Extracting ROI-Based Contourlet Subband Energy Feature From the sMRI Image for Alzheimer's Disease Classification
Structural magnetic resonance imaging (sMRI)-based Alzheimer's disease (AD) classification and its prodromal stage-mild cognitive impairment (MCI) classification have attracted many attentions and been widely investigated in recent years. Owing to the high dimensionality, representation of the...
        Saved in:
      
    
          | Published in | IEEE/ACM transactions on computational biology and bioinformatics Vol. 19; no. 3; pp. 1627 - 1639 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.05.2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1545-5963 1557-9964 1557-9964  | 
| DOI | 10.1109/TCBB.2021.3051177 | 
Cover
| Abstract | Structural magnetic resonance imaging (sMRI)-based Alzheimer's disease (AD) classification and its prodromal stage-mild cognitive impairment (MCI) classification have attracted many attentions and been widely investigated in recent years. Owing to the high dimensionality, representation of the sMRI image becomes a difficult issue in AD classification. Furthermore, regions of interest (ROI) reflected in the sMRI image are not characterized properly by spatial analysis techniques, which has been a main cause of weakening the discriminating ability of the extracted spatial feature. In this study, we propose a ROI-based contourlet subband energy (ROICSE) feature to represent the sMRI image in the frequency domain for AD classification. Specifically, a preprocessed sMRI image is first segmented into 90 ROIs by a constructed brain mask. Instead of extracting features from the 90 ROIs in the spatial domain, the contourlet transform is performed on each of these ROIs to obtain their energy subbands. And then for an ROI, a subband energy (SE) feature vector is constructed to capture its energy distribution and contour information. Afterwards, SE feature vectors of the 90 ROIs are concatenated to form a ROICSE feature of the sMRI image. Finally, support vector machine (SVM) classifier is used to classify 880 subjects from ADNI and OASIS databases. Experimental results show that the ROICSE approach outperforms six other state-of-the-art methods, demonstrating that energy and contour information of the ROI are important to capture differences between the sMRI images of AD and HC subjects. Meanwhile, brain regions related to AD can also be found using the ROICSE feature, indicating that the ROICSE feature can be a promising assistant imaging marker for the AD diagnosis via the sMRI image. Code and Sample IDs of this paper can be downloaded at https://github.com/NWPU-903PR/ROICSE.git . | 
    
|---|---|
| AbstractList | Structural magnetic resonance imaging (sMRI)-based Alzheimer's disease (AD) classification and its prodromal stage-mild cognitive impairment (MCI) classification have attracted many attentions and been widely investigated in recent years. Owing to the high dimensionality, representation of the sMRI image becomes a difficult issue in AD classification. Furthermore, regions of interest (ROI) reflected in the sMRI image are not characterized properly by spatial analysis techniques, which has been a main cause of weakening the discriminating ability of the extracted spatial feature. In this study, we propose a ROI-based contourlet subband energy (ROICSE) feature to represent the sMRI image in the frequency domain for AD classification. Specifically, a preprocessed sMRI image is first segmented into 90 ROIs by a constructed brain mask. Instead of extracting features from the 90 ROIs in the spatial domain, the contourlet transform is performed on each of these ROIs to obtain their energy subbands. And then for an ROI, a subband energy (SE) feature vector is constructed to capture its energy distribution and contour information. Afterwards, SE feature vectors of the 90 ROIs are concatenated to form a ROICSE feature of the sMRI image. Finally, support vector machine (SVM) classifier is used to classify 880 subjects from ADNI and OASIS databases. Experimental results show that the ROICSE approach outperforms six other state-of-the-art methods, demonstrating that energy and contour information of the ROI are important to capture differences between the sMRI images of AD and HC subjects. Meanwhile, brain regions related to AD can also be found using the ROICSE feature, indicating that the ROICSE feature can be a promising assistant imaging marker for the AD diagnosis via the sMRI image. Code and Sample IDs of this paper can be downloaded at https://github.com/NWPU-903PR/ROICSE.git . Structural magnetic resonance imaging (sMRI)-based Alzheimer's disease (AD) classification and its prodromal stage-mild cognitive impairment (MCI) classification have attracted many attentions and been widely investigated in recent years. Owing to the high dimensionality, representation of the sMRI image becomes a difficult issue in AD classification. Furthermore, regions of interest (ROI) reflected in the sMRI image are not characterized properly by spatial analysis techniques, which has been a main cause of weakening the discriminating ability of the extracted spatial feature. In this study, we propose a ROI-based contourlet subband energy (ROICSE) feature to represent the sMRI image in the frequency domain for AD classification. Specifically, a preprocessed sMRI image is first segmented into 90 ROIs by a constructed brain mask. Instead of extracting features from the 90 ROIs in the spatial domain, the contourlet transform is performed on each of these ROIs to obtain their energy subbands. And then for an ROI, a subband energy (SE) feature vector is constructed to capture its energy distribution and contour information. Afterwards, SE feature vectors of the 90 ROIs are concatenated to form a ROICSE feature of the sMRI image. Finally, support vector machine (SVM) classifier is used to classify 880 subjects from ADNI and OASIS databases. Experimental results show that the ROICSE approach outperforms six other state-of-the-art methods, demonstrating that energy and contour information of the ROI are important to capture differences between the sMRI images of AD and HC subjects. Meanwhile, brain regions related to AD can also be found using the ROICSE feature, indicating that the ROICSE feature can be a promising assistant imaging marker for the AD diagnosis via the sMRI image. Code and Sample IDs of this paper can be downloaded at https://github.com/NWPU-903PR/ROICSE.git.Structural magnetic resonance imaging (sMRI)-based Alzheimer's disease (AD) classification and its prodromal stage-mild cognitive impairment (MCI) classification have attracted many attentions and been widely investigated in recent years. Owing to the high dimensionality, representation of the sMRI image becomes a difficult issue in AD classification. Furthermore, regions of interest (ROI) reflected in the sMRI image are not characterized properly by spatial analysis techniques, which has been a main cause of weakening the discriminating ability of the extracted spatial feature. In this study, we propose a ROI-based contourlet subband energy (ROICSE) feature to represent the sMRI image in the frequency domain for AD classification. Specifically, a preprocessed sMRI image is first segmented into 90 ROIs by a constructed brain mask. Instead of extracting features from the 90 ROIs in the spatial domain, the contourlet transform is performed on each of these ROIs to obtain their energy subbands. And then for an ROI, a subband energy (SE) feature vector is constructed to capture its energy distribution and contour information. Afterwards, SE feature vectors of the 90 ROIs are concatenated to form a ROICSE feature of the sMRI image. Finally, support vector machine (SVM) classifier is used to classify 880 subjects from ADNI and OASIS databases. Experimental results show that the ROICSE approach outperforms six other state-of-the-art methods, demonstrating that energy and contour information of the ROI are important to capture differences between the sMRI images of AD and HC subjects. Meanwhile, brain regions related to AD can also be found using the ROICSE feature, indicating that the ROICSE feature can be a promising assistant imaging marker for the AD diagnosis via the sMRI image. Code and Sample IDs of this paper can be downloaded at https://github.com/NWPU-903PR/ROICSE.git.  | 
    
| Author | Zhang, Shao-Wu Feng, Jinwang Chen, Luonan  | 
    
| Author_xml | – sequence: 1 givenname: Jinwang orcidid: 0000-0002-2713-9825 surname: Feng fullname: Feng, Jinwang email: jinwangfeng11@163.com organization: Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Shao-Wu orcidid: 0000-0003-1305-7447 surname: Zhang fullname: Zhang, Shao-Wu email: zhangsw@nwpu.edu.cn organization: Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Luonan orcidid: 0000-0002-3960-0068 surname: Chen fullname: Chen, Luonan email: lnchen@sibs.ac.cn organization: Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33434134$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kc1u1DAUhS1URH_gARASssSCbjL4N4mXnTADIxVVKmVtOfHN1FUSt7YjUZ4eT2foogtW9uI7177nO0VHk58AofeULCgl6stNs1wuGGF0wYmktKpeoRMqZVUoVYqj3V3IQqqSH6PTGO8IYUIR8QYdcy64oFycoIfV7xRMl9y0xddXm2JpIljc-Cn5OQyQ8M-5bc1k8WqCsH3EazBpDoDXwY843QKOP643eDOaLeDeB3wx_LkFN0L4HPFXFyGPw81gYnS960xyfnqLXvdmiPDucJ6hX-vVTfO9uLz6tmkuLouOC5UKQ3rDagUKgBBaybaUNVEKpDSt6klNhZFSWglK2FIJafvOKigty03Ysq75GTrfz70P_mGGmPToYgfDYCbwc9RMVJVQKteQ0U8v0Lu8_ZR_p1lZsZpISVimPh6ouR3B6vvgRhMe9b8yM0D3QBd8jAH6Z4QSvROmd8L0Tpg-CMuZ6kWmc-mpp6zFDf9NftgnHQA8v6R4LqDm_C9xsKCk | 
    
| CODEN | ITCBCY | 
    
| CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107067 crossref_primary_10_3390_app13127253 crossref_primary_10_1093_cercor_bhae132 crossref_primary_10_1177_08953996241300023 crossref_primary_10_1016_j_bspc_2025_107583 crossref_primary_10_3389_fnagi_2024_1453051 crossref_primary_10_1109_TIM_2024_3366574 crossref_primary_10_1080_20479700_2023_2175414 crossref_primary_10_1016_j_neunet_2025_107203 crossref_primary_10_54097_hset_v46i_7705  | 
    
| Cites_doi | 10.1016/j.jalz.2013.05.1769 10.1016/b978-0-12-372560-8.x5000-1 10.1007/s11682-015-9437-x 10.1016/j.neuroimage.2019.116459 10.1109/TIP.2005.859376 10.1109/TMI.2016.2582386 10.1016/j.compbiomed.2017.10.002 10.1166/jmihi.2018.2381 10.1016/j.neurobiolaging.2013.02.002 10.1109/42.668698 10.1371/journal.pcbi.1002987 10.1148/radiol.10100734 10.1016/j.patrec.2010.03.004 10.3233/JAD-170069 10.1016/j.neuroimage.2010.06.013 10.1006/nimg.2000.0582 10.1007/s11042-014-2123-y 10.1109/tcbb.2012.141 10.1016/j.media.2020.101694 10.1371/journal.pone.0037828 10.1006/nimg.2001.0978 10.1109/TBME.2014.2310709 10.1109/LSP.2017.2670026 10.3389/fninf.2011.00022 10.1016/j.neurobiolaging.2010.11.008 10.1118/1.3488894 10.1016/j.neuroimage.2008.10.031 10.1093/brain/awp007 10.1109/TCYB.2016.2644718 10.1016/j.neuroimage.2011.09.085 10.1016/j.artmed.2020.101940 10.1111/j.1365-2796.2004.01388.x 10.1007/s11042-017-5581-1 10.1109/TMI.2011.2147327 10.1007/s11682-011-9142-3 10.1016/j.neuroimage.2012.09.065 10.1109/TBME.2014.2372011 10.1016/j.neuroimage.2011.12.071 10.1016/j.neucom.2020.09.012 10.1007/s10115-006-0043-5 10.1109/TMI.2011.2167628 10.1002/hipo.20626 10.1016/j.jalz.2019.02.007 10.1016/j.jalz.2012.04.007 10.1109/TCBB.2016.2635144 10.1523/JNEUROSCI.0141-08.2008 10.1109/TSUSC.2018.2883822 10.1016/j.jalz.2018.06.2498 10.1371/journal.pone.0047406 10.1109/TCBB.2017.2776910 10.1016/j.neuroimage.2007.10.031 10.1109/ISBI.2014.6868045 10.1007/s00234-008-0463-x 10.1049/iet-ipr.2016.0495 10.1016/j.neuroimage.2011.01.008 10.1016/j.neucom.2011.12.059 10.1007/s00138-012-0462-0 10.1016/j.neucom.2014.09.072 10.1109/TPAMI.2018.2889096 10.1007/s10916-018-0932-7 10.1007/s11011-018-0296-1 10.1016/j.neucom.2010.06.025  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8  | 
    
| DOI | 10.1109/TCBB.2021.3051177 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1557-9964 | 
    
| EndPage | 1639 | 
    
| ExternalDocumentID | 33434134 10_1109_TCBB_2021_3051177 9320583  | 
    
| Genre | orig-research Journal Article  | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61873202; 61473232; 91430111; 31771476; 81471047; 31930022; 12026608; 11871456 funderid: 10.13039/501100001809 – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDB38040400 – fundername: Shanghai Municipal Science and Technology Major Project grantid: 2017SHZDZX01 – fundername: National Key R&D Program grantid: 2017YFA0505500; 2016YFC0903400  | 
    
| GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL AEBYY AEFXT AEJOY AENEX AENSD AETIX AFRAH AFWIH AFWXC AGQYO AGSQL AHBIQ AIBXA AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNI RNS ROL RZB TN5 XOL AAYXX CITATION AAYOK ADPZR CGR CUY CVF ECM EIF NPM RIG W7O 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8  | 
    
| ID | FETCH-LOGICAL-c349t-a0fa289e9ee00175b658099e55ab9f0814a555d5e94d6945dfcd9e6d2051d6883 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1545-5963 1557-9964  | 
    
| IngestDate | Thu Oct 02 10:44:35 EDT 2025 Mon Jun 30 03:47:59 EDT 2025 Thu Apr 03 07:04:32 EDT 2025 Sat Oct 25 04:05:13 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Wed Aug 27 02:02:18 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c349t-a0fa289e9ee00175b658099e55ab9f0814a555d5e94d6945dfcd9e6d2051d6883 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-3960-0068 0000-0002-2713-9825 0000-0003-1305-7447  | 
    
| PMID | 33434134 | 
    
| PQID | 2672805502 | 
    
| PQPubID | 85499 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_journals_2672805502 crossref_primary_10_1109_TCBB_2021_3051177 pubmed_primary_33434134 crossref_citationtrail_10_1109_TCBB_2021_3051177 proquest_miscellaneous_2477499413 ieee_primary_9320583  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-05-01 | 
    
| PublicationDateYYYYMMDD | 2022-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: New York  | 
    
| PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics | 
    
| PublicationTitleAbbrev | TCBB | 
    
| PublicationTitleAlternate | IEEE/ACM Trans Comput Biol Bioinform | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref5 ref40 Simonyan (ref6) ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref63 ref22 ref21 ref28 ref27 ref29 ref60 ref62 ref61  | 
    
| References_xml | – ident: ref53 doi: 10.1016/j.jalz.2013.05.1769 – ident: ref50 doi: 10.1016/b978-0-12-372560-8.x5000-1 – ident: ref60 doi: 10.1007/s11682-015-9437-x – ident: ref44 doi: 10.1016/j.neuroimage.2019.116459 – ident: ref52 doi: 10.1109/TIP.2005.859376 – ident: ref61 doi: 10.1109/TMI.2016.2582386 – ident: ref7 doi: 10.1016/j.compbiomed.2017.10.002 – ident: ref48 doi: 10.1166/jmihi.2018.2381 – ident: ref32 doi: 10.1016/j.neurobiolaging.2013.02.002 – ident: ref54 doi: 10.1109/42.668698 – ident: ref8 doi: 10.1371/journal.pcbi.1002987 – ident: ref24 doi: 10.1148/radiol.10100734 – ident: ref3 doi: 10.1016/j.patrec.2010.03.004 – ident: ref47 doi: 10.3233/JAD-170069 – ident: ref55 doi: 10.1016/j.neuroimage.2010.06.013 – ident: ref51 doi: 10.1006/nimg.2000.0582 – ident: ref37 doi: 10.1007/s11042-014-2123-y – ident: ref19 doi: 10.1109/tcbb.2012.141 – ident: ref43 doi: 10.1016/j.media.2020.101694 – ident: ref25 doi: 10.1371/journal.pone.0037828 – ident: ref49 doi: 10.1006/nimg.2001.0978 – ident: ref58 doi: 10.1109/TBME.2014.2310709 – ident: ref46 doi: 10.1109/LSP.2017.2670026 – ident: ref12 doi: 10.3389/fninf.2011.00022 – ident: ref21 doi: 10.1016/j.neurobiolaging.2010.11.008 – ident: ref36 doi: 10.1118/1.3488894 – ident: ref4 doi: 10.1016/j.neuroimage.2008.10.031 – ident: ref29 doi: 10.1093/brain/awp007 – ident: ref15 doi: 10.1109/TCYB.2016.2644718 – ident: ref16 doi: 10.1016/j.neuroimage.2011.09.085 – ident: ref5 doi: 10.1016/j.artmed.2020.101940 – ident: ref59 doi: 10.1111/j.1365-2796.2004.01388.x – ident: ref26 doi: 10.1007/s11042-017-5581-1 – ident: ref56 doi: 10.1109/TMI.2011.2147327 – ident: ref11 doi: 10.1007/s11682-011-9142-3 – ident: ref20 doi: 10.1016/j.neuroimage.2012.09.065 – ident: ref18 doi: 10.1109/TBME.2014.2372011 – ident: ref28 doi: 10.1016/j.neuroimage.2011.12.071 – ident: ref13 doi: 10.1016/j.neucom.2020.09.012 – ident: ref2 doi: 10.1007/s10115-006-0043-5 – ident: ref14 doi: 10.1109/TMI.2011.2167628 – ident: ref27 doi: 10.1002/hipo.20626 – ident: ref38 doi: 10.1016/j.jalz.2019.02.007 – ident: ref10 doi: 10.1016/j.jalz.2012.04.007 – ident: ref31 doi: 10.1109/TCBB.2016.2635144 – ident: ref22 doi: 10.1523/JNEUROSCI.0141-08.2008 – ident: ref62 doi: 10.1109/TSUSC.2018.2883822 – ident: ref41 doi: 10.1016/j.jalz.2018.06.2498 – ident: ref57 doi: 10.1371/journal.pone.0047406 – ident: ref33 doi: 10.1109/TCBB.2017.2776910 – ident: ref34 doi: 10.1016/j.neuroimage.2007.10.031 – ident: ref9 doi: 10.1109/ISBI.2014.6868045 – ident: ref30 doi: 10.1007/s00234-008-0463-x – ident: ref40 doi: 10.1049/iet-ipr.2016.0495 – ident: ref17 doi: 10.1016/j.neuroimage.2011.01.008 – ident: ref63 doi: 10.1016/j.neucom.2011.12.059 – ident: ref23 doi: 10.1007/s00138-012-0462-0 – ident: ref39 doi: 10.1016/j.neucom.2014.09.072 – ident: ref1 doi: 10.1109/TPAMI.2018.2889096 – ident: ref45 doi: 10.1007/s10916-018-0932-7 – ident: ref42 doi: 10.1007/s11011-018-0296-1 – ident: ref6 article-title: Very deep convolutional networks for large scale image recognition – ident: ref35 doi: 10.1016/j.neucom.2010.06.025  | 
    
| SSID | ssj0024904 | 
    
| Score | 2.395952 | 
    
| Snippet | Structural magnetic resonance imaging (sMRI)-based Alzheimer's disease (AD) classification and its prodromal stage-mild cognitive impairment (MCI)... Structural magnetic resonance imaging (sMRI)-based Alzheimer’s disease (AD) classification and its prodromal stage–mild cognitive impairment (MCI)...  | 
    
| SourceID | proquest pubmed crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1627 | 
    
| SubjectTerms | Alzheimer Disease - diagnosis Alzheimer's disease Brain Brain - diagnostic imaging Brain - pathology Classification Cognitive ability Cognitive Dysfunction - diagnostic imaging Cognitive Dysfunction - pathology contourlet transform Contours Diseases Energy Energy distribution Feature extraction Frequency-domain analysis Humans Image classification Image segmentation Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Neurodegenerative diseases Neuroimaging regions of interest Spatial analysis subband energy feature Support Vector Machine Support vector machines Transforms  | 
    
| Title | Extracting ROI-Based Contourlet Subband Energy Feature From the sMRI Image for Alzheimer's Disease Classification | 
    
| URI | https://ieeexplore.ieee.org/document/9320583 https://www.ncbi.nlm.nih.gov/pubmed/33434134 https://www.proquest.com/docview/2672805502 https://www.proquest.com/docview/2477499413  | 
    
| Volume | 19 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024904 issn: 1545-5963 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB_agtIvvuojWmUFQRBzzWM3l_3Yq3f0hFMoLfRbyO5OVOzl9C4B7V_vzCYXUVT8FshukuU3u_ObzAvgxdhWVZ6hCo3KyUDJYwy1cUloXKotM1blgzEX77LTC_n2Ul3uwOshFwYRffAZjvjS-_Ldyrb8q-yIuEak8nQXdsd51uVq_ayrp32rQGYEoSKp6j2YcaSPzk8mE7IEk3hEws1Oyn24maaSz2_5izry_VX-TjW9ypndhsX2Y7tIk8-jtjEje_1bHcf_Xc0duNVzT3HcCctd2MH6HtzoulF-P4Cv02-Nz5mqP4iz9_NwQgrOCS5fRRMJXkGHjClrJ6Y-X1Awe2zXKGbr1VIQjxSbxdlczJd0QgmiwuL46vojflri-uVGvOn8QML34OToJC8Q9-FiNj0_OQ37jgyhTaVuwjKqSrLQUCOyelOG-AtRTFSqNLoidiFLpZRTqKXLtFSusk5j5mihscvyPH0Ae_WqxkcgShxr5jcqTVDG0mrCp5RjpyJrMJEmgGgLTGH7cuXcNeOq8GZLpAuGtWBYix7WAF4NU750tTr-NfiAIRkG9mgEcLhFv-h386ZIMm7iRbZcEsDz4TbtQ3aulDWuWhojiUhrTTIVwMNOaoZnb4Xt8Z_f-QT2E06q8GGUh7DXrFt8SlSnMc-8jP8AVkn1Nw | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIdhe-BqMwAAjISEh0uXDTuPHdbRqYR3S1El7i2L7whBrOtpE2vbXc3bSIBAg3iLFTmL9zr7f5b4A3vR1UaQJCl-JlAyUNERfKhP5ysRSW8YqXDDm9DgZn_KPZ-JsA953uTCI6ILPsGcvnS_fLHRtf5XtE9cIRBrfgtuCcy6abK2flfWkaxZoOYEvSK5aH2YYyP3Z4WBAtmAU9ki8rZtyG-7GMbcnOP9FIbkOK38nm07pjO7DdP25TazJt15dqZ6--a2S4_-u5wHca9knO2jE5SFsYPkI7jT9KK934PvwqnJZU-UXdvJ54g9IxRlmC1jRRAKY0TGj8tKwocsYZJY_1ktko-VizohJstX0ZMImczqjGJFhdnBxc45f57h8u2IfGk8Qc104bXySE4nHcDoazg7HftuTwdcxl5WfB0VONhpKRKvghCIGQyQThciVLIhf8FwIYQRKbhLJhSm0kZgYWmhokjSNn8BmuSjxKbAc-9IyHBFHyEOuJeGT874RgVYYceVBsAYm023Bcts34yJzhksgMwtrZmHNWlg9eNdNuWyqdfxr8I6FpBvYouHB3hr9rN3PqyxKbBsvsuYiD153t2knWvdKXuKipjGcqLSUJFMe7DZS0z17LWzP_vzOV7A1nk2PsqPJ8afnsB3ZFAsXVLkHm9WyxhdEfCr10sn7D1VD-IQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+ROI-Based+Contourlet+Subband+Energy+Feature+From+the+sMRI+Image+for+Alzheimer%E2%80%99s+Disease+Classification&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Feng%2C+Jinwang&rft.au=Shao-Wu%2C+Zhang&rft.au=Chen%2C+Luonan&rft.date=2022-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5963&rft.eissn=1557-9964&rft.volume=19&rft.issue=3&rft.spage=1627&rft_id=info:doi/10.1109%2FTCBB.2021.3051177&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |