Hierarchical One-Class Model With Subnetwork for Representation Learning and Outlier Detection

The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC algorithms suffer from loosely connected feature coding, affecting the ability of generated latent space to properly generate a highly discri...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 10; pp. 6303 - 6316
Main Authors Zhang, Wandong, Wu, Q. M. Jonathan, Zhao, W. G. Will, Deng, Haojin, Yang, Yimin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2022.3166349

Cover

Abstract The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC algorithms suffer from loosely connected feature coding, affecting the ability of generated latent space to properly generate a highly discriminative representation between object classes. To alleviate this deficiency, two novel OCC frameworks, namely: 1) OCC structure using the subnetwork neural network (OC-SNN) and 2) maximum correntropy-based OC-SNN (MCOC-SNN), are proposed in this article. The novelties of this article are as follows: 1) the subnetwork is used to build the discriminative latent space; 2) the proposed models are one-step learning networks, instead of stacking feature learning blocks and final classification layer to recognize the input pattern; 3) unlike existing works which utilize mean square error (MSE) to learn low-dimensional features, the MCOC-SNN uses maximum correntropy criterion (MCC) for discriminative feature encoding; and 4) a brand-new OCC dataset, called CO-Mask, is built for this research. Experimental results on the visual classification domain with a varying number of training samples from 6131 to 513 061 demonstrate that the proposed OC-SNN and MCOC-SNN achieve superior performance compared to the existing multilayer OCC models. For reproducibility, the source codes are available at https://github.com/W1AE/OCC .
AbstractList The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC algorithms suffer from loosely connected feature coding, affecting the ability of generated latent space to properly generate a highly discriminative representation between object classes. To alleviate this deficiency, two novel OCC frameworks, namely: 1) OCC structure using the subnetwork neural network (OC-SNN) and 2) maximum correntropy-based OC-SNN (MCOC-SNN), are proposed in this article. The novelties of this article are as follows: 1) the subnetwork is used to build the discriminative latent space; 2) the proposed models are one-step learning networks, instead of stacking feature learning blocks and final classification layer to recognize the input pattern; 3) unlike existing works which utilize mean square error (MSE) to learn low-dimensional features, the MCOC-SNN uses maximum correntropy criterion (MCC) for discriminative feature encoding; and 4) a brand-new OCC dataset, called CO-Mask, is built for this research. Experimental results on the visual classification domain with a varying number of training samples from 6131 to 513 061 demonstrate that the proposed OC-SNN and MCOC-SNN achieve superior performance compared to the existing multilayer OCC models. For reproducibility, the source codes are available at https://github.com/W1AE/OCC.The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC algorithms suffer from loosely connected feature coding, affecting the ability of generated latent space to properly generate a highly discriminative representation between object classes. To alleviate this deficiency, two novel OCC frameworks, namely: 1) OCC structure using the subnetwork neural network (OC-SNN) and 2) maximum correntropy-based OC-SNN (MCOC-SNN), are proposed in this article. The novelties of this article are as follows: 1) the subnetwork is used to build the discriminative latent space; 2) the proposed models are one-step learning networks, instead of stacking feature learning blocks and final classification layer to recognize the input pattern; 3) unlike existing works which utilize mean square error (MSE) to learn low-dimensional features, the MCOC-SNN uses maximum correntropy criterion (MCC) for discriminative feature encoding; and 4) a brand-new OCC dataset, called CO-Mask, is built for this research. Experimental results on the visual classification domain with a varying number of training samples from 6131 to 513 061 demonstrate that the proposed OC-SNN and MCOC-SNN achieve superior performance compared to the existing multilayer OCC models. For reproducibility, the source codes are available at https://github.com/W1AE/OCC.
The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC algorithms suffer from loosely connected feature coding, affecting the ability of generated latent space to properly generate a highly discriminative representation between object classes. To alleviate this deficiency, two novel OCC frameworks, namely: 1) OCC structure using the subnetwork neural network (OC-SNN) and 2) maximum correntropy-based OC-SNN (MCOC-SNN), are proposed in this article. The novelties of this article are as follows: 1) the subnetwork is used to build the discriminative latent space; 2) the proposed models are one-step learning networks, instead of stacking feature learning blocks and final classification layer to recognize the input pattern; 3) unlike existing works which utilize mean square error (MSE) to learn low-dimensional features, the MCOC-SNN uses maximum correntropy criterion (MCC) for discriminative feature encoding; and 4) a brand-new OCC dataset, called CO-Mask, is built for this research. Experimental results on the visual classification domain with a varying number of training samples from 6131 to 513,061 demonstrate that the proposed OC-SNN and MCOC-SNN achieve superior performance compared to the existing multilayer OCC models. For reproducibility, the source codes are available at https://github.com/W1AE/OCC.
Author Deng, Haojin
Zhao, W. G. Will
Zhang, Wandong
Yang, Yimin
Wu, Q. M. Jonathan
Author_xml – sequence: 1
  givenname: Wandong
  orcidid: 0000-0002-5083-5052
  surname: Zhang
  fullname: Zhang, Wandong
  organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada
– sequence: 2
  givenname: Q. M. Jonathan
  orcidid: 0000-0002-5208-7975
  surname: Wu
  fullname: Wu, Q. M. Jonathan
  email: jwu@uwindsor.ca
  organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada
– sequence: 3
  givenname: W. G. Will
  orcidid: 0000-0003-2534-6879
  surname: Zhao
  fullname: Zhao, W. G. Will
  organization: Stratford School of Interaction Design and Business, University of Waterloo, Stratford, Canada
– sequence: 4
  givenname: Haojin
  surname: Deng
  fullname: Deng, Haojin
  organization: Department of Computer Science, Lakehead University, Thunder Bay, Canada
– sequence: 5
  givenname: Yimin
  orcidid: 0000-0002-1131-2056
  surname: Yang
  fullname: Yang, Yimin
  organization: Department of Computer Science, Lakehead University, Thunder Bay, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35486564$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9rFDEUxYNUbK39ACJIoC--zDZ_JpnkUbdqhS0LWhFfDNnMHZs6m6xJBvHbm2G3feiDeUm4-Z3D5Zzn6CjEAAi9pGRBKdEXN8vv7xaMMLbgVEre6ifohFGpGsY6cfTwlt0xOsv5jtSj6kirZ-iYi1ZJIdsT9OPKQ7LJ3XpnR7wO0CxHmzO-jj2M-Jsvt_jLtAlQ_sT0Cw8x4c-wS5AhFFt8DHgFNgUffmIberyeylj98CUUcPP3C_R0sGOGs8N9ir5-eH-zvGpW64-flm9XjauLl0a7buNaovqWSkeI1mLQrZCaO86lErxrGdANkaLjQ9sqIXsltBr6gSpWEcVP0Zu97y7F3xPkYrY-OxhHGyBO2TAp1JwLIxU9f4TexSmFup1hNRSiqdYz9fpATZst9GaX_Namv-Y-uQp0e8ClmHOCwTi_j6Qk60dDiZlrMnNNZq7JHGqqSvpIeW_-P82rvcYDwAOvu5qI0vwf1feaqQ
CODEN ITCEB8
CitedBy_id crossref_primary_10_1007_s13042_023_01922_6
crossref_primary_10_1109_TCYB_2024_3481871
crossref_primary_10_1016_j_neucom_2024_129036
crossref_primary_10_1109_TCYB_2024_3473809
crossref_primary_10_1109_TCYB_2024_3483068
crossref_primary_10_3390_math11040798
Cites_doi 10.1109/TCYB.2018.2838668
10.1109/ICASSP.2019.8682337
10.1109/CVPR.2017.243
10.1109/ICPR.1992.201708
10.1109/TCYB.2014.2340433
10.1109/CVPR.2016.90
10.1109/CVPR.2015.7298594
10.1109/TCYB.2015.2492468
10.1109/TNNLS.2020.3026621
10.1007/978-3-319-59050-9_12
10.1155/2015/412957
10.1109/TNNLS.2020.3015860
10.1109/TPAMI.2017.2723009
10.1145/3168363
10.1109/TNNLS.2018.2890787
10.1109/ICCV.2019.00829
10.1109/TNN.2006.875977
10.1109/IJCNN.2014.6889446
10.1109/TNNLS.2015.2424995
10.1109/TCSS.2019.2931186
10.1109/TPAMI.2013.50
10.1109/TNNLS.2020.3015356
10.1214/aoms/1177704472
10.1016/j.neucom.2020.07.018
10.1016/j.neucom.2008.05.003
10.1016/j.inffus.2017.12.007
10.1109/TII.2019.2919268
10.1016/j.neunet.2019.03.004
10.1109/BRACIS.2019.00109
10.1109/SMC.2017.8122666
10.1016/S0042-6989(97)00121-1
10.1145/3161603
10.1109/DAS.2014.77
10.1109/TCSII.2020.3026393
10.1049/ccs.2020.0017
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2022.3166349
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 6316
ExternalDocumentID 35486564
10_1109_TCYB_2022_3166349
9765789
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NSERC Collaborative Research and Training Experience (CREATE) Building Trust in Connected and Autonomous Vehicles (TrustCAV) Program
  funderid: 10.13039/501100000038
– fundername: Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant Program
  funderid: 10.13039/501100000038
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-9c7bc408d416c00995f945693c336853742e1b06573f44856d8598fdf182c3383
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 03:02:31 EDT 2025
Mon Jun 30 07:17:50 EDT 2025
Thu Jan 02 22:54:04 EST 2025
Wed Oct 01 01:36:44 EDT 2025
Thu Apr 24 22:54:15 EDT 2025
Wed Aug 27 02:51:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-9c7bc408d416c00995f945693c336853742e1b06573f44856d8598fdf182c3383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5208-7975
0000-0002-5083-5052
0000-0003-2534-6879
0000-0002-1131-2056
PMID 35486564
PQID 2865091990
PQPubID 85422
PageCount 14
ParticipantIDs proquest_journals_2865091990
pubmed_primary_35486564
crossref_primary_10_1109_TCYB_2022_3166349
proquest_miscellaneous_2658227520
crossref_citationtrail_10_1109_TCYB_2022_3166349
ieee_primary_9765789
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ghaoui (ref8) 2003
zhang (ref19) 2021; 17
rasmus (ref16) 2015
zhang (ref20) 2021
ref18
kasun (ref49) 2013; 28
gidaris (ref43) 2018
ref50
ref46
yosinski (ref25) 2014
ref48
ref47
ref42
ng (ref34) 2011
ref41
ref44
vincent (ref33) 2010; 11
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref37
ref31
ref32
husmeier (ref36) 2012
ref2
ref1
ref39
ref38
sohn (ref26) 2020
ref24
ref23
ref22
ref21
ruff (ref30) 2018
ref28
ref27
ref29
golan (ref17) 2018
kaur (ref45) 2019
pekalska (ref7) 2003
References_xml – ident: ref3
  doi: 10.1109/TCYB.2018.2838668
– year: 2021
  ident: ref20
  article-title: HKPM: A hierarchical key-area perception model for HFSWR maritime surveillance
  publication-title: IEEE Trans Geosci Remote Sens
– ident: ref14
  doi: 10.1109/ICASSP.2019.8682337
– ident: ref24
  doi: 10.1109/CVPR.2017.243
– ident: ref35
  doi: 10.1109/ICPR.1992.201708
– ident: ref1
  doi: 10.1109/TCYB.2014.2340433
– start-page: 3546
  year: 2015
  ident: ref16
  article-title: Semi-supervised learning with ladder networks
  publication-title: Advances in neural information processing systems
– start-page: 3320
  year: 2014
  ident: ref25
  article-title: How transferable are features in deep neural networks?
  publication-title: Advances in neural information processing systems
– start-page: 4393
  year: 2018
  ident: ref30
  article-title: Deep one-class classification
  publication-title: Proc Int Conf Mach Learn
– ident: ref23
  doi: 10.1109/CVPR.2016.90
– year: 2020
  ident: ref26
  article-title: Learning and evaluating representations for deep one-class classification
  publication-title: arXiv 2011 02578
– start-page: 929
  year: 2003
  ident: ref8
  article-title: Robust novelty detection with single-class MPM
  publication-title: Advances in neural information processing systems
– year: 2018
  ident: ref43
  article-title: Unsupervised representation learning by predicting image rotations
  publication-title: arXiv 1803 07728
– ident: ref44
  doi: 10.1109/CVPR.2015.7298594
– ident: ref40
  doi: 10.1109/TCYB.2015.2492468
– ident: ref39
  doi: 10.1109/TNNLS.2020.3026621
– ident: ref31
  doi: 10.1007/978-3-319-59050-9_12
– ident: ref10
  doi: 10.1155/2015/412957
– year: 2011
  ident: ref34
  publication-title: Sparse Autoencoder
– ident: ref2
  doi: 10.1109/TNNLS.2020.3015860
– ident: ref15
  doi: 10.1109/TPAMI.2017.2723009
– ident: ref28
  doi: 10.1145/3168363
– ident: ref18
  doi: 10.1109/TNNLS.2018.2890787
– ident: ref29
  doi: 10.1109/ICCV.2019.00829
– ident: ref38
  doi: 10.1109/TNN.2006.875977
– ident: ref27
  doi: 10.1109/IJCNN.2014.6889446
– ident: ref50
  doi: 10.1109/TNNLS.2015.2424995
– ident: ref5
  doi: 10.1109/TCSS.2019.2931186
– year: 2019
  ident: ref45
  article-title: FoodX-251: A dataset for fine-grained food classification
  publication-title: arXiv 1907 06167
– year: 2012
  ident: ref36
  publication-title: Neural Networks for Conditional Probability Estimation Forecasting Beyond Point Predictions
– volume: 28
  start-page: 31
  year: 2013
  ident: ref49
  article-title: Representational learning with extreme learning machine for big data
  publication-title: IEEE Intell Syst
– start-page: 777
  year: 2003
  ident: ref7
  article-title: One-class LP classifiers for dissimilarity representations
  publication-title: Advances in neural information processing systems
– ident: ref21
  doi: 10.1109/TPAMI.2013.50
– ident: ref12
  doi: 10.1109/TNNLS.2020.3015356
– ident: ref6
  doi: 10.1214/aoms/1177704472
– ident: ref41
  doi: 10.1016/j.neucom.2020.07.018
– ident: ref9
  doi: 10.1016/j.neucom.2008.05.003
– ident: ref32
  doi: 10.1016/j.inffus.2017.12.007
– ident: ref37
  doi: 10.1109/TII.2019.2919268
– start-page: 9781
  year: 2018
  ident: ref17
  article-title: Deep anomaly detection using geometric transformations
  publication-title: Advances in neural information processing systems
– ident: ref11
  doi: 10.1016/j.neunet.2019.03.004
– ident: ref48
  doi: 10.1109/BRACIS.2019.00109
– ident: ref22
  doi: 10.1109/SMC.2017.8122666
– ident: ref42
  doi: 10.1016/S0042-6989(97)00121-1
– ident: ref47
  doi: 10.1145/3161603
– ident: ref4
  doi: 10.1109/DAS.2014.77
– volume: 17
  start-page: 1562
  year: 2021
  ident: ref19
  article-title: A width-growth model with subnetwork nodes and refinement structure for representation learning and image classification
  publication-title: IEEE Trans Ind Informat
– ident: ref13
  doi: 10.1109/TCSII.2020.3026393
– ident: ref46
  doi: 10.1049/ccs.2020.0017
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref33
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
SSID ssj0000816898
Score 2.4217772
Snippet The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6303
SubjectTerms Algorithms
Anomaly detection
Classification
Data analysis
Data models
Encoding
Hierarchical network
Machine learning
Moore--Penrose inverse (MPI)
Multilayers
Neural networks
Nonhomogeneous media
one-class classification (OCC)
Outliers (statistics)
Representation learning
Representations
Task analysis
Training
Title Hierarchical One-Class Model With Subnetwork for Representation Learning and Outlier Detection
URI https://ieeexplore.ieee.org/document/9765789
https://www.ncbi.nlm.nih.gov/pubmed/35486564
https://www.proquest.com/docview/2865091990
https://www.proquest.com/docview/2658227520
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukxd1fa6uEsGDil373LRHnyyCCrKLerG0SarikhVtL_56Z9JsQVHxVmj6nEnn-5qZ-QB28kgGYRwpR4UeEZSC5hz3kaWEvYAXhZuZ-orLq15_GF7cRXdTcNDUwiilTPKZ6tKmWcuXY1HRr7JDDJ3oYMk0TPO4V9dqNf9TjICEkb71ccNBVMHtIqbnJoeDk_tjJIO-jxwVY2xIzUIDBOuIZsIvEclIrPyONk3UOZ-Hy8n91skmL92qzLvi41srx_8-0ALMWfjJjmp_acGU0ovQshP8ne3aLtR7S_DQf6baZCOVMmLXWjlGP5OReNqI3T6XTww_OrrOImcIfdmNSaq1tUya2c6tjyzTkl1XJYLdN3aqSpP7pZdheH42OOk7VozBEfi6SicRPBehG0tEcIJwZVQkCL6SQATUwz5Aiq28HAENDwqkfFFPxlESF7JAAiOIB6_AjB5rtQZMotcUnkSuJfIQX0GG1uRCInH0VMYD1QZ3YpBU2E7lJJgxSg1jcZOUzJmSOVNrzjbsN4e81m06_hq8RKZoBlortKEzsXpqJ_J7SoW7CKkwZrdhu9mNU5DWVTKtxhWOQRTn-zzyccxq7S3NuSdOtv7zNTdglvTr6-zADsyUb5XaRJRT5lvGvT8BWO7zXw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BPZQLj_JaHq0r9VCqZsnDXidHoEXblgWpWlR6aZTYDiBWXgTJpb--M443UquCuEWK85xx5vvimfkA3pVCJzwVJjA8IoJS0ZyTMbIUPkhkVYWFq68YnQ2GF_zrpbicg49dLYwxxiWfmT5turV8PVUN_So7wNCJDpbNwwvBORdttVb3R8VJSDjx2xg3AsQV0i9jRmF2MD7-eYR0MI6RpWKU5dQuNEG4jniG_xWTnMjK43jTxZ2TZRjN7rhNN7ntN3XZV7__aeb43EdagSUPQNlh6zGrMGfsK1j1U_yBvfd9qPfX4NfwhqqTnVjKhJ1bEzgFTUbyaRP246a-ZvjZsW0eOUPwy767tFpfzWSZ7916xQqr2XlTI9y9Z59M7bK_7DpcnHweHw8DL8cQKHxddZApWSoephoxnCJkKaoM4VeWqIS62CdIsk1UIqSRSYWkTwx0KrK00hVSGEVMeAMW7NSaLWAa_aaKNLItVXJ8BYVMB1JppI6RKWRiehDODJIr36ucJDMmueMsYZaTOXMyZ-7N2YMP3SF3baOOpwavkSm6gd4KPdidWT33U_khp9JdBFUYtXvwttuNk5BWVgprpg2OQRwXx1LEOGaz9Zbu3DMn2_7_Nd_Ay-F4dJqffjn7tgOLpGbf5gruwkJ935g9xDx1-dq5-h8-4_as
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+One-Class+Model+With+Subnetwork+for+Representation+Learning+and+Outlier+Detection&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhang%2C+Wandong&rft.au=Wu%2C+Q+M+Jonathan&rft.au=Zhao%2C+W+G+Will&rft.au=Deng%2C+Haojin&rft.date=2023-10-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=53&rft.issue=10&rft.spage=6303&rft_id=info:doi/10.1109%2FTCYB.2022.3166349&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon