MGRFE: Multilayer Recursive Feature Elimination Based on an Embedded Genetic Algorithm for Cancer Classification
Microarray gene expression data have become a topic of great interest for cancer classification and for further research in the field of bioinformatics. Nonetheless, due to the "large <inline-formula><tex-math notation="LaTeX">p</tex-math> <mml:math><mml:mi&...
Saved in:
| Published in | IEEE/ACM transactions on computational biology and bioinformatics Vol. 18; no. 2; pp. 621 - 632 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1545-5963 1557-9964 1557-9964 |
| DOI | 10.1109/TCBB.2019.2921961 |
Cover
| Abstract | Microarray gene expression data have become a topic of great interest for cancer classification and for further research in the field of bioinformatics. Nonetheless, due to the "large <inline-formula><tex-math notation="LaTeX">p</tex-math> <mml:math><mml:mi>p</mml:mi></mml:math><inline-graphic xlink:href="li-ieq1-2921961.gif"/> </inline-formula>, small <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="li-ieq2-2921961.gif"/> </inline-formula>" paradigm of limited biosamples and high-dimensional data, gene selection is becoming a demanding task, which is aimed at selecting a minimal number of discriminatory genes associated closely with a phenotype. Feature or gene selection is still a challenging problem owing to its nondeterministic polynomial time complexity and thus most of the existing feature selection algorithms utilize heuristic rules. A multilayer recursive feature elimination method based on an embedded integer-coded genetic algorithm, MGRFE, is proposed here, which is aimed at selecting the gene combination with minimal size and maximal information. On the basis of 19 benchmark microarray datasets including multiclass and imbalanced datasets, MGRFE outperforms state-of-the-art feature selection algorithms with better cancer classification accuracy and a smaller selected gene number. MGRFE could be regarded as a promising feature selection method for high-dimensional datasets especially gene expression data. Moreover, the genes selected by MGRFE have close biological relevance to cancer phenotypes. The source code of our proposed algorithm and all the 19 datasets used in this paper are available at https://github.com/Pengeace/MGRFE-GaRFE . |
|---|---|
| AbstractList | Microarray gene expression data have become a topic of great interest for cancer classification and for further research in the field of bioinformatics. Nonetheless, due to the "large <inline-formula><tex-math notation="LaTeX">p</tex-math> <mml:math><mml:mi>p</mml:mi></mml:math><inline-graphic xlink:href="li-ieq1-2921961.gif"/> </inline-formula>, small <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="li-ieq2-2921961.gif"/> </inline-formula>" paradigm of limited biosamples and high-dimensional data, gene selection is becoming a demanding task, which is aimed at selecting a minimal number of discriminatory genes associated closely with a phenotype. Feature or gene selection is still a challenging problem owing to its nondeterministic polynomial time complexity and thus most of the existing feature selection algorithms utilize heuristic rules. A multilayer recursive feature elimination method based on an embedded integer-coded genetic algorithm, MGRFE, is proposed here, which is aimed at selecting the gene combination with minimal size and maximal information. On the basis of 19 benchmark microarray datasets including multiclass and imbalanced datasets, MGRFE outperforms state-of-the-art feature selection algorithms with better cancer classification accuracy and a smaller selected gene number. MGRFE could be regarded as a promising feature selection method for high-dimensional datasets especially gene expression data. Moreover, the genes selected by MGRFE have close biological relevance to cancer phenotypes. The source code of our proposed algorithm and all the 19 datasets used in this paper are available at https://github.com/Pengeace/MGRFE-GaRFE . Microarray gene expression data have become a topic of great interest for cancer classification and for further research in the field of bioinformatics. Nonetheless, due to the "large p, small n" paradigm of limited biosamples and high-dimensional data, gene selection is becoming a demanding task, which is aimed at selecting a minimal number of discriminatory genes associated closely with a phenotype. Feature or gene selection is still a challenging problem owing to its nondeterministic polynomial time complexity and thus most of the existing feature selection algorithms utilize heuristic rules. A multilayer recursive feature elimination method based on an embedded integer-coded genetic algorithm, MGRFE, is proposed here, which is aimed at selecting the gene combination with minimal size and maximal information. On the basis of 19 benchmark microarray datasets including multiclass and imbalanced datasets, MGRFE outperforms state-of-the-art feature selection algorithms with better cancer classification accuracy and a smaller selected gene number. MGRFE could be regarded as a promising feature selection method for high-dimensional datasets especially gene expression data. Moreover, the genes selected by MGRFE have close biological relevance to cancer phenotypes. The source code of our proposed algorithm and all the 19 datasets used in this paper are available at https://github.com/Pengeace/MGRFE-GaRFE. Microarray gene expression data have become a topic of great interest for cancer classification and for further research in the field of bioinformatics. Nonetheless, due to the "large p, small n" paradigm of limited biosamples and high-dimensional data, gene selection is becoming a demanding task, which is aimed at selecting a minimal number of discriminatory genes associated closely with a phenotype. Feature or gene selection is still a challenging problem owing to its nondeterministic polynomial time complexity and thus most of the existing feature selection algorithms utilize heuristic rules. A multilayer recursive feature elimination method based on an embedded integer-coded genetic algorithm, MGRFE, is proposed here, which is aimed at selecting the gene combination with minimal size and maximal information. On the basis of 19 benchmark microarray datasets including multiclass and imbalanced datasets, MGRFE outperforms state-of-the-art feature selection algorithms with better cancer classification accuracy and a smaller selected gene number. MGRFE could be regarded as a promising feature selection method for high-dimensional datasets especially gene expression data. Moreover, the genes selected by MGRFE have close biological relevance to cancer phenotypes. The source code of our proposed algorithm and all the 19 datasets used in this paper are available at https://github.com/Pengeace/MGRFE-GaRFE.Microarray gene expression data have become a topic of great interest for cancer classification and for further research in the field of bioinformatics. Nonetheless, due to the "large p, small n" paradigm of limited biosamples and high-dimensional data, gene selection is becoming a demanding task, which is aimed at selecting a minimal number of discriminatory genes associated closely with a phenotype. Feature or gene selection is still a challenging problem owing to its nondeterministic polynomial time complexity and thus most of the existing feature selection algorithms utilize heuristic rules. A multilayer recursive feature elimination method based on an embedded integer-coded genetic algorithm, MGRFE, is proposed here, which is aimed at selecting the gene combination with minimal size and maximal information. On the basis of 19 benchmark microarray datasets including multiclass and imbalanced datasets, MGRFE outperforms state-of-the-art feature selection algorithms with better cancer classification accuracy and a smaller selected gene number. MGRFE could be regarded as a promising feature selection method for high-dimensional datasets especially gene expression data. Moreover, the genes selected by MGRFE have close biological relevance to cancer phenotypes. The source code of our proposed algorithm and all the 19 datasets used in this paper are available at https://github.com/Pengeace/MGRFE-GaRFE. Microarray gene expression data have become a topic of great interest for cancer classification and for further research in the field of bioinformatics. Nonetheless, due to the “large [Formula Omitted], small [Formula Omitted]” paradigm of limited biosamples and high-dimensional data, gene selection is becoming a demanding task, which is aimed at selecting a minimal number of discriminatory genes associated closely with a phenotype. Feature or gene selection is still a challenging problem owing to its nondeterministic polynomial time complexity and thus most of the existing feature selection algorithms utilize heuristic rules. A multilayer recursive feature elimination method based on an embedded integer-coded genetic algorithm, MGRFE, is proposed here, which is aimed at selecting the gene combination with minimal size and maximal information. On the basis of 19 benchmark microarray datasets including multiclass and imbalanced datasets, MGRFE outperforms state-of-the-art feature selection algorithms with better cancer classification accuracy and a smaller selected gene number. MGRFE could be regarded as a promising feature selection method for high-dimensional datasets especially gene expression data. Moreover, the genes selected by MGRFE have close biological relevance to cancer phenotypes. The source code of our proposed algorithm and all the 19 datasets used in this paper are available at https://github.com/Pengeace/MGRFE-GaRFE . |
| Author | Zhang, Xinran Yuan, Wen Li, Ying Wu, Xinyu Zhang, Yu Peng, Cheng |
| Author_xml | – sequence: 1 givenname: Cheng surname: Peng fullname: Peng, Cheng email: pengcheng2114@mails.jlu.edu.cn organization: College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China – sequence: 2 givenname: Xinyu surname: Wu fullname: Wu, Xinyu email: wuxy5676@163.com organization: College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China – sequence: 3 givenname: Wen surname: Yuan fullname: Yuan, Wen email: yuanwen2114@mails.jlu.edu.cn organization: College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China – sequence: 4 givenname: Xinran surname: Zhang fullname: Zhang, Xinran email: zhangxr2114@mails.jlu.edu.cn organization: College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China – sequence: 5 givenname: Yu surname: Zhang fullname: Zhang, Yu email: zy26@jlu.edu.cn organization: College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China – sequence: 6 givenname: Ying orcidid: 0000-0002-7804-149X surname: Li fullname: Li, Ying email: liying@jlu.edu.cn organization: College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31180870$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtr3DAUhUVJaB7tDyiFIsimG0_1sC2ru4yZmQQSCiFdG1m6ahVkeSrZgfz7aDLTLLLIRrqC75wrzjlDR2EMgNAXShaUEvnjvl0uF4xQuWCSUVnTD-iUVpUopKzLo91cVkUla36CzlJ6IISVkpQf0QmntCGNIKdoe7u5W69-4tvZT86rJ4j4DvQck3sEvAY1zRHwyrvBBTW5MeClSmBwHlTAq6EHY_JzAwEmp_Gl_zNGN_0dsB0jblXQ2a_1KiVnnX4x-ISOrfIJPh_uc_R7vbpvr4qbX5vr9vKm0LyUU9HUtOfc2Kqn2gitpNC8B1JLAoRYyyppLG-EEaQWhjNT8V4bAhW1wvaslvwcfd_7buP4b4Y0dYNLGrxXAcY5dYzlcAgvmzKjF2_Qh3GOIf-uYxUlJWe05pn6dqDmfgDTbaMbVHzq_meZAboHdBxTimBfEUq6XV_drq9u11d36CtrxBuNdtNLTlNUzr-r_LpXOgB43dQIzmU-ngHFfqFE |
| CODEN | ITCBCY |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3196905 crossref_primary_10_3390_app12147226 crossref_primary_10_1007_s12652_025_04953_9 crossref_primary_10_1016_j_cmpb_2023_107987 crossref_primary_10_1109_ACCESS_2023_3312305 crossref_primary_10_1016_j_engappai_2024_108546 crossref_primary_10_3389_fphar_2022_708610 crossref_primary_10_1109_ACCESS_2020_2992907 crossref_primary_10_1016_j_compbiomed_2022_106413 crossref_primary_10_1016_j_eij_2025_100639 crossref_primary_10_1016_j_eswa_2022_118946 crossref_primary_10_1038_s41598_021_03316_6 crossref_primary_10_1007_s11042_024_18246_4 crossref_primary_10_1109_TCYB_2024_3372070 crossref_primary_10_1109_TSG_2023_3245636 crossref_primary_10_1109_JPHOT_2022_3221095 crossref_primary_10_1016_j_asoc_2024_111708 crossref_primary_10_1007_s43032_021_00830_w crossref_primary_10_1109_JIOT_2023_3334912 crossref_primary_10_1016_j_artmed_2024_102884 crossref_primary_10_1109_TAI_2024_3380590 crossref_primary_10_1007_s42979_024_03402_2 crossref_primary_10_1109_ACCESS_2024_3461878 crossref_primary_10_1109_TNB_2022_3194091 crossref_primary_10_1109_JSTARS_2022_3225665 crossref_primary_10_1016_j_cose_2023_103675 crossref_primary_10_3390_electronics10243124 crossref_primary_10_3390_computation10070104 crossref_primary_10_1109_TIM_2023_3341111 crossref_primary_10_3389_fgene_2022_979529 crossref_primary_10_3390_jpm13020183 crossref_primary_10_1016_j_compbiomed_2021_105051 crossref_primary_10_7717_peerj_cs_1860 crossref_primary_10_1016_j_swevo_2024_101546 crossref_primary_10_1038_s41598_023_30862_y crossref_primary_10_1016_j_eswa_2023_120130 |
| Cites_doi | 10.1038/415436a 10.1136/gutjnl-2011-301373 10.1016/j.eswa.2008.09.070 10.1038/89044 10.1016/j.compbiolchem.2007.10.001 10.1126/science.286.5439.531 10.1016/S0012-1606(03)00256-2 10.1016/j.compbiolchem.2015.03.001 10.1534/genetics.113.150896 10.1016/j.ygeno.2013.11.001 10.1126/science.1205438 10.1186/1471-2105-7-S2-S12 10.1016/j.asoc.2015.10.002 10.1109/TSMCC.2010.2078503 10.1016/j.ygeno.2017.01.004 10.1038/35000501 10.1016/S0165-1684(02)00474-7 10.1038/ng765 10.1016/j.eswa.2009.07.028 10.1016/j.eswa.2010.07.053 10.1186/1471-2105-7-126 10.1016/j.eswa.2011.08.069 10.1186/1471-2105-7-228 10.1016/j.eswa.2011.04.164 10.1142/S0218001405003983 10.1016/j.eswa.2010.06.076 10.1038/jcbfm.2012.24 10.1016/j.procs.2013.05.405 10.1109/TCBB.2012.33 10.1182/blood-2003-09-3243 10.1016/j.cie.2011.06.015 10.1093/bioinformatics/btg227 10.1016/j.eswa.2014.08.014 10.1109/TKDE.2005.66 10.1016/S0893-6080(03)00103-5 10.1186/1471-2105-15-49 10.1093/bioinformatics/17.6.509 10.1016/j.asoc.2016.11.026 10.1186/s12920-016-0204-7 10.1038/gene.2012.41 10.1186/1471-2105-6-67 10.1371/journal.pone.0063826 10.1073/pnas.96.12.6745 10.1109/TPAMI.2005.159 10.1186/1471-2105-8-5 10.1016/j.eswa.2013.09.004 10.1109/TCBB.2011.151 10.1186/s12859-016-0990-0 10.1186/gb-2003-4-4-210 10.1016/B978-1-55860-335-6.50043-X 10.1056/NEJMoa030847 10.1016/j.asoc.2012.03.015 10.1109/TAI.1995.479783 10.1073/pnas.082099299 10.1016/S1672-0229(08)60011-X 10.1109/TITB.2011.2167756 10.1016/S1535-6108(02)00030-2 10.1038/nm0102-68 10.1023/A:1012487302797 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TCBB.2019.2921961 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1557-9964 |
| EndPage | 632 |
| ExternalDocumentID | 31180870 10_1109_TCBB_2019_2921961 8733987 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Jilin Province grantid: 20180101331JC funderid: 10.13039/100007847 – fundername: National Natural Science Foundation of China grantid: 61572105; 61872418; 71774154 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL AEBYY AEFXT AEJOY AENEX AENSD AETIX AFRAH AFWIH AFWXC AGQYO AGSQL AHBIQ AIBXA AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNI RNS ROL RZB TN5 XOL AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c349t-861b33df5b1cd7ca97c3be0690e00ff259df387d7067d32d53bcd0e51f7fb2693 |
| IEDL.DBID | RIE |
| ISSN | 1545-5963 1557-9964 |
| IngestDate | Sun Sep 28 09:16:07 EDT 2025 Sun Jun 29 12:23:55 EDT 2025 Mon Jul 21 05:38:21 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Sat Oct 25 04:05:12 EDT 2025 Wed Aug 27 02:41:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-861b33df5b1cd7ca97c3be0690e00ff259df387d7067d32d53bcd0e51f7fb2693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7804-149X |
| PMID | 31180870 |
| PQID | 2510432163 |
| PQPubID | 85499 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TCBB_2019_2921961 proquest_journals_2510432163 pubmed_primary_31180870 proquest_miscellaneous_2254503484 ieee_primary_8733987 crossref_citationtrail_10_1109_TCBB_2019_2921961 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-March-April-1 2021-3-1 2021 Mar-Apr 20210301 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-March-April-1 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
| PublicationTitleAbbrev | TCBB |
| PublicationTitleAlternate | IEEE/ACM Trans Comput Biol Bioinform |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref18 alon (ref37) 1999; 96 jin (ref21) 2012; 12 ref51 ref50 ref46 ref45 alizadeh (ref35) 2000; 403 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref9 ref4 ref3 ref5 ref40 lin (ref6) 0 deng (ref19) 2012 ref34 ref31 ref30 golub (ref38) 1999; 286 ref33 ref32 ref2 yang (ref59) 2006; 7 wong (ref64) 2012 ref1 ref39 golub (ref7) 1999; 286 notterman (ref36) 2001; 61 blickle (ref61) 1995 ref24 ref67 ref23 ref26 ref25 ref20 ref63 ref22 ref65 reshef (ref15) 2011; 334 ref28 ref27 ref29 ref60 ref62 garro (ref66) 2016; 38 |
| References_xml | – volume: 61 start-page: 3124 year: 2001 ident: ref36 article-title: Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays publication-title: Cancer Res – ident: ref34 doi: 10.1038/415436a – year: 2012 ident: ref64 article-title: CS2220: Introduction to computational biology, lecture 4: Gene expression analysis – ident: ref40 doi: 10.1136/gutjnl-2011-301373 – ident: ref52 doi: 10.1016/j.eswa.2008.09.070 – ident: ref44 doi: 10.1038/89044 – ident: ref56 doi: 10.1016/j.compbiolchem.2007.10.001 – volume: 286 start-page: 531 year: 1999 ident: ref7 article-title: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring publication-title: Sci doi: 10.1126/science.286.5439.531 – ident: ref10 doi: 10.1016/S0012-1606(03)00256-2 – ident: ref65 doi: 10.1016/j.compbiolchem.2015.03.001 – ident: ref1 doi: 10.1534/genetics.113.150896 – ident: ref30 doi: 10.1016/j.ygeno.2013.11.001 – volume: 334 start-page: 1518 year: 2011 ident: ref15 article-title: Detecting novel associations in large data sets publication-title: Sci doi: 10.1126/science.1205438 – ident: ref28 doi: 10.1186/1471-2105-7-S2-S12 – volume: 38 start-page: 548 year: 2016 ident: ref66 article-title: Classification of DNA microarrays using artificial neural networks and abc algorithm publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.10.002 – ident: ref50 doi: 10.1109/TSMCC.2010.2078503 – ident: ref27 doi: 10.1016/j.ygeno.2017.01.004 – volume: 403 year: 2000 ident: ref35 article-title: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling publication-title: Nature doi: 10.1038/35000501 – ident: ref46 doi: 10.1016/S0165-1684(02)00474-7 – ident: ref45 doi: 10.1038/ng765 – ident: ref58 doi: 10.1016/j.eswa.2009.07.028 – ident: ref51 doi: 10.1016/j.eswa.2010.07.053 – ident: ref12 doi: 10.1186/1471-2105-7-126 – ident: ref49 doi: 10.1016/j.eswa.2011.08.069 – volume: 7 year: 2006 ident: ref59 article-title: A stable gene selection in microarray data analysis publication-title: BMC Bioinf doi: 10.1186/1471-2105-7-228 – ident: ref60 doi: 10.1016/j.eswa.2011.04.164 – ident: ref62 doi: 10.1142/S0218001405003983 – ident: ref47 doi: 10.1016/j.eswa.2010.06.076 – ident: ref43 doi: 10.1038/jcbfm.2012.24 – ident: ref26 doi: 10.1016/j.procs.2013.05.405 – ident: ref9 doi: 10.1109/TCBB.2012.33 – ident: ref33 doi: 10.1182/blood-2003-09-3243 – ident: ref22 doi: 10.1016/j.cie.2011.06.015 – ident: ref13 doi: 10.1093/bioinformatics/btg227 – ident: ref23 doi: 10.1016/j.eswa.2014.08.014 – ident: ref2 doi: 10.1109/TKDE.2005.66 – ident: ref29 doi: 10.1016/S0893-6080(03)00103-5 – ident: ref20 doi: 10.1186/1471-2105-15-49 – ident: ref11 doi: 10.1093/bioinformatics/17.6.509 – ident: ref67 doi: 10.1016/j.asoc.2016.11.026 – year: 1995 ident: ref61 article-title: A comparison of selection schemes used in genetic algorithms – ident: ref24 doi: 10.1186/s12920-016-0204-7 – ident: ref42 doi: 10.1038/gene.2012.41 – ident: ref48 doi: 10.1186/1471-2105-6-67 – ident: ref41 doi: 10.1371/journal.pone.0063826 – volume: 96 start-page: 6745 year: 1999 ident: ref37 article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays publication-title: Proc Natl Acad Sci United States America doi: 10.1073/pnas.96.12.6745 – ident: ref14 doi: 10.1016/j.compbiolchem.2007.10.001 – ident: ref5 doi: 10.1109/TPAMI.2005.159 – ident: ref54 doi: 10.1186/1471-2105-8-5 – ident: ref25 doi: 10.1016/j.eswa.2013.09.004 – ident: ref55 doi: 10.1109/TCBB.2011.151 – ident: ref16 doi: 10.1186/s12859-016-0990-0 – ident: ref8 doi: 10.1186/gb-2003-4-4-210 – ident: ref18 doi: 10.1016/B978-1-55860-335-6.50043-X – start-page: 1 year: 0 ident: ref6 article-title: Maximal information coefficient for feature selection for clinical document classification publication-title: Proc ICML Workshop Mach Learn Clinical Data – ident: ref39 doi: 10.1056/NEJMoa030847 – volume: 12 start-page: 2147 year: 2012 ident: ref21 article-title: Attribute selection method based on a hybrid BPNN and PSO algorithms publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.03.015 – ident: ref4 doi: 10.1109/TAI.1995.479783 – ident: ref63 doi: 10.1186/1471-2105-15-49 – ident: ref57 doi: 10.1073/pnas.082099299 – ident: ref3 doi: 10.1016/S1672-0229(08)60011-X – ident: ref53 doi: 10.1109/TITB.2011.2167756 – start-page: 1 year: 2012 ident: ref19 article-title: Feature selection via regularized trees publication-title: Proc Int Joint Conf Neural Netw – ident: ref32 doi: 10.1016/S1535-6108(02)00030-2 – ident: ref31 doi: 10.1038/nm0102-68 – ident: ref17 doi: 10.1023/A:1012487302797 – volume: 286 start-page: 531 year: 1999 ident: ref38 article-title: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring publication-title: Sci doi: 10.1126/science.286.5439.531 |
| SSID | ssj0024904 |
| Score | 2.458715 |
| Snippet | Microarray gene expression data have become a topic of great interest for cancer classification and for further research in the field of bioinformatics.... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 621 |
| SubjectTerms | Algorithms Bioinformatics Cancer cancer classification Classification Computational Biology - methods Databases, Genetic Datasets DNA microarrays Feature extraction Feature selection Gene expression Gene Expression Profiling Gene selection Genes genetic algorithm Genetic algorithms Heuristic algorithms Humans microarray data Microwave integrated circuits Models, Genetic Multilayers Neoplasms - classification Neoplasms - genetics Neoplasms - metabolism Nonhomogeneous media Oligonucleotide Array Sequence Analysis Phenotypes Polynomials recursive feature elimination Source code Transcriptome - genetics |
| Title | MGRFE: Multilayer Recursive Feature Elimination Based on an Embedded Genetic Algorithm for Cancer Classification |
| URI | https://ieeexplore.ieee.org/document/8733987 https://www.ncbi.nlm.nih.gov/pubmed/31180870 https://www.proquest.com/docview/2510432163 https://www.proquest.com/docview/2254503484 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024904 issn: 1545-5963 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZC48CqPQEFG4oTI1omdh7l1V7tUSOVQtVJvkZ-A2GarJTnAr2fGyQaEAHFKpDhOohlnvrHH3wfwSnqZG2Fk6rOQp1KLPDW1y1MVrMxCWRobItvnh_L0Ur6_Kq724M20F8Z7H4vP_IxO41q-29iepsqO60oIzJH3Yb-qy2Gv1k9ePRWlAgkRpAV61biCmXF1fLGYz6mIS81yhQO0JHUYQdRnNUkU_xKOor7K36FmDDmru3C2e9mh0uTLrO_MzH7_jcfxf7_mHtwZsSc7GZzlPuz59gHcGtQovx3Czdm789XyLYt7ctcasTg7p9l4KnBnBBX7rWfLdZQBI3OyOUZAx_BEt2x5bTz-wxwjHmvsn52sP262n7tP1wxhMVuQc-GBsDoVJ8UOHsLlanmxOE1HQYbUCqm6tC4zI4QLhcmsq6xWlRXGE9ex5zwEzKRcEHXlKgyBTuSuEMY67ossVMHkpRKP4KDdtP4JsGCsyQxir0ITJuLaRyilrXS81kWdAN_ZpbEjWzmJZqybmLVw1ZBVG7JqM1o1gdfTLTcDVce_Gh-SRaaGozESONoZvxkH89cGISARFyJyTeDldBmHIa2t6NZvemyDiXbBhaxlAo8Hp5n63vna0z8_8xnczqlQJha2HcFBt-39c0Q6nXkRXfwH9AP25g |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQXXqUlUMBInBDZJrGdB7fuapcFuj1UW6m3KH5BxTZbLckBfj0zTjYgBIhTIsVxEs048409_j6AV8KKRHElQhu7JBQVT0KVmyQsnBaxS1OlnWf7PE3n5-LDhbzYgTfDXhhrrS8-syM69Wv5Zq1bmio7yjPOMUe-ATelEEJ2u7V-MusVXiyQMEEo0a_6Ncw4Ko6Wk_GYyriKUVLgEE1JH4YT-VlOIsW_BCSvsPJ3sOmDzuweLLav29WafBm1jRrp778xOf7v99yHuz36ZMeduzyAHVs_hFudHuW3PbhevDubTd8yvyt3VSEaZ2c0H08l7ozAYruxbLryQmBkUDbGGGgYnlQ1m14pi38xw4jJGvtnx6tP681l8_mKITBmE3IvPBBap_Ik38EjOJ9Nl5N52EsyhJqLognzNFacGydVrE2mqyLTXFliO7ZR5BzmUsbxPDMZBkHDEyO50iayMnaZU0la8H3Yrde1fQzMKa1ihehLVoSKosp6MFVpYaK8knkA0dYupe75ykk2Y1X6vCUqSrJqSVYte6sG8Hq45boj6_hX4z2yyNCwN0YAh1vjl_1w_loiCCTqQsSuAbwcLuNApNWVqrbrFttgqi0jLnIRwEHnNEPfW1978udnvoDb8-XipDx5f_rxKdxJqGzGl7kdwm6zae0zxD2Neu7d_QcIFfoz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MGRFE%3A+Multilayer+Recursive+Feature+Elimination+Based+on+an+Embedded+Genetic+Algorithm+for+Cancer+Classification&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Peng%2C+Cheng&rft.au=Wu%2C+Xinyu&rft.au=Yuan%2C+Wen&rft.au=Zhang%2C+Xinran&rft.date=2021-03-01&rft.eissn=1557-9964&rft.volume=18&rft.issue=2&rft.spage=621&rft_id=info:doi/10.1109%2FTCBB.2019.2921961&rft_id=info%3Apmid%2F31180870&rft.externalDocID=31180870 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |