Hierarchical One-Class Model With Subnetwork for Representation Learning and Outlier Detection
The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC algorithms suffer from loosely connected feature coding, affecting the ability of generated latent space to properly generate a highly discri...
Saved in:
| Published in | IEEE transactions on cybernetics Vol. 53; no. 10; pp. 6303 - 6316 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2267 2168-2275 2168-2275 |
| DOI | 10.1109/TCYB.2022.3166349 |
Cover
| Abstract | The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC algorithms suffer from loosely connected feature coding, affecting the ability of generated latent space to properly generate a highly discriminative representation between object classes. To alleviate this deficiency, two novel OCC frameworks, namely: 1) OCC structure using the subnetwork neural network (OC-SNN) and 2) maximum correntropy-based OC-SNN (MCOC-SNN), are proposed in this article. The novelties of this article are as follows: 1) the subnetwork is used to build the discriminative latent space; 2) the proposed models are one-step learning networks, instead of stacking feature learning blocks and final classification layer to recognize the input pattern; 3) unlike existing works which utilize mean square error (MSE) to learn low-dimensional features, the MCOC-SNN uses maximum correntropy criterion (MCC) for discriminative feature encoding; and 4) a brand-new OCC dataset, called CO-Mask, is built for this research. Experimental results on the visual classification domain with a varying number of training samples from 6131 to 513 061 demonstrate that the proposed OC-SNN and MCOC-SNN achieve superior performance compared to the existing multilayer OCC models. For reproducibility, the source codes are available at https://github.com/W1AE/OCC . |
|---|---|
| AbstractList | The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC algorithms suffer from loosely connected feature coding, affecting the ability of generated latent space to properly generate a highly discriminative representation between object classes. To alleviate this deficiency, two novel OCC frameworks, namely: 1) OCC structure using the subnetwork neural network (OC-SNN) and 2) maximum correntropy-based OC-SNN (MCOC-SNN), are proposed in this article. The novelties of this article are as follows: 1) the subnetwork is used to build the discriminative latent space; 2) the proposed models are one-step learning networks, instead of stacking feature learning blocks and final classification layer to recognize the input pattern; 3) unlike existing works which utilize mean square error (MSE) to learn low-dimensional features, the MCOC-SNN uses maximum correntropy criterion (MCC) for discriminative feature encoding; and 4) a brand-new OCC dataset, called CO-Mask, is built for this research. Experimental results on the visual classification domain with a varying number of training samples from 6131 to 513 061 demonstrate that the proposed OC-SNN and MCOC-SNN achieve superior performance compared to the existing multilayer OCC models. For reproducibility, the source codes are available at https://github.com/W1AE/OCC.The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC algorithms suffer from loosely connected feature coding, affecting the ability of generated latent space to properly generate a highly discriminative representation between object classes. To alleviate this deficiency, two novel OCC frameworks, namely: 1) OCC structure using the subnetwork neural network (OC-SNN) and 2) maximum correntropy-based OC-SNN (MCOC-SNN), are proposed in this article. The novelties of this article are as follows: 1) the subnetwork is used to build the discriminative latent space; 2) the proposed models are one-step learning networks, instead of stacking feature learning blocks and final classification layer to recognize the input pattern; 3) unlike existing works which utilize mean square error (MSE) to learn low-dimensional features, the MCOC-SNN uses maximum correntropy criterion (MCC) for discriminative feature encoding; and 4) a brand-new OCC dataset, called CO-Mask, is built for this research. Experimental results on the visual classification domain with a varying number of training samples from 6131 to 513 061 demonstrate that the proposed OC-SNN and MCOC-SNN achieve superior performance compared to the existing multilayer OCC models. For reproducibility, the source codes are available at https://github.com/W1AE/OCC. The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC algorithms suffer from loosely connected feature coding, affecting the ability of generated latent space to properly generate a highly discriminative representation between object classes. To alleviate this deficiency, two novel OCC frameworks, namely: 1) OCC structure using the subnetwork neural network (OC-SNN) and 2) maximum correntropy-based OC-SNN (MCOC-SNN), are proposed in this article. The novelties of this article are as follows: 1) the subnetwork is used to build the discriminative latent space; 2) the proposed models are one-step learning networks, instead of stacking feature learning blocks and final classification layer to recognize the input pattern; 3) unlike existing works which utilize mean square error (MSE) to learn low-dimensional features, the MCOC-SNN uses maximum correntropy criterion (MCC) for discriminative feature encoding; and 4) a brand-new OCC dataset, called CO-Mask, is built for this research. Experimental results on the visual classification domain with a varying number of training samples from 6131 to 513,061 demonstrate that the proposed OC-SNN and MCOC-SNN achieve superior performance compared to the existing multilayer OCC models. For reproducibility, the source codes are available at https://github.com/W1AE/OCC. |
| Author | Deng, Haojin Zhao, W. G. Will Zhang, Wandong Yang, Yimin Wu, Q. M. Jonathan |
| Author_xml | – sequence: 1 givenname: Wandong orcidid: 0000-0002-5083-5052 surname: Zhang fullname: Zhang, Wandong organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada – sequence: 2 givenname: Q. M. Jonathan orcidid: 0000-0002-5208-7975 surname: Wu fullname: Wu, Q. M. Jonathan email: jwu@uwindsor.ca organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada – sequence: 3 givenname: W. G. Will orcidid: 0000-0003-2534-6879 surname: Zhao fullname: Zhao, W. G. Will organization: Stratford School of Interaction Design and Business, University of Waterloo, Stratford, Canada – sequence: 4 givenname: Haojin surname: Deng fullname: Deng, Haojin organization: Department of Computer Science, Lakehead University, Thunder Bay, Canada – sequence: 5 givenname: Yimin orcidid: 0000-0002-1131-2056 surname: Yang fullname: Yang, Yimin organization: Department of Computer Science, Lakehead University, Thunder Bay, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35486564$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV9rFDEUxYNUbK39ACJIoC--zDZ_JpnkUbdqhS0LWhFfDNnMHZs6m6xJBvHbm2G3feiDeUm4-Z3D5Zzn6CjEAAi9pGRBKdEXN8vv7xaMMLbgVEre6ifohFGpGsY6cfTwlt0xOsv5jtSj6kirZ-iYi1ZJIdsT9OPKQ7LJ3XpnR7wO0CxHmzO-jj2M-Jsvt_jLtAlQ_sT0Cw8x4c-wS5AhFFt8DHgFNgUffmIberyeylj98CUUcPP3C_R0sGOGs8N9ir5-eH-zvGpW64-flm9XjauLl0a7buNaovqWSkeI1mLQrZCaO86lErxrGdANkaLjQ9sqIXsltBr6gSpWEcVP0Zu97y7F3xPkYrY-OxhHGyBO2TAp1JwLIxU9f4TexSmFup1hNRSiqdYz9fpATZst9GaX_Namv-Y-uQp0e8ClmHOCwTi_j6Qk60dDiZlrMnNNZq7JHGqqSvpIeW_-P82rvcYDwAOvu5qI0vwf1feaqQ |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1007_s13042_023_01922_6 crossref_primary_10_1109_TCYB_2024_3481871 crossref_primary_10_1016_j_neucom_2024_129036 crossref_primary_10_1109_TCYB_2024_3473809 crossref_primary_10_1109_TCYB_2024_3483068 crossref_primary_10_3390_math11040798 |
| Cites_doi | 10.1109/TCYB.2018.2838668 10.1109/ICASSP.2019.8682337 10.1109/CVPR.2017.243 10.1109/ICPR.1992.201708 10.1109/TCYB.2014.2340433 10.1109/CVPR.2016.90 10.1109/CVPR.2015.7298594 10.1109/TCYB.2015.2492468 10.1109/TNNLS.2020.3026621 10.1007/978-3-319-59050-9_12 10.1155/2015/412957 10.1109/TNNLS.2020.3015860 10.1109/TPAMI.2017.2723009 10.1145/3168363 10.1109/TNNLS.2018.2890787 10.1109/ICCV.2019.00829 10.1109/TNN.2006.875977 10.1109/IJCNN.2014.6889446 10.1109/TNNLS.2015.2424995 10.1109/TCSS.2019.2931186 10.1109/TPAMI.2013.50 10.1109/TNNLS.2020.3015356 10.1214/aoms/1177704472 10.1016/j.neucom.2020.07.018 10.1016/j.neucom.2008.05.003 10.1016/j.inffus.2017.12.007 10.1109/TII.2019.2919268 10.1016/j.neunet.2019.03.004 10.1109/BRACIS.2019.00109 10.1109/SMC.2017.8122666 10.1016/S0042-6989(97)00121-1 10.1145/3161603 10.1109/DAS.2014.77 10.1109/TCSII.2020.3026393 10.1049/ccs.2020.0017 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2022.3166349 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 6316 |
| ExternalDocumentID | 35486564 10_1109_TCYB_2022_3166349 9765789 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: NSERC Collaborative Research and Training Experience (CREATE) Building Trust in Connected and Autonomous Vehicles (TrustCAV) Program funderid: 10.13039/501100000038 – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant Program funderid: 10.13039/501100000038 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-9c7bc408d416c00995f945693c336853742e1b06573f44856d8598fdf182c3383 |
| IEDL.DBID | RIE |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sun Sep 28 03:02:31 EDT 2025 Mon Jun 30 07:17:50 EDT 2025 Thu Jan 02 22:54:04 EST 2025 Wed Oct 01 01:36:44 EDT 2025 Thu Apr 24 22:54:15 EDT 2025 Wed Aug 27 02:51:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-9c7bc408d416c00995f945693c336853742e1b06573f44856d8598fdf182c3383 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5208-7975 0000-0002-5083-5052 0000-0003-2534-6879 0000-0002-1131-2056 |
| PMID | 35486564 |
| PQID | 2865091990 |
| PQPubID | 85422 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2865091990 pubmed_primary_35486564 crossref_primary_10_1109_TCYB_2022_3166349 proquest_miscellaneous_2658227520 crossref_citationtrail_10_1109_TCYB_2022_3166349 ieee_primary_9765789 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ghaoui (ref8) 2003 zhang (ref19) 2021; 17 rasmus (ref16) 2015 zhang (ref20) 2021 ref18 kasun (ref49) 2013; 28 gidaris (ref43) 2018 ref50 ref46 yosinski (ref25) 2014 ref48 ref47 ref42 ng (ref34) 2011 ref41 ref44 vincent (ref33) 2010; 11 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref37 ref31 ref32 husmeier (ref36) 2012 ref2 ref1 ref39 ref38 sohn (ref26) 2020 ref24 ref23 ref22 ref21 ruff (ref30) 2018 ref28 ref27 ref29 golan (ref17) 2018 kaur (ref45) 2019 pekalska (ref7) 2003 |
| References_xml | – ident: ref3 doi: 10.1109/TCYB.2018.2838668 – year: 2021 ident: ref20 article-title: HKPM: A hierarchical key-area perception model for HFSWR maritime surveillance publication-title: IEEE Trans Geosci Remote Sens – ident: ref14 doi: 10.1109/ICASSP.2019.8682337 – ident: ref24 doi: 10.1109/CVPR.2017.243 – ident: ref35 doi: 10.1109/ICPR.1992.201708 – ident: ref1 doi: 10.1109/TCYB.2014.2340433 – start-page: 3546 year: 2015 ident: ref16 article-title: Semi-supervised learning with ladder networks publication-title: Advances in neural information processing systems – start-page: 3320 year: 2014 ident: ref25 article-title: How transferable are features in deep neural networks? publication-title: Advances in neural information processing systems – start-page: 4393 year: 2018 ident: ref30 article-title: Deep one-class classification publication-title: Proc Int Conf Mach Learn – ident: ref23 doi: 10.1109/CVPR.2016.90 – year: 2020 ident: ref26 article-title: Learning and evaluating representations for deep one-class classification publication-title: arXiv 2011 02578 – start-page: 929 year: 2003 ident: ref8 article-title: Robust novelty detection with single-class MPM publication-title: Advances in neural information processing systems – year: 2018 ident: ref43 article-title: Unsupervised representation learning by predicting image rotations publication-title: arXiv 1803 07728 – ident: ref44 doi: 10.1109/CVPR.2015.7298594 – ident: ref40 doi: 10.1109/TCYB.2015.2492468 – ident: ref39 doi: 10.1109/TNNLS.2020.3026621 – ident: ref31 doi: 10.1007/978-3-319-59050-9_12 – ident: ref10 doi: 10.1155/2015/412957 – year: 2011 ident: ref34 publication-title: Sparse Autoencoder – ident: ref2 doi: 10.1109/TNNLS.2020.3015860 – ident: ref15 doi: 10.1109/TPAMI.2017.2723009 – ident: ref28 doi: 10.1145/3168363 – ident: ref18 doi: 10.1109/TNNLS.2018.2890787 – ident: ref29 doi: 10.1109/ICCV.2019.00829 – ident: ref38 doi: 10.1109/TNN.2006.875977 – ident: ref27 doi: 10.1109/IJCNN.2014.6889446 – ident: ref50 doi: 10.1109/TNNLS.2015.2424995 – ident: ref5 doi: 10.1109/TCSS.2019.2931186 – year: 2019 ident: ref45 article-title: FoodX-251: A dataset for fine-grained food classification publication-title: arXiv 1907 06167 – year: 2012 ident: ref36 publication-title: Neural Networks for Conditional Probability Estimation Forecasting Beyond Point Predictions – volume: 28 start-page: 31 year: 2013 ident: ref49 article-title: Representational learning with extreme learning machine for big data publication-title: IEEE Intell Syst – start-page: 777 year: 2003 ident: ref7 article-title: One-class LP classifiers for dissimilarity representations publication-title: Advances in neural information processing systems – ident: ref21 doi: 10.1109/TPAMI.2013.50 – ident: ref12 doi: 10.1109/TNNLS.2020.3015356 – ident: ref6 doi: 10.1214/aoms/1177704472 – ident: ref41 doi: 10.1016/j.neucom.2020.07.018 – ident: ref9 doi: 10.1016/j.neucom.2008.05.003 – ident: ref32 doi: 10.1016/j.inffus.2017.12.007 – ident: ref37 doi: 10.1109/TII.2019.2919268 – start-page: 9781 year: 2018 ident: ref17 article-title: Deep anomaly detection using geometric transformations publication-title: Advances in neural information processing systems – ident: ref11 doi: 10.1016/j.neunet.2019.03.004 – ident: ref48 doi: 10.1109/BRACIS.2019.00109 – ident: ref22 doi: 10.1109/SMC.2017.8122666 – ident: ref42 doi: 10.1016/S0042-6989(97)00121-1 – ident: ref47 doi: 10.1145/3161603 – ident: ref4 doi: 10.1109/DAS.2014.77 – volume: 17 start-page: 1562 year: 2021 ident: ref19 article-title: A width-growth model with subnetwork nodes and refinement structure for representation learning and image classification publication-title: IEEE Trans Ind Informat – ident: ref13 doi: 10.1109/TCSII.2020.3026393 – ident: ref46 doi: 10.1049/ccs.2020.0017 – volume: 11 start-page: 3371 year: 2010 ident: ref33 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res |
| SSID | ssj0000816898 |
| Score | 2.4217772 |
| Snippet | The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6303 |
| SubjectTerms | Algorithms Anomaly detection Classification Data analysis Data models Encoding Hierarchical network Machine learning Moore--Penrose inverse (MPI) Multilayers Neural networks Nonhomogeneous media one-class classification (OCC) Outliers (statistics) Representation learning Representations Task analysis Training |
| Title | Hierarchical One-Class Model With Subnetwork for Representation Learning and Outlier Detection |
| URI | https://ieeexplore.ieee.org/document/9765789 https://www.ncbi.nlm.nih.gov/pubmed/35486564 https://www.proquest.com/docview/2865091990 https://www.proquest.com/docview/2658227520 |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukxd1fa6uEsGDil373LRHnyyCCrKLerG0SarikhVtL_56Z9JsQVHxVmj6nEnn-5qZ-QB28kgGYRwpR4UeEZSC5hz3kaWEvYAXhZuZ-orLq15_GF7cRXdTcNDUwiilTPKZ6tKmWcuXY1HRr7JDDJ3oYMk0TPO4V9dqNf9TjICEkb71ccNBVMHtIqbnJoeDk_tjJIO-jxwVY2xIzUIDBOuIZsIvEclIrPyONk3UOZ-Hy8n91skmL92qzLvi41srx_8-0ALMWfjJjmp_acGU0ovQshP8ne3aLtR7S_DQf6baZCOVMmLXWjlGP5OReNqI3T6XTww_OrrOImcIfdmNSaq1tUya2c6tjyzTkl1XJYLdN3aqSpP7pZdheH42OOk7VozBEfi6SicRPBehG0tEcIJwZVQkCL6SQATUwz5Aiq28HAENDwqkfFFPxlESF7JAAiOIB6_AjB5rtQZMotcUnkSuJfIQX0GG1uRCInH0VMYD1QZ3YpBU2E7lJJgxSg1jcZOUzJmSOVNrzjbsN4e81m06_hq8RKZoBlortKEzsXpqJ_J7SoW7CKkwZrdhu9mNU5DWVTKtxhWOQRTn-zzyccxq7S3NuSdOtv7zNTdglvTr6-zADsyUb5XaRJRT5lvGvT8BWO7zXw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BPZQLj_JaHq0r9VCqZsnDXidHoEXblgWpWlR6aZTYDiBWXgTJpb--M443UquCuEWK85xx5vvimfkA3pVCJzwVJjA8IoJS0ZyTMbIUPkhkVYWFq68YnQ2GF_zrpbicg49dLYwxxiWfmT5turV8PVUN_So7wNCJDpbNwwvBORdttVb3R8VJSDjx2xg3AsQV0i9jRmF2MD7-eYR0MI6RpWKU5dQuNEG4jniG_xWTnMjK43jTxZ2TZRjN7rhNN7ntN3XZV7__aeb43EdagSUPQNlh6zGrMGfsK1j1U_yBvfd9qPfX4NfwhqqTnVjKhJ1bEzgFTUbyaRP246a-ZvjZsW0eOUPwy767tFpfzWSZ7916xQqr2XlTI9y9Z59M7bK_7DpcnHweHw8DL8cQKHxddZApWSoephoxnCJkKaoM4VeWqIS62CdIsk1UIqSRSYWkTwx0KrK00hVSGEVMeAMW7NSaLWAa_aaKNLItVXJ8BYVMB1JppI6RKWRiehDODJIr36ucJDMmueMsYZaTOXMyZ-7N2YMP3SF3baOOpwavkSm6gd4KPdidWT33U_khp9JdBFUYtXvwttuNk5BWVgprpg2OQRwXx1LEOGaz9Zbu3DMn2_7_Nd_Ay-F4dJqffjn7tgOLpGbf5gruwkJ935g9xDx1-dq5-h8-4_as |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+One-Class+Model+With+Subnetwork+for+Representation+Learning+and+Outlier+Detection&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhang%2C+Wandong&rft.au=Wu%2C+Q+M+Jonathan&rft.au=Zhao%2C+W+G+Will&rft.au=Deng%2C+Haojin&rft.date=2023-10-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=53&rft.issue=10&rft.spage=6303&rft_id=info:doi/10.1109%2FTCYB.2022.3166349&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |