Distributed Joint Detection, Tracking, and Classification via Labeled Multi-Bernoulli Filtering

In this article, we propose a novel approach to distributed joint detection, tracking, and classification (D-JDTC) of multiple targets by means of a multisensor network. The proposed approach relies on labeled multi-Bernoulli (LMB) random finite set modeling of the multisensor state, and consists of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 54; no. 3; pp. 1429 - 1441
Main Authors Li, Gaiyou, Battistelli, Giorgio, Chisci, Luigi, Gao, Lin, Wei, Ping
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2022.3208038

Cover

More Information
Summary:In this article, we propose a novel approach to distributed joint detection, tracking, and classification (D-JDTC) of multiple targets by means of a multisensor network. The proposed approach relies on labeled multi-Bernoulli (LMB) random finite set modeling of the multisensor state, and consists of two main tasks, that is, local filtering in each individual node and data fusion among multiple nodes. For local filtering, the LMB filter is extended to JDTC by augmenting the target state to incorporate class and mode information. Further, the well-known generalized covariance intersection and recently developed minimum information loss fusion paradigms are exploited for data fusion among sensors. The effectiveness of the resulting algorithm, called D-JDTC-LMB, is assessed via simulation experiments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2022.3208038