Extracting ROI-Based Contourlet Subband Energy Feature From the sMRI Image for Alzheimer's Disease Classification

Structural magnetic resonance imaging (sMRI)-based Alzheimer's disease (AD) classification and its prodromal stage-mild cognitive impairment (MCI) classification have attracted many attentions and been widely investigated in recent years. Owing to the high dimensionality, representation of the...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on computational biology and bioinformatics Vol. 19; no. 3; pp. 1627 - 1639
Main Authors Feng, Jinwang, Zhang, Shao-Wu, Chen, Luonan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-5963
1557-9964
1557-9964
DOI10.1109/TCBB.2021.3051177

Cover

Abstract Structural magnetic resonance imaging (sMRI)-based Alzheimer's disease (AD) classification and its prodromal stage-mild cognitive impairment (MCI) classification have attracted many attentions and been widely investigated in recent years. Owing to the high dimensionality, representation of the sMRI image becomes a difficult issue in AD classification. Furthermore, regions of interest (ROI) reflected in the sMRI image are not characterized properly by spatial analysis techniques, which has been a main cause of weakening the discriminating ability of the extracted spatial feature. In this study, we propose a ROI-based contourlet subband energy (ROICSE) feature to represent the sMRI image in the frequency domain for AD classification. Specifically, a preprocessed sMRI image is first segmented into 90 ROIs by a constructed brain mask. Instead of extracting features from the 90 ROIs in the spatial domain, the contourlet transform is performed on each of these ROIs to obtain their energy subbands. And then for an ROI, a subband energy (SE) feature vector is constructed to capture its energy distribution and contour information. Afterwards, SE feature vectors of the 90 ROIs are concatenated to form a ROICSE feature of the sMRI image. Finally, support vector machine (SVM) classifier is used to classify 880 subjects from ADNI and OASIS databases. Experimental results show that the ROICSE approach outperforms six other state-of-the-art methods, demonstrating that energy and contour information of the ROI are important to capture differences between the sMRI images of AD and HC subjects. Meanwhile, brain regions related to AD can also be found using the ROICSE feature, indicating that the ROICSE feature can be a promising assistant imaging marker for the AD diagnosis via the sMRI image. Code and Sample IDs of this paper can be downloaded at https://github.com/NWPU-903PR/ROICSE.git .
AbstractList Structural magnetic resonance imaging (sMRI)-based Alzheimer's disease (AD) classification and its prodromal stage-mild cognitive impairment (MCI) classification have attracted many attentions and been widely investigated in recent years. Owing to the high dimensionality, representation of the sMRI image becomes a difficult issue in AD classification. Furthermore, regions of interest (ROI) reflected in the sMRI image are not characterized properly by spatial analysis techniques, which has been a main cause of weakening the discriminating ability of the extracted spatial feature. In this study, we propose a ROI-based contourlet subband energy (ROICSE) feature to represent the sMRI image in the frequency domain for AD classification. Specifically, a preprocessed sMRI image is first segmented into 90 ROIs by a constructed brain mask. Instead of extracting features from the 90 ROIs in the spatial domain, the contourlet transform is performed on each of these ROIs to obtain their energy subbands. And then for an ROI, a subband energy (SE) feature vector is constructed to capture its energy distribution and contour information. Afterwards, SE feature vectors of the 90 ROIs are concatenated to form a ROICSE feature of the sMRI image. Finally, support vector machine (SVM) classifier is used to classify 880 subjects from ADNI and OASIS databases. Experimental results show that the ROICSE approach outperforms six other state-of-the-art methods, demonstrating that energy and contour information of the ROI are important to capture differences between the sMRI images of AD and HC subjects. Meanwhile, brain regions related to AD can also be found using the ROICSE feature, indicating that the ROICSE feature can be a promising assistant imaging marker for the AD diagnosis via the sMRI image. Code and Sample IDs of this paper can be downloaded at https://github.com/NWPU-903PR/ROICSE.git .
Structural magnetic resonance imaging (sMRI)-based Alzheimer's disease (AD) classification and its prodromal stage-mild cognitive impairment (MCI) classification have attracted many attentions and been widely investigated in recent years. Owing to the high dimensionality, representation of the sMRI image becomes a difficult issue in AD classification. Furthermore, regions of interest (ROI) reflected in the sMRI image are not characterized properly by spatial analysis techniques, which has been a main cause of weakening the discriminating ability of the extracted spatial feature. In this study, we propose a ROI-based contourlet subband energy (ROICSE) feature to represent the sMRI image in the frequency domain for AD classification. Specifically, a preprocessed sMRI image is first segmented into 90 ROIs by a constructed brain mask. Instead of extracting features from the 90 ROIs in the spatial domain, the contourlet transform is performed on each of these ROIs to obtain their energy subbands. And then for an ROI, a subband energy (SE) feature vector is constructed to capture its energy distribution and contour information. Afterwards, SE feature vectors of the 90 ROIs are concatenated to form a ROICSE feature of the sMRI image. Finally, support vector machine (SVM) classifier is used to classify 880 subjects from ADNI and OASIS databases. Experimental results show that the ROICSE approach outperforms six other state-of-the-art methods, demonstrating that energy and contour information of the ROI are important to capture differences between the sMRI images of AD and HC subjects. Meanwhile, brain regions related to AD can also be found using the ROICSE feature, indicating that the ROICSE feature can be a promising assistant imaging marker for the AD diagnosis via the sMRI image. Code and Sample IDs of this paper can be downloaded at https://github.com/NWPU-903PR/ROICSE.git.Structural magnetic resonance imaging (sMRI)-based Alzheimer's disease (AD) classification and its prodromal stage-mild cognitive impairment (MCI) classification have attracted many attentions and been widely investigated in recent years. Owing to the high dimensionality, representation of the sMRI image becomes a difficult issue in AD classification. Furthermore, regions of interest (ROI) reflected in the sMRI image are not characterized properly by spatial analysis techniques, which has been a main cause of weakening the discriminating ability of the extracted spatial feature. In this study, we propose a ROI-based contourlet subband energy (ROICSE) feature to represent the sMRI image in the frequency domain for AD classification. Specifically, a preprocessed sMRI image is first segmented into 90 ROIs by a constructed brain mask. Instead of extracting features from the 90 ROIs in the spatial domain, the contourlet transform is performed on each of these ROIs to obtain their energy subbands. And then for an ROI, a subband energy (SE) feature vector is constructed to capture its energy distribution and contour information. Afterwards, SE feature vectors of the 90 ROIs are concatenated to form a ROICSE feature of the sMRI image. Finally, support vector machine (SVM) classifier is used to classify 880 subjects from ADNI and OASIS databases. Experimental results show that the ROICSE approach outperforms six other state-of-the-art methods, demonstrating that energy and contour information of the ROI are important to capture differences between the sMRI images of AD and HC subjects. Meanwhile, brain regions related to AD can also be found using the ROICSE feature, indicating that the ROICSE feature can be a promising assistant imaging marker for the AD diagnosis via the sMRI image. Code and Sample IDs of this paper can be downloaded at https://github.com/NWPU-903PR/ROICSE.git.
Author Zhang, Shao-Wu
Feng, Jinwang
Chen, Luonan
Author_xml – sequence: 1
  givenname: Jinwang
  orcidid: 0000-0002-2713-9825
  surname: Feng
  fullname: Feng, Jinwang
  email: jinwangfeng11@163.com
  organization: Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Shao-Wu
  orcidid: 0000-0003-1305-7447
  surname: Zhang
  fullname: Zhang, Shao-Wu
  email: zhangsw@nwpu.edu.cn
  organization: Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Luonan
  orcidid: 0000-0002-3960-0068
  surname: Chen
  fullname: Chen, Luonan
  email: lnchen@sibs.ac.cn
  organization: Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33434134$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URH_gARASssSCbjL4N4mXnTADIxVVKmVtOfHN1FUSt7YjUZ4eT2foogtW9uI7177nO0VHk58AofeULCgl6stNs1wuGGF0wYmktKpeoRMqZVUoVYqj3V3IQqqSH6PTGO8IYUIR8QYdcy64oFycoIfV7xRMl9y0xddXm2JpIljc-Cn5OQyQ8M-5bc1k8WqCsH3EazBpDoDXwY843QKOP643eDOaLeDeB3wx_LkFN0L4HPFXFyGPw81gYnS960xyfnqLXvdmiPDucJ6hX-vVTfO9uLz6tmkuLouOC5UKQ3rDagUKgBBaybaUNVEKpDSt6klNhZFSWglK2FIJafvOKigty03Ysq75GTrfz70P_mGGmPToYgfDYCbwc9RMVJVQKteQ0U8v0Lu8_ZR_p1lZsZpISVimPh6ouR3B6vvgRhMe9b8yM0D3QBd8jAH6Z4QSvROmd8L0Tpg-CMuZ6kWmc-mpp6zFDf9NftgnHQA8v6R4LqDm_C9xsKCk
CODEN ITCBCY
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107067
crossref_primary_10_3390_app13127253
crossref_primary_10_1093_cercor_bhae132
crossref_primary_10_1177_08953996241300023
crossref_primary_10_1016_j_bspc_2025_107583
crossref_primary_10_3389_fnagi_2024_1453051
crossref_primary_10_1109_TIM_2024_3366574
crossref_primary_10_1080_20479700_2023_2175414
crossref_primary_10_1016_j_neunet_2025_107203
crossref_primary_10_54097_hset_v46i_7705
Cites_doi 10.1016/j.jalz.2013.05.1769
10.1016/b978-0-12-372560-8.x5000-1
10.1007/s11682-015-9437-x
10.1016/j.neuroimage.2019.116459
10.1109/TIP.2005.859376
10.1109/TMI.2016.2582386
10.1016/j.compbiomed.2017.10.002
10.1166/jmihi.2018.2381
10.1016/j.neurobiolaging.2013.02.002
10.1109/42.668698
10.1371/journal.pcbi.1002987
10.1148/radiol.10100734
10.1016/j.patrec.2010.03.004
10.3233/JAD-170069
10.1016/j.neuroimage.2010.06.013
10.1006/nimg.2000.0582
10.1007/s11042-014-2123-y
10.1109/tcbb.2012.141
10.1016/j.media.2020.101694
10.1371/journal.pone.0037828
10.1006/nimg.2001.0978
10.1109/TBME.2014.2310709
10.1109/LSP.2017.2670026
10.3389/fninf.2011.00022
10.1016/j.neurobiolaging.2010.11.008
10.1118/1.3488894
10.1016/j.neuroimage.2008.10.031
10.1093/brain/awp007
10.1109/TCYB.2016.2644718
10.1016/j.neuroimage.2011.09.085
10.1016/j.artmed.2020.101940
10.1111/j.1365-2796.2004.01388.x
10.1007/s11042-017-5581-1
10.1109/TMI.2011.2147327
10.1007/s11682-011-9142-3
10.1016/j.neuroimage.2012.09.065
10.1109/TBME.2014.2372011
10.1016/j.neuroimage.2011.12.071
10.1016/j.neucom.2020.09.012
10.1007/s10115-006-0043-5
10.1109/TMI.2011.2167628
10.1002/hipo.20626
10.1016/j.jalz.2019.02.007
10.1016/j.jalz.2012.04.007
10.1109/TCBB.2016.2635144
10.1523/JNEUROSCI.0141-08.2008
10.1109/TSUSC.2018.2883822
10.1016/j.jalz.2018.06.2498
10.1371/journal.pone.0047406
10.1109/TCBB.2017.2776910
10.1016/j.neuroimage.2007.10.031
10.1109/ISBI.2014.6868045
10.1007/s00234-008-0463-x
10.1049/iet-ipr.2016.0495
10.1016/j.neuroimage.2011.01.008
10.1016/j.neucom.2011.12.059
10.1007/s00138-012-0462-0
10.1016/j.neucom.2014.09.072
10.1109/TPAMI.2018.2889096
10.1007/s10916-018-0932-7
10.1007/s11011-018-0296-1
10.1016/j.neucom.2010.06.025
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TCBB.2021.3051177
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 1639
ExternalDocumentID 33434134
10_1109_TCBB_2021_3051177
9320583
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61873202; 61473232; 91430111; 31771476; 81471047; 31930022; 12026608; 11871456
  funderid: 10.13039/501100001809
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDB38040400
– fundername: Shanghai Municipal Science and Technology Major Project
  grantid: 2017SHZDZX01
– fundername: National Key R&D Program
  grantid: 2017YFA0505500; 2016YFC0903400
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
AAYXX
CITATION
AAYOK
ADPZR
CGR
CUY
CVF
ECM
EIF
NPM
RIG
W7O
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-a0fa289e9ee00175b658099e55ab9f0814a555d5e94d6945dfcd9e6d2051d6883
IEDL.DBID RIE
ISSN 1545-5963
1557-9964
IngestDate Thu Oct 02 10:44:35 EDT 2025
Mon Jun 30 03:47:59 EDT 2025
Thu Apr 03 07:04:32 EDT 2025
Sat Oct 25 04:05:13 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Wed Aug 27 02:02:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-a0fa289e9ee00175b658099e55ab9f0814a555d5e94d6945dfcd9e6d2051d6883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3960-0068
0000-0002-2713-9825
0000-0003-1305-7447
PMID 33434134
PQID 2672805502
PQPubID 85499
PageCount 13
ParticipantIDs proquest_journals_2672805502
crossref_primary_10_1109_TCBB_2021_3051177
pubmed_primary_33434134
crossref_citationtrail_10_1109_TCBB_2021_3051177
proquest_miscellaneous_2477499413
ieee_primary_9320583
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationTitleAlternate IEEE/ACM Trans Comput Biol Bioinform
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref5
ref40
Simonyan (ref6)
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref53
  doi: 10.1016/j.jalz.2013.05.1769
– ident: ref50
  doi: 10.1016/b978-0-12-372560-8.x5000-1
– ident: ref60
  doi: 10.1007/s11682-015-9437-x
– ident: ref44
  doi: 10.1016/j.neuroimage.2019.116459
– ident: ref52
  doi: 10.1109/TIP.2005.859376
– ident: ref61
  doi: 10.1109/TMI.2016.2582386
– ident: ref7
  doi: 10.1016/j.compbiomed.2017.10.002
– ident: ref48
  doi: 10.1166/jmihi.2018.2381
– ident: ref32
  doi: 10.1016/j.neurobiolaging.2013.02.002
– ident: ref54
  doi: 10.1109/42.668698
– ident: ref8
  doi: 10.1371/journal.pcbi.1002987
– ident: ref24
  doi: 10.1148/radiol.10100734
– ident: ref3
  doi: 10.1016/j.patrec.2010.03.004
– ident: ref47
  doi: 10.3233/JAD-170069
– ident: ref55
  doi: 10.1016/j.neuroimage.2010.06.013
– ident: ref51
  doi: 10.1006/nimg.2000.0582
– ident: ref37
  doi: 10.1007/s11042-014-2123-y
– ident: ref19
  doi: 10.1109/tcbb.2012.141
– ident: ref43
  doi: 10.1016/j.media.2020.101694
– ident: ref25
  doi: 10.1371/journal.pone.0037828
– ident: ref49
  doi: 10.1006/nimg.2001.0978
– ident: ref58
  doi: 10.1109/TBME.2014.2310709
– ident: ref46
  doi: 10.1109/LSP.2017.2670026
– ident: ref12
  doi: 10.3389/fninf.2011.00022
– ident: ref21
  doi: 10.1016/j.neurobiolaging.2010.11.008
– ident: ref36
  doi: 10.1118/1.3488894
– ident: ref4
  doi: 10.1016/j.neuroimage.2008.10.031
– ident: ref29
  doi: 10.1093/brain/awp007
– ident: ref15
  doi: 10.1109/TCYB.2016.2644718
– ident: ref16
  doi: 10.1016/j.neuroimage.2011.09.085
– ident: ref5
  doi: 10.1016/j.artmed.2020.101940
– ident: ref59
  doi: 10.1111/j.1365-2796.2004.01388.x
– ident: ref26
  doi: 10.1007/s11042-017-5581-1
– ident: ref56
  doi: 10.1109/TMI.2011.2147327
– ident: ref11
  doi: 10.1007/s11682-011-9142-3
– ident: ref20
  doi: 10.1016/j.neuroimage.2012.09.065
– ident: ref18
  doi: 10.1109/TBME.2014.2372011
– ident: ref28
  doi: 10.1016/j.neuroimage.2011.12.071
– ident: ref13
  doi: 10.1016/j.neucom.2020.09.012
– ident: ref2
  doi: 10.1007/s10115-006-0043-5
– ident: ref14
  doi: 10.1109/TMI.2011.2167628
– ident: ref27
  doi: 10.1002/hipo.20626
– ident: ref38
  doi: 10.1016/j.jalz.2019.02.007
– ident: ref10
  doi: 10.1016/j.jalz.2012.04.007
– ident: ref31
  doi: 10.1109/TCBB.2016.2635144
– ident: ref22
  doi: 10.1523/JNEUROSCI.0141-08.2008
– ident: ref62
  doi: 10.1109/TSUSC.2018.2883822
– ident: ref41
  doi: 10.1016/j.jalz.2018.06.2498
– ident: ref57
  doi: 10.1371/journal.pone.0047406
– ident: ref33
  doi: 10.1109/TCBB.2017.2776910
– ident: ref34
  doi: 10.1016/j.neuroimage.2007.10.031
– ident: ref9
  doi: 10.1109/ISBI.2014.6868045
– ident: ref30
  doi: 10.1007/s00234-008-0463-x
– ident: ref40
  doi: 10.1049/iet-ipr.2016.0495
– ident: ref17
  doi: 10.1016/j.neuroimage.2011.01.008
– ident: ref63
  doi: 10.1016/j.neucom.2011.12.059
– ident: ref23
  doi: 10.1007/s00138-012-0462-0
– ident: ref39
  doi: 10.1016/j.neucom.2014.09.072
– ident: ref1
  doi: 10.1109/TPAMI.2018.2889096
– ident: ref45
  doi: 10.1007/s10916-018-0932-7
– ident: ref42
  doi: 10.1007/s11011-018-0296-1
– ident: ref6
  article-title: Very deep convolutional networks for large scale image recognition
– ident: ref35
  doi: 10.1016/j.neucom.2010.06.025
SSID ssj0024904
Score 2.395952
Snippet Structural magnetic resonance imaging (sMRI)-based Alzheimer's disease (AD) classification and its prodromal stage-mild cognitive impairment (MCI)...
Structural magnetic resonance imaging (sMRI)-based Alzheimer’s disease (AD) classification and its prodromal stage–mild cognitive impairment (MCI)...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1627
SubjectTerms Alzheimer Disease - diagnosis
Alzheimer's disease
Brain
Brain - diagnostic imaging
Brain - pathology
Classification
Cognitive ability
Cognitive Dysfunction - diagnostic imaging
Cognitive Dysfunction - pathology
contourlet transform
Contours
Diseases
Energy
Energy distribution
Feature extraction
Frequency-domain analysis
Humans
Image classification
Image segmentation
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Neurodegenerative diseases
Neuroimaging
regions of interest
Spatial analysis
subband energy feature
Support Vector Machine
Support vector machines
Transforms
Title Extracting ROI-Based Contourlet Subband Energy Feature From the sMRI Image for Alzheimer's Disease Classification
URI https://ieeexplore.ieee.org/document/9320583
https://www.ncbi.nlm.nih.gov/pubmed/33434134
https://www.proquest.com/docview/2672805502
https://www.proquest.com/docview/2477499413
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024904
  issn: 1545-5963
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB_agtIvvuojWmUFQRBzzWM3l_3Yq3f0hFMoLfRbyO5OVOzl9C4B7V_vzCYXUVT8FshukuU3u_ObzAvgxdhWVZ6hCo3KyUDJYwy1cUloXKotM1blgzEX77LTC_n2Ul3uwOshFwYRffAZjvjS-_Ldyrb8q-yIuEak8nQXdsd51uVq_ayrp32rQGYEoSKp6j2YcaSPzk8mE7IEk3hEws1Oyn24maaSz2_5izry_VX-TjW9ypndhsX2Y7tIk8-jtjEje_1bHcf_Xc0duNVzT3HcCctd2MH6HtzoulF-P4Cv02-Nz5mqP4iz9_NwQgrOCS5fRRMJXkGHjClrJ6Y-X1Awe2zXKGbr1VIQjxSbxdlczJd0QgmiwuL46vojflri-uVGvOn8QML34OToJC8Q9-FiNj0_OQ37jgyhTaVuwjKqSrLQUCOyelOG-AtRTFSqNLoidiFLpZRTqKXLtFSusk5j5mihscvyPH0Ae_WqxkcgShxr5jcqTVDG0mrCp5RjpyJrMJEmgGgLTGH7cuXcNeOq8GZLpAuGtWBYix7WAF4NU750tTr-NfiAIRkG9mgEcLhFv-h386ZIMm7iRbZcEsDz4TbtQ3aulDWuWhojiUhrTTIVwMNOaoZnb4Xt8Z_f-QT2E06q8GGUh7DXrFt8SlSnMc-8jP8AVkn1Nw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIdhe-BqMwAAjISEh0uXDTuPHdbRqYR3S1El7i2L7whBrOtpE2vbXc3bSIBAg3iLFTmL9zr7f5b4A3vR1UaQJCl-JlAyUNERfKhP5ysRSW8YqXDDm9DgZn_KPZ-JsA953uTCI6ILPsGcvnS_fLHRtf5XtE9cIRBrfgtuCcy6abK2flfWkaxZoOYEvSK5aH2YYyP3Z4WBAtmAU9ki8rZtyG-7GMbcnOP9FIbkOK38nm07pjO7DdP25TazJt15dqZ6--a2S4_-u5wHca9knO2jE5SFsYPkI7jT9KK934PvwqnJZU-UXdvJ54g9IxRlmC1jRRAKY0TGj8tKwocsYZJY_1ktko-VizohJstX0ZMImczqjGJFhdnBxc45f57h8u2IfGk8Qc104bXySE4nHcDoazg7HftuTwdcxl5WfB0VONhpKRKvghCIGQyQThciVLIhf8FwIYQRKbhLJhSm0kZgYWmhokjSNn8BmuSjxKbAc-9IyHBFHyEOuJeGT874RgVYYceVBsAYm023Bcts34yJzhksgMwtrZmHNWlg9eNdNuWyqdfxr8I6FpBvYouHB3hr9rN3PqyxKbBsvsuYiD153t2knWvdKXuKipjGcqLSUJFMe7DZS0z17LWzP_vzOV7A1nk2PsqPJ8afnsB3ZFAsXVLkHm9WyxhdEfCr10sn7D1VD-IQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+ROI-Based+Contourlet+Subband+Energy+Feature+From+the+sMRI+Image+for+Alzheimer%E2%80%99s+Disease+Classification&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Feng%2C+Jinwang&rft.au=Shao-Wu%2C+Zhang&rft.au=Chen%2C+Luonan&rft.date=2022-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5963&rft.eissn=1557-9964&rft.volume=19&rft.issue=3&rft.spage=1627&rft_id=info:doi/10.1109%2FTCBB.2021.3051177&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon