy_id crossref_primary_10_1002_ame2_12394
crossref_primary_10_1016_j_chaos_2022_112659
crossref_primary_10_3390_app13042290
Cites_doi 10.1038/nature06642
10.1109/TNB.2017.2675446
10.1021/acschemneuro.7b00423
10.1038/srep21037
10.1098/rstb.1952.0012
10.1038/ncomms4399
10.1016/S0960-9822(03)00494-9
10.1038/nature02871
10.1007/s11071-014-1516-9
10.1007/s11071-013-1114-2
10.1038/nrn2037
10.1098/rsta.2006.1761
10.1007/978-1-4612-4050-1
10.1111/gtc.12009
10.1103/PhysRevE.90.052908
10.1016/j.physa.2015.03.076
10.1007/s11071-014-1438-6
10.1038/nrg1379
10.1016/j.celrep.2012.05.017
10.1038/nn.2208
10.1016/j.jtbi.2010.12.016
10.1016/S0092-8674(04)00045-5
10.1016/j.cnsns.2017.06.008
10.1016/j.nonrwa.2019.03.013
10.1007/978-1-4612-9892-2
10.1007/s10884-018-9702-y
10.1016/j.neuron.2008.02.014
10.1371/journal.pone.0017029
10.1109/TNB.2017.2669112
10.1038/nrm3591
10.1073/pnas.0901466106
10.1016/j.cell.2015.06.032
10.1007/s11071-015-1988-2
10.1038/nrg3162
10.1038/nature07228
10.1242/dev.02403
10.1016/S0014-5793(03)00279-5
10.1103/PhysRevLett.111.058104
10.1038/msb4100181
10.1142/S0218127416501674
10.1126/science.1111444
10.7554/elife.16118
10.1038/msb.2008.58
10.1007/s10867-015-9391-2
10.1142/S0218127417501942
10.1016/S0960-9822(03)00534-7
10.1098/rsif.2012.0988
10.1126/science.1242366
10.1007/s11071-016-2873-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TCBB.2021.3050006
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 1880
ExternalDocumentID 33417562
10_1109_TCBB_2021_3050006
9316785
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Yunnan Province, Young Academic and Technical Leaders Program
  grantid: 2019HB015
– fundername: National Natural Science Foundation of China
  grantid: 61903323/11762022
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
AAYXX
CITATION
AAYOK
ADPZR
CGR
CUY
CVF
ECM
EIF
NPM
RIG
W7O
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-b149302fd5d1a592b4cc9a89054b224c805b03345490132bb9d7e6e3ef94ab703
IEDL.DBID RIE
ISSN 1545-5963
1557-9964
IngestDate Sun Sep 28 02:12:18 EDT 2025
Mon Jun 30 05:20:13 EDT 2025
Thu Apr 03 07:04:32 EDT 2025
Sat Oct 25 04:05:13 EDT 2025
Thu Apr 24 23:12:21 EDT 2025
Wed Aug 27 02:24:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-b149302fd5d1a592b4cc9a89054b224c805b03345490132bb9d7e6e3ef94ab703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7651-1526
0000-0002-8963-9526
0000-0003-0510-1428
PMID 33417562
PQID 2672805638
PQPubID 85499
PageCount 11
ParticipantIDs proquest_journals_2672805638
proquest_miscellaneous_2476565124
pubmed_primary_33417562
crossref_citationtrail_10_1109_TCBB_2021_3050006
ieee_primary_9316785
crossref_primary_10_1109_TCBB_2021_3050006
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationTitleAlternate IEEE/ACM Trans Comput Biol Bioinform
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Rene (ref49) 1968
ref12
ref15
ref14
ref53
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
Hassard (ref52) 1981
ref34
ref37
ref36
ref31
Wu (ref50) 1996
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Lewin (ref23) 2000
ref24
Hale (ref51) 1977
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref7
  doi: 10.1038/nature06642
– ident: ref41
  doi: 10.1109/TNB.2017.2675446
– ident: ref21
  doi: 10.1021/acschemneuro.7b00423
– ident: ref26
  doi: 10.1038/srep21037
– ident: ref36
  doi: 10.1098/rstb.1952.0012
– ident: ref8
  doi: 10.1038/ncomms4399
– ident: ref24
  doi: 10.1016/S0960-9822(03)00494-9
– ident: ref6
  doi: 10.1038/nature02871
– ident: ref34
  doi: 10.1007/s11071-014-1516-9
– ident: ref35
  doi: 10.1007/s11071-013-1114-2
– ident: ref14
  doi: 10.1038/nrn2037
– ident: ref46
  doi: 10.1098/rsta.2006.1761
– volume-title: Discourse on Method and the Meditations
  year: 1968
  ident: ref49
– volume-title: Theory and Applications of Partial Differential Equations
  year: 1996
  ident: ref50
  doi: 10.1007/978-1-4612-4050-1
– ident: ref5
  doi: 10.1111/gtc.12009
– ident: ref38
  doi: 10.1103/PhysRevE.90.052908
– ident: ref47
  doi: 10.1016/S0960-9822(03)00494-9
– ident: ref28
  doi: 10.1016/j.physa.2015.03.076
– ident: ref33
  doi: 10.1007/s11071-014-1438-6
– ident: ref4
  doi: 10.1038/nrg1379
– ident: ref15
  doi: 10.1016/j.celrep.2012.05.017
– ident: ref19
  doi: 10.1038/nn.2208
– volume-title: Genes VII
  year: 2000
  ident: ref23
– ident: ref53
  doi: 10.1016/j.jtbi.2010.12.016
– ident: ref1
  doi: 10.1016/S0092-8674(04)00045-5
– ident: ref27
  doi: 10.1016/j.cnsns.2017.06.008
– ident: ref43
  doi: 10.1016/j.nonrwa.2019.03.013
– volume-title: Theory of Functional Differential Equation
  year: 1977
  ident: ref51
  doi: 10.1007/978-1-4612-9892-2
– ident: ref32
  doi: 10.1007/s10884-018-9702-y
– ident: ref16
  doi: 10.1016/j.neuron.2008.02.014
– ident: ref3
  doi: 10.1371/journal.pone.0017029
– ident: ref25
  doi: 10.1109/TNB.2017.2669112
– ident: ref54
  doi: 10.1038/nrm3591
– ident: ref9
  doi: 10.1073/pnas.0901466106
– ident: ref29
  doi: 10.1016/j.cell.2015.06.032
– ident: ref42
  doi: 10.1007/s11071-015-1988-2
– ident: ref44
  doi: 10.1038/nrg3162
– ident: ref10
  doi: 10.1038/nature07228
– ident: ref17
  doi: 10.1242/dev.02403
– ident: ref48
  doi: 10.1016/S0014-5793(03)00279-5
– ident: ref22
  doi: 10.1103/PhysRevLett.111.058104
– ident: ref13
  doi: 10.1038/msb4100181
– ident: ref40
  doi: 10.1142/S0218127416501674
– ident: ref2
  doi: 10.1126/science.1111444
– ident: ref12
  doi: 10.7554/elife.16118
– ident: ref31
  doi: 10.1016/j.jtbi.2010.12.016
– ident: ref11
  doi: 10.1038/msb.2008.58
– volume-title: Theory and Applications of Hopf Bifurcation
  year: 1981
  ident: ref52
– ident: ref20
  doi: 10.1007/s10867-015-9391-2
– ident: ref37
  doi: 10.1142/S0218127417501942
– ident: ref45
  doi: 10.1016/S0960-9822(03)00534-7
– ident: ref30
  doi: 10.1098/rsif.2012.0988
– ident: ref18
  doi: 10.1126/science.1242366
– ident: ref39
  doi: 10.1007/s11071-016-2873-3
SSID ssj0024904
Score 2.327213
Snippet In this paper, a model of miR-9/Hes1 interaction network involving one time delay and diffusion effect under the Neumann boundary conditions is studied. First...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1870
SubjectTerms Algorithms
Bifurcation
Boundary conditions
Computer Simulation
Delay effects
Delays
Diffusion
Diffusion effects
Eigenvalues
Eigenvectors
Hes1
HES1 protein
Hopf bifurcation
Low level
Mathematical model
MicroRNAs - genetics
miR-9
Models, Biological
mRNA
Oscillators
Proteins
Stability analysis
Steady state
time delay
Time lag
Turing-Hopf bifurcation
Title Stability and Bifurcation Analysis of a Diffusive miR-9/Hes1 Network With Time Delay
URI https://ieeexplore.ieee.org/document/9316785
https://www.ncbi.nlm.nih.gov/pubmed/33417562
https://www.proquest.com/docview/2672805638
https://www.proquest.com/docview/2476565124
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1557-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024904
  issn: 1545-5963
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lUC9lEeBBgoyEidEdvOwnfjItlQrpPaAtqK3yHZsdUXJojY5LL-eGeeBQIC4RYrzmpmMP3seH8CbJHEld0STqkxKTbVVrI2RCOTS1LpcptrR1sD5hVxe8o9X4moH3k21MM65kHzmZnQYYvn1xna0VTZXVLZdil3YLUrZ12r97KunAlUgIYJYoFUNEcw0UfPVyWKBK8EsnaFxk3_eh_s5eu9CyOyX6Sjwq_wdaoYp5-wBnI8v22eafJl1rZnZ77_1cfzfr3kIBwP2ZO97Y3kEO655DPd6NsrtIawQeIZU2S3TTc0Wa9_d9ht6bGxdwjaeaXa69r6jtHf2df0pVvOlu0vZRZ9Pzj6v22tGhSXs1N3o7RO4PPuwOlnGA-lCbHOu2tjgkilPMl-LOtVCZYZbq3SpENoZnO5tmQiToPRQqxSmMUbVhZMud15xbdB_PIW9ZtO4I2CFVEVurbG1F9xzrrxH8FbaOvPSWV1GkIyyr-zQkZyIMW6qsDJJVEWaq0hz1aC5CN5Ol3zr23H8a_AhSX0aOAg8guNRwdXww95VmSSeLoHeKILX02n81Sh-ohu36XAMLxD9IkLiETzrDWO692hPz__8zBewn1HdRMiUPIa99rZzLxHNtOZVMOMf0LLqwA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIqAXXi0QKGAkTojs5mEn8ZFtqRbo7gFtRW-R7YzFipJFbXJYfj1j54FAgLhFivOamYw_ex4fwMsowoKjo0mVOnZNtWWotM4IyMWxwTSLFbqtgcUym5_x9-fifAdej7UwiOiTz3DiDn0sv9qY1m2VTaUr2y7ENbguOOeiq9b62VlPerJAhwlCQXbVxzDjSE5XR7MZrQWTeELm7Tz0HtxMyX_nIkt-mZA8w8rfwaafdE7uwGJ43S7X5MukbfTEfP-tk-P_fs9duN2jT_amM5d7sIP1fbjR8VFu92FF0NMny26Zqis2W9v2stvSY0PzEraxTLHjtbWtS3xnX9cfQzmd41XMll1GOfu0bj4zV1rCjvFCbQ_g7OTt6mge9rQLoUm5bEJNi6Y0SmwlqlgJmWhujFSFJHCnacI3RSR0RNIjvbpAjdayyjHDFK3kSpMHeQC79abGR8DyTOapMdpUVnDLubSW4FthqsRmaFQRQDTIvjR9T3JHjXFR-rVJJEunudJpruw1F8Cr8ZJvXUOOfw3ed1IfB_YCD-BwUHDZ_7JXZZI5pi5B_iiAF-Np-tlcBEXVuGlpDM8J_xJG4gE87AxjvPdgT4___MzncGu-WpyWp--WH57AXuKqKHze5CHsNpctPiVs0-hn3qR_AEZp7g0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+Bifurcation+Analysis+of+a+Diffusive+miR-9%2FHes1+Network+With+Time+Delay&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Li%2C+Chengxian&rft.au=Liu%2C+Haihong&rft.au=Zhang%2C+Tonghua&rft.au=Zhang%2C+Yuan&rft.date=2022-05-01&rft.eissn=1557-9964&rft.volume=19&rft.issue=3&rft.spage=1870&rft_id=info:doi/10.1109%2FTCBB.2021.3050006&rft_id=info%3Apmid%2F33417562&rft.externalDocID=33417562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon