Flexible 16 Antenna Array for Microwave Breast Cancer Detection

Radar-based microwave imaging has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues has been studied over a wide frequency band for this application. We design single- and dual-polarization antennas for wireless ultrawideband breast c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 62; no. 10; pp. 2516 - 2525
Main Authors Bahramiabarghouei, Hadi, Porter, Emily, Santorelli, Adam, Gosselin, Benoit, Popovic, Milica, Rusch, Leslie A.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2015.2434956

Cover

Abstract Radar-based microwave imaging has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues has been studied over a wide frequency band for this application. We design single- and dual-polarization antennas for wireless ultrawideband breast cancer detection systems using an inhomogeneous multilayer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50-μm Kapton polyimide are designed, using a high-frequency structure simulator, to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2-4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching when in different positions with different curvature around the breast. Our miniaturized flexible antennas are 20 mm × 20 mm. Furthermore, two flexible conformal 4 × 4 ultrawideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system. By using a reflector for the arrays, the penetration of the propagated electromagnetic waves from the antennas into the breast can be improved by factors of 3.3 and 2.6, respectively.
AbstractList Radar-based microwave imaging has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues has been studied over a wide frequency band for this application. We design single- and dual-polarization antennas for wireless ultrawideband breast cancer detection systems using an inhomogeneous multilayer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50-μm Kapton polyimide are designed, using a high-frequency structure simulator, to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2-4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching when in different positions with different curvature around the breast. Our miniaturized flexible antennas are 20 mm × 20 mm. Furthermore, two flexible conformal 4 × 4 ultrawideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system. By using a reflector for the arrays, the penetration of the propagated electromagnetic waves from the antennas into the breast can be improved by factors of 3.3 and 2.6, respectively.
Radar-based microwave imaging has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues has been studied over a wide frequency band for this application. We design single- and dual-polarization antennas for wireless ultrawideband breast cancer detection systems using an inhomogeneous multilayer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50-μm Kapton polyimide are designed, using a high-frequency structure simulator, to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2-4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching when in different positions with different curvature around the breast. Our miniaturized flexible antennas are 20 mm × 20 mm. Furthermore, two flexible conformal 4 × 4 ultrawideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system. By using a reflector for the arrays, the penetration of the propagated electromagnetic waves from the antennas into the breast can be improved by factors of 3.3 and 2.6, respectively.Radar-based microwave imaging has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues has been studied over a wide frequency band for this application. We design single- and dual-polarization antennas for wireless ultrawideband breast cancer detection systems using an inhomogeneous multilayer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50-μm Kapton polyimide are designed, using a high-frequency structure simulator, to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2-4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching when in different positions with different curvature around the breast. Our miniaturized flexible antennas are 20 mm × 20 mm. Furthermore, two flexible conformal 4 × 4 ultrawideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system. By using a reflector for the arrays, the penetration of the propagated electromagnetic waves from the antennas into the breast can be improved by factors of 3.3 and 2.6, respectively.
Author Bahramiabarghouei, Hadi
Santorelli, Adam
Gosselin, Benoit
Popovic, Milica
Rusch, Leslie A.
Porter, Emily
Author_xml – sequence: 1
  givenname: Hadi
  surname: Bahramiabarghouei
  fullname: Bahramiabarghouei, Hadi
  email: hadi.bahrami.a@gmail.com
  organization: Department of Electrical Engineering, Laval University, Québec City, QC, Canada
– sequence: 2
  givenname: Emily
  surname: Porter
  fullname: Porter, Emily
  organization: McGill University
– sequence: 3
  givenname: Adam
  surname: Santorelli
  fullname: Santorelli, Adam
  organization: McGill University
– sequence: 4
  givenname: Benoit
  surname: Gosselin
  fullname: Gosselin, Benoit
  organization: Laval University
– sequence: 5
  givenname: Milica
  surname: Popovic
  fullname: Popovic, Milica
  organization: McGill University
– sequence: 6
  givenname: Leslie A.
  surname: Rusch
  fullname: Rusch, Leslie A.
  organization: Laval University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26011862$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLI0EUhQtx0JjxB8jA0ODGTcd6P1YS42tAceOsi9vVN9DSqdaqjjP-eyskzsLFrC4XvnM595wjsh-HiIScMDpjjLrzp8uH6xmnTM24FNIpvUcmTClbcyXYPplQymztuJOH5Cjn57JKK_UBOeSaMmY1n5CLmx7_dk2PFdPVPI4YI1TzlOC9Wg6peuhCGv7AG1aXCSGP1QJiwFRd4Yhh7Ib4nXxbQp_xeDen5PfN9dPirr5_vP21mN_XoRgba2eDbrlVrNVGUdtQEYyStpXGadUsaQsShAqmNRosBCUbKk2DgGBAg7BiSs62d1_S8LrGPPpVlwP2PUQc1tkzw5RjypTPp-T0C_o8rFMs7grFXSEZd4X6uaPWzQpb_5K6FaR3_xlNAcwWKAnknHDpQzfC5ucxQdd7Rv2mBL8pwW9K8LsSipJ9UX4e_5_mx1bTIeI_vlilwgjxAcBMjq4
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_JSEN_2020_2969414
crossref_primary_10_3390_s17122823
crossref_primary_10_1002_ima_22775
crossref_primary_10_3390_s18124427
crossref_primary_10_1007_s11277_021_08933_y
crossref_primary_10_1109_JERM_2020_3029214
crossref_primary_10_1002_admi_202101453
crossref_primary_10_2174_1573405617666210129114536
crossref_primary_10_1007_s11831_022_09744_5
crossref_primary_10_3390_app13148067
crossref_primary_10_1108_SR_01_2019_0020
crossref_primary_10_1109_ACCESS_2021_3140083
crossref_primary_10_1109_JERM_2024_3385335
crossref_primary_10_1016_j_rineng_2024_103044
crossref_primary_10_1038_s41598_021_87100_6
crossref_primary_10_1109_ACCESS_2019_2906566
crossref_primary_10_3390_en16031490
crossref_primary_10_1016_j_jestch_2022_101112
crossref_primary_10_1049_ell2_12085
crossref_primary_10_1371_journal_pone_0271377
crossref_primary_10_1109_LAWP_2019_2899591
crossref_primary_10_1109_TAP_2020_2996815
crossref_primary_10_3390_s22114121
crossref_primary_10_1002_mp_12611
crossref_primary_10_3390_app11083606
crossref_primary_10_1515_freq_2022_0100
crossref_primary_10_1109_MAP_2024_3411480
crossref_primary_10_1109_JSEN_2022_3180356
crossref_primary_10_1109_TMTT_2016_2631162
crossref_primary_10_1109_JERM_2021_3052096
crossref_primary_10_1109_JERM_2021_3131029
crossref_primary_10_1109_TAP_2024_3453394
crossref_primary_10_1109_JSEN_2020_3023482
crossref_primary_10_3390_s23031051
crossref_primary_10_1109_ACCESS_2020_3035657
crossref_primary_10_1080_03772063_2020_1819887
crossref_primary_10_1109_TBCAS_2022_3164871
crossref_primary_10_1002_dac_5632
crossref_primary_10_1109_JMW_2022_3223254
crossref_primary_10_1109_ACCESS_2015_2496101
crossref_primary_10_3390_bios13010087
crossref_primary_10_1007_s11517_021_02339_5
crossref_primary_10_3390_s22041626
crossref_primary_10_1109_TMTT_2022_3210202
crossref_primary_10_1109_JSEN_2021_3068957
crossref_primary_10_1109_TAP_2022_3222808
crossref_primary_10_1088_1742_6596_1502_1_012008
crossref_primary_10_1109_TAP_2019_2938849
crossref_primary_10_1109_TBME_2021_3126714
crossref_primary_10_1109_JERM_2024_3372296
crossref_primary_10_1109_JSEN_2024_3450990
crossref_primary_10_1007_s12668_021_00921_7
crossref_primary_10_1039_C6RA14092K
crossref_primary_10_3390_s18092962
crossref_primary_10_1109_TBCAS_2021_3085351
crossref_primary_10_1007_s11277_020_08036_0
crossref_primary_10_3390_jimaging5110087
crossref_primary_10_1007_s11276_024_03726_0
crossref_primary_10_1016_j_cjph_2021_02_014
crossref_primary_10_3390_electronics10030352
crossref_primary_10_1038_s41598_018_33295_0
crossref_primary_10_1109_JERM_2020_3023514
crossref_primary_10_3390_diagnostics11030470
crossref_primary_10_1109_ACCESS_2021_3104511
crossref_primary_10_1002_mmce_22960
crossref_primary_10_1017_S1759078722000319
crossref_primary_10_3390_bioengineering10101137
crossref_primary_10_1038_s41578_022_00427_y
crossref_primary_10_32604_cmc_2022_024782
crossref_primary_10_3390_s24165368
crossref_primary_10_1155_2023_5644220
crossref_primary_10_1088_2631_8695_ad02df
crossref_primary_10_1017_S1759078720001579
crossref_primary_10_3390_s20030840
crossref_primary_10_1088_1742_6596_1372_1_012004
crossref_primary_10_1109_ACCESS_2023_3316149
crossref_primary_10_1049_iet_map_2017_0486
crossref_primary_10_1109_ACCESS_2020_2999053
crossref_primary_10_1002_mmce_22531
crossref_primary_10_1002_admt_202000759
crossref_primary_10_1007_s11664_019_07041_9
crossref_primary_10_1038_s41598_019_53857_0
crossref_primary_10_3390_s18020655
crossref_primary_10_1109_JERM_2021_3072451
crossref_primary_10_1109_TAP_2020_3037742
crossref_primary_10_1109_LAWP_2024_3436559
crossref_primary_10_1109_JSEN_2019_2928117
crossref_primary_10_3390_electronics9122139
crossref_primary_10_1007_s11276_021_02770_4
crossref_primary_10_1080_02656736_2017_1337935
crossref_primary_10_1109_JSEN_2020_2987318
crossref_primary_10_1016_j_aeue_2020_153492
crossref_primary_10_1016_j_cjph_2022_03_003
crossref_primary_10_1109_TMTT_2017_2672938
crossref_primary_10_3390_polym13030357
crossref_primary_10_1021_acsbiomaterials_1c01208
crossref_primary_10_1109_ACCESS_2024_3380453
crossref_primary_10_3390_coatings10070619
crossref_primary_10_3390_s23094374
crossref_primary_10_1016_j_matpr_2022_06_401
crossref_primary_10_1007_s10916_017_0828_y
crossref_primary_10_3390_mi14030586
crossref_primary_10_3390_mi15091153
crossref_primary_10_1109_TMI_2016_2518489
crossref_primary_10_3390_diagnostics8030054
crossref_primary_10_1088_1361_6560_ac7bcc
crossref_primary_10_3390_electronics10030304
crossref_primary_10_1109_LAWP_2020_2967142
crossref_primary_10_1109_ACCESS_2018_2867836
crossref_primary_10_3390_tomography9010010
crossref_primary_10_1038_s41598_020_64185_z
crossref_primary_10_1109_ACCESS_2021_3069712
crossref_primary_10_1109_JERM_2022_3147358
crossref_primary_10_3390_electronics12010036
crossref_primary_10_3390_s19163626
crossref_primary_10_3390_electronics9071099
crossref_primary_10_1088_1361_6560_aafeec
crossref_primary_10_1109_TBCAS_2020_3025341
crossref_primary_10_1109_TAP_2021_3070015
crossref_primary_10_1109_TAP_2024_3414593
crossref_primary_10_1109_TAP_2020_2970072
crossref_primary_10_3390_s18020342
crossref_primary_10_1109_OJEMB_2023_3305838
crossref_primary_10_1007_s12672_024_01522_y
crossref_primary_10_1109_TBCAS_2018_2878057
crossref_primary_10_1016_j_jpba_2023_115266
crossref_primary_10_1109_ACCESS_2019_2909146
crossref_primary_10_1038_srep38906
crossref_primary_10_1109_TBCAS_2019_2922775
crossref_primary_10_1186_s12938_024_01277_1
crossref_primary_10_3390_app11010432
Cites_doi 10.1163/156939311797454015
10.1155/2012/851234
10.2528/PIER13110709
10.1109/TAP.2010.2048860
10.1088/0031-9155/52/20/002
10.1109/LAWP.2014.2312925
10.1109/TAP.2007.912946
10.1109/TAP.2009.2039296
10.1109/TMI.2012.2197218
10.1109/LAWP.2013.2270933
10.1002/mop.28244
10.1109/APS.2011.5996646
10.1109/6668.990683
10.1109/TBME.2014.2339836
10.1049/el.2013.3035
10.1109/LAWP.2012.2199956
10.1088/0031-9155/41/11/002
10.1063/1.4885087
10.1155/2012/180158
10.1109/TBME.2008.919716
10.1109/TBCAS.2015.2393878
10.1109/SSD.2012.6197904
10.1148/radiol.2432060286
10.1109/LAWP.2013.2247374
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2015.2434956
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2525
ExternalDocumentID 3855215141
26011862
10_1109_TBME_2015_2434956
7110373
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Healthcare Support through Information Technology Enhancements
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 10.13039/501100000038
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-98c6d2851d67508b03c7548d47965bf0da4a35c7d76a8ac54b047beaea7a6a383
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Wed Oct 01 17:08:48 EDT 2025
Mon Jun 30 08:33:11 EDT 2025
Thu Apr 03 06:56:43 EDT 2025
Wed Oct 01 04:08:42 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Wed Aug 27 02:52:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Average specific absorption rate (ASAR)
breast cancer detection
single polarization
flexible antenna
wideband antenna
biological tissues
dual-polarization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-98c6d2851d67508b03c7548d47965bf0da4a35c7d76a8ac54b047beaea7a6a383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26011862
PQID 1729171129
PQPubID 85474
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TBME_2015_2434956
ieee_primary_7110373
proquest_journals_1729171129
crossref_primary_10_1109_TBME_2015_2434956
pubmed_primary_26011862
proquest_miscellaneous_1715915725
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Oct.
2015-10-00
2015-Oct
20151001
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-Oct.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref2
ref1
ref17
ref19
ref18
(ref27) 2006
ghanbari (ref20) 2013; 3
lim (ref29) 2008; 55
santorelli (ref24) 0
ref23
ref25
ref22
balanis (ref26) 1989
ref21
(ref28) 2014
ref8
zheyu (ref16) 0
ref7
ref9
ref4
ref3
ref6
ref5
wang (ref10) 0
References_xml – ident: ref31
  doi: 10.1163/156939311797454015
– ident: ref6
  doi: 10.1155/2012/851234
– year: 2014
  ident: ref28
  article-title: Facts & figures 2014
– ident: ref30
  doi: 10.2528/PIER13110709
– year: 2006
  ident: ref27
  publication-title: IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields 3 kHz to 300 GHz
– ident: ref8
  doi: 10.1109/TAP.2010.2048860
– volume: 3
  start-page: 1
  year: 2013
  ident: ref20
  article-title: Finite element analysis of tissue electro-permeability through the application of electric pulses
  publication-title: Bioeng Biomed Sci
– year: 0
  ident: ref24
  article-title: Image classification for a time-domain microwave radar system: Experiments with stable modular breast phantoms
– start-page: 205
  year: 0
  ident: ref16
  article-title: Flexible textile antennas for body-worn communication
  publication-title: Proc IEEE Int Workshop Antenna Technol
– ident: ref2
  doi: 10.1088/0031-9155/52/20/002
– ident: ref23
  doi: 10.1109/LAWP.2014.2312925
– ident: ref14
  doi: 10.1109/TAP.2007.912946
– ident: ref5
  doi: 10.1109/TAP.2009.2039296
– ident: ref7
  doi: 10.1109/TMI.2012.2197218
– ident: ref9
  doi: 10.1109/LAWP.2013.2270933
– ident: ref15
  doi: 10.1002/mop.28244
– ident: ref12
  doi: 10.1109/APS.2011.5996646
– ident: ref1
  doi: 10.1109/6668.990683
– ident: ref19
  doi: 10.1109/TBME.2014.2339836
– start-page: 2119
  year: 0
  ident: ref10
  article-title: Novel compact tapered microstrip slot antenna for microwave breast imaging
  publication-title: Proc IEEE Int Symp Antennas Propag
– ident: ref17
  doi: 10.1049/el.2013.3035
– ident: ref22
  doi: 10.1109/LAWP.2012.2199956
– ident: ref21
  doi: 10.1088/0031-9155/41/11/002
– ident: ref3
  doi: 10.1063/1.4885087
– ident: ref11
  doi: 10.1155/2012/180158
– volume: 55
  start-page: 1697
  year: 2008
  ident: ref29
  article-title: Confocal microwave imaging for breast cancer detection: Delay-multiplyand-sum image reconstruction algorithm
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.919716
– ident: ref25
  doi: 10.1109/TBCAS.2015.2393878
– ident: ref13
  doi: 10.1109/SSD.2012.6197904
– ident: ref4
  doi: 10.1148/radiol.2432060286
– year: 1989
  ident: ref26
  publication-title: Advanced Engineering Electromagnetics
– ident: ref18
  doi: 10.1109/LAWP.2013.2247374
SSID ssj0014846
Score 2.5768712
Snippet Radar-based microwave imaging has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues has been...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2516
SubjectTerms Algorithms
Antenna arrays
Antenna measurements
Arrays
Average Specific Absorption Rate (ASAR)
Biological Tissues
Breast
Breast cancer
Breast Cancer Detection
Breast Neoplasms - diagnosis
Diagnostic Imaging - instrumentation
Dual-Polarization
Electromagnetic radiation
Female
Flexible Antenna
Humans
Mammography
Microwave imaging
Microwaves - therapeutic use
Radar
Single-Polarization
Spirals
Wideband Antenna
Wireless Technology - instrumentation
Title Flexible 16 Antenna Array for Microwave Breast Cancer Detection
URI https://ieeexplore.ieee.org/document/7110373
https://www.ncbi.nlm.nih.gov/pubmed/26011862
https://www.proquest.com/docview/1729171129
https://www.proquest.com/docview/1715915725
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA4FGihBErlSpwQ2TqJH_EJ9bWqKoVTK_UW-TG5UGWrJVsEvx5Pko1aBIhbpNiJMzOOv_F8Mwb4YIKO_zzbpFkjMRWoMLXSyFRmpQoCi9D0edzVF3VxLS5v5M0GfJpyYRCxJ5_hjC77WH5Y-BVtlR3pjLLaik3Y1KUacrWmiIEoh6QcnsUJnBsxRjAzbo6uTqpzInHJWS4KcgioArCilEuVP1qO-vNV_g41-yVn_hyq9WAHpsnX2apzM__ztzqO__s1L2B7xJ7seDCWl7CB7Q48e1CRcAeeVGOsfRc-z6lWprtFlil2TEz31sa-S_uDRaDLKmLyfbf3yE6I196xU7KfJTvDrmd3ta_gen5-dXqRjsctpD5KpUtN6VXIIwIL0YngpeOF19GfCUIbJV3DgxW2kF4HrWxpvRSOC-3QotVW2ejpvoatdtHiG2ClccoJ40KeNwIbjG4oISGO3nArg0mAr6Ve-7EWOR2JcVv3Pgk3NemsJp3Vo84S-Dh1uRsKcfyr8S7Je2o4ijqB_bVq63GqfqsjgosuK8HOBA6n23GSUeTEtrhYUZuI-jKpc5nA3mAS07PXlvT2z-98B09pZAP_bx-2uuUK30cc07mD3oB_Aajn6Ng
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkE58GgLBAoYiRMiWyfxIz6htnS1QNPTVuotsuPJhSpbLdlW7a_Hk2QjQIC4RYqdODPj-BvPN2OAd8br8M-zdZzUEmOBCmMrjYxlkisvMPN1l8ddnKrZmfhyLs834MOYC4OIHfkMJ3TZxfL9olrRVtm-TiirLbsDd6UQQvbZWmPMQOR9Wg5PwhROjRhimAk3-_PD4phoXHKSioxcAqoBrCjpUqW_LEjdCSt_B5vdojN9BMV6uD3X5Ntk1bpJdftbJcf__Z7H8HBAn-ygN5cnsIHNNjz4qSbhNtwrhmj7DnycUrVMd4EsUeyAuO6NDX2X9oYFqMsK4vJd2ytkh8Rsb9kRWdCSfcK243c1u3A2PZ4fzeLhwIW4ClJpY5NXyqcBg_ngRvDc8azSwaPxQhslXc29FTaTlfZa2dxWUjgutEOLVltlg6_7FDabRYPPgeXGKSeM82laC6wxOKKEhThWhlvpTQR8LfWyGqqR06EYF2XnlXBTks5K0lk56CyC92OXy74Ux78a75C8x4aDqCPYW6u2HCbr9zJguOC0EvCM4O14O0wzip3YBhcrahNwXyJ1KiN41pvE-Oy1Jb348zvfwP3ZvDgpTz6ffn0JWzTKng24B5vtcoWvAqpp3evOmH8ABmzsJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+16+Antenna+Array+for+Microwave+Breast+Cancer+Detection&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Bahramiabarghouei%2C+Hadi&rft.au=Porter%2C+Emily&rft.au=Santorelli%2C+Adam&rft.au=Gosselin%2C+Benoit&rft.date=2015-10-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=62&rft.issue=10&rft.spage=2516&rft.epage=2525&rft_id=info:doi/10.1109%2FTBME.2015.2434956&rft_id=info%3Apmid%2F26011862&rft.externalDocID=7110373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon