MGRFE: Multilayer Recursive Feature Elimination Based on an Embedded Genetic Algorithm for Cancer Classification

Microarray gene expression data have become a topic of great interest for cancer classification and for further research in the field of bioinformatics. Nonetheless, due to the "large <inline-formula><tex-math notation="LaTeX">p</tex-math> <mml:math><mml:mi&...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on computational biology and bioinformatics Vol. 18; no. 2; pp. 621 - 632
Main Authors Peng, Cheng, Wu, Xinyu, Yuan, Wen, Zhang, Xinran, Zhang, Yu, Li, Ying
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-5963
1557-9964
1557-9964
DOI10.1109/TCBB.2019.2921961

Cover

Abstract Microarray gene expression data have become a topic of great interest for cancer classification and for further research in the field of bioinformatics. Nonetheless, due to the "large <inline-formula><tex-math notation="LaTeX">p</tex-math> <mml:math><mml:mi>p</mml:mi></mml:math><inline-graphic xlink:href="li-ieq1-2921961.gif"/> </inline-formula>, small <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="li-ieq2-2921961.gif"/> </inline-formula>" paradigm of limited biosamples and high-dimensional data, gene selection is becoming a demanding task, which is aimed at selecting a minimal number of discriminatory genes associated closely with a phenotype. Feature or gene selection is still a challenging problem owing to its nondeterministic polynomial time complexity and thus most of the existing feature selection algorithms utilize heuristic rules. A multilayer recursive feature elimination method based on an embedded integer-coded genetic algorithm, MGRFE, is proposed here, which is aimed at selecting the gene combination with minimal size and maximal information. On the basis of 19 benchmark microarray datasets including multiclass and imbalanced datasets, MGRFE outperforms state-of-the-art feature selection algorithms with better cancer classification accuracy and a smaller selected gene number. MGRFE could be regarded as a promising feature selection method for high-dimensional datasets especially gene expression data. Moreover, the genes selected by MGRFE have close biological relevance to cancer phenotypes. The source code of our proposed algorithm and all the 19 datasets used in this paper are available at https://github.com/Pengeace/MGRFE-GaRFE .
AbstractList Microarray gene expression data have become a topic of great interest for cancer classification and for further research in the field of bioinformatics. Nonetheless, due to the "large <inline-formula><tex-math notation="LaTeX">p</tex-math> <mml:math><mml:mi>p</mml:mi></mml:math><inline-graphic xlink:href="li-ieq1-2921961.gif"/> </inline-formula>, small <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="li-ieq2-2921961.gif"/> </inline-formula>" paradigm of limited biosamples and high-dimensional data, gene selection is becoming a demanding task, which is aimed at selecting a minimal number of discriminatory genes associated closely with a phenotype. Feature or gene selection is still a challenging problem owing to its nondeterministic polynomial time complexity and thus most of the existing feature selection algorithms utilize heuristic rules. A multilayer recursive feature elimination method based on an embedded integer-coded genetic algorithm, MGRFE, is proposed here, which is aimed at selecting the gene combination with minimal size and maximal information. On the basis of 19 benchmark microarray datasets including multiclass and imbalanced datasets, MGRFE outperforms state-of-the-art feature selection algorithms with better cancer classification accuracy and a smaller selected gene number. MGRFE could be regarded as a promising feature selection method for high-dimensional datasets especially gene expression data. Moreover, the genes selected by MGRFE have close biological relevance to cancer phenotypes. The source code of our proposed algorithm and all the 19 datasets used in this paper are available at https://github.com/Pengeace/MGRFE-GaRFE .
Microarray gene expression data have become a topic of great interest for cancer classification and for further research in the field of bioinformatics. Nonetheless, due to the "large p, small n" paradigm of limited biosamples and high-dimensional data, gene selection is becoming a demanding task, which is aimed at selecting a minimal number of discriminatory genes associated closely with a phenotype. Feature or gene selection is still a challenging problem owing to its nondeterministic polynomial time complexity and thus most of the existing feature selection algorithms utilize heuristic rules. A multilayer recursive feature elimination method based on an embedded integer-coded genetic algorithm, MGRFE, is proposed here, which is aimed at selecting the gene combination with minimal size and maximal information. On the basis of 19 benchmark microarray datasets including multiclass and imbalanced datasets, MGRFE outperforms state-of-the-art feature selection algorithms with better cancer classification accuracy and a smaller selected gene number. MGRFE could be regarded as a promising feature selection method for high-dimensional datasets especially gene expression data. Moreover, the genes selected by MGRFE have close biological relevance to cancer phenotypes. The source code of our proposed algorithm and all the 19 datasets used in this paper are available at https://github.com/Pengeace/MGRFE-GaRFE.
Microarray gene expression data have become a topic of great interest for cancer classification and for further research in the field of bioinformatics. Nonetheless, due to the "large p, small n" paradigm of limited biosamples and high-dimensional data, gene selection is becoming a demanding task, which is aimed at selecting a minimal number of discriminatory genes associated closely with a phenotype. Feature or gene selection is still a challenging problem owing to its nondeterministic polynomial time complexity and thus most of the existing feature selection algorithms utilize heuristic rules. A multilayer recursive feature elimination method based on an embedded integer-coded genetic algorithm, MGRFE, is proposed here, which is aimed at selecting the gene combination with minimal size and maximal information. On the basis of 19 benchmark microarray datasets including multiclass and imbalanced datasets, MGRFE outperforms state-of-the-art feature selection algorithms with better cancer classification accuracy and a smaller selected gene number. MGRFE could be regarded as a promising feature selection method for high-dimensional datasets especially gene expression data. Moreover, the genes selected by MGRFE have close biological relevance to cancer phenotypes. The source code of our proposed algorithm and all the 19 datasets used in this paper are available at https://github.com/Pengeace/MGRFE-GaRFE.Microarray gene expression data have become a topic of great interest for cancer classification and for further research in the field of bioinformatics. Nonetheless, due to the "large p, small n" paradigm of limited biosamples and high-dimensional data, gene selection is becoming a demanding task, which is aimed at selecting a minimal number of discriminatory genes associated closely with a phenotype. Feature or gene selection is still a challenging problem owing to its nondeterministic polynomial time complexity and thus most of the existing feature selection algorithms utilize heuristic rules. A multilayer recursive feature elimination method based on an embedded integer-coded genetic algorithm, MGRFE, is proposed here, which is aimed at selecting the gene combination with minimal size and maximal information. On the basis of 19 benchmark microarray datasets including multiclass and imbalanced datasets, MGRFE outperforms state-of-the-art feature selection algorithms with better cancer classification accuracy and a smaller selected gene number. MGRFE could be regarded as a promising feature selection method for high-dimensional datasets especially gene expression data. Moreover, the genes selected by MGRFE have close biological relevance to cancer phenotypes. The source code of our proposed algorithm and all the 19 datasets used in this paper are available at https://github.com/Pengeace/MGRFE-GaRFE.
Microarray gene expression data have become a topic of great interest for cancer classification and for further research in the field of bioinformatics. Nonetheless, due to the “large [Formula Omitted], small [Formula Omitted]” paradigm of limited biosamples and high-dimensional data, gene selection is becoming a demanding task, which is aimed at selecting a minimal number of discriminatory genes associated closely with a phenotype. Feature or gene selection is still a challenging problem owing to its nondeterministic polynomial time complexity and thus most of the existing feature selection algorithms utilize heuristic rules. A multilayer recursive feature elimination method based on an embedded integer-coded genetic algorithm, MGRFE, is proposed here, which is aimed at selecting the gene combination with minimal size and maximal information. On the basis of 19 benchmark microarray datasets including multiclass and imbalanced datasets, MGRFE outperforms state-of-the-art feature selection algorithms with better cancer classification accuracy and a smaller selected gene number. MGRFE could be regarded as a promising feature selection method for high-dimensional datasets especially gene expression data. Moreover, the genes selected by MGRFE have close biological relevance to cancer phenotypes. The source code of our proposed algorithm and all the 19 datasets used in this paper are available at https://github.com/Pengeace/MGRFE-GaRFE .
Author Zhang, Xinran
Yuan, Wen
Li, Ying
Wu, Xinyu
Zhang, Yu
Peng, Cheng
Author_xml – sequence: 1
  givenname: Cheng
  surname: Peng
  fullname: Peng, Cheng
  email: pengcheng2114@mails.jlu.edu.cn
  organization: College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China
– sequence: 2
  givenname: Xinyu
  surname: Wu
  fullname: Wu, Xinyu
  email: wuxy5676@163.com
  organization: College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China
– sequence: 3
  givenname: Wen
  surname: Yuan
  fullname: Yuan, Wen
  email: yuanwen2114@mails.jlu.edu.cn
  organization: College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China
– sequence: 4
  givenname: Xinran
  surname: Zhang
  fullname: Zhang, Xinran
  email: zhangxr2114@mails.jlu.edu.cn
  organization: College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China
– sequence: 5
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  email: zy26@jlu.edu.cn
  organization: College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China
– sequence: 6
  givenname: Ying
  orcidid: 0000-0002-7804-149X
  surname: Li
  fullname: Li, Ying
  email: liying@jlu.edu.cn
  organization: College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31180870$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJaB7tDyiFIsimG0_1sC2ru4yZmQQSCiFdG1m6ahVkeSrZgfz7aDLTLLLIRrqC75wrzjlDR2EMgNAXShaUEvnjvl0uF4xQuWCSUVnTD-iUVpUopKzLo91cVkUla36CzlJ6IISVkpQf0QmntCGNIKdoe7u5W69-4tvZT86rJ4j4DvQck3sEvAY1zRHwyrvBBTW5MeClSmBwHlTAq6EHY_JzAwEmp_Gl_zNGN_0dsB0jblXQ2a_1KiVnnX4x-ISOrfIJPh_uc_R7vbpvr4qbX5vr9vKm0LyUU9HUtOfc2Kqn2gitpNC8B1JLAoRYyyppLG-EEaQWhjNT8V4bAhW1wvaslvwcfd_7buP4b4Y0dYNLGrxXAcY5dYzlcAgvmzKjF2_Qh3GOIf-uYxUlJWe05pn6dqDmfgDTbaMbVHzq_meZAboHdBxTimBfEUq6XV_drq9u11d36CtrxBuNdtNLTlNUzr-r_LpXOgB43dQIzmU-ngHFfqFE
CODEN ITCBCY
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3196905
crossref_primary_10_3390_app12147226
crossref_primary_10_1007_s12652_025_04953_9
crossref_primary_10_1016_j_cmpb_2023_107987
crossref_primary_10_1109_ACCESS_2023_3312305
crossref_primary_10_1016_j_engappai_2024_108546
crossref_primary_10_3389_fphar_2022_708610
crossref_primary_10_1109_ACCESS_2020_2992907
crossref_primary_10_1016_j_compbiomed_2022_106413
crossref_primary_10_1016_j_eij_2025_100639
crossref_primary_10_1016_j_eswa_2022_118946
crossref_primary_10_1038_s41598_021_03316_6
crossref_primary_10_1007_s11042_024_18246_4
crossref_primary_10_1109_TCYB_2024_3372070
crossref_primary_10_1109_TSG_2023_3245636
crossref_primary_10_1109_JPHOT_2022_3221095
crossref_primary_10_1016_j_asoc_2024_111708
crossref_primary_10_1007_s43032_021_00830_w
crossref_primary_10_1109_JIOT_2023_3334912
crossref_primary_10_1016_j_artmed_2024_102884
crossref_primary_10_1109_TAI_2024_3380590
crossref_primary_10_1007_s42979_024_03402_2
crossref_primary_10_1109_ACCESS_2024_3461878
crossref_primary_10_1109_TNB_2022_3194091
crossref_primary_10_1109_JSTARS_2022_3225665
crossref_primary_10_1016_j_cose_2023_103675
crossref_primary_10_3390_electronics10243124
crossref_primary_10_3390_computation10070104
crossref_primary_10_1109_TIM_2023_3341111
crossref_primary_10_3389_fgene_2022_979529
crossref_primary_10_3390_jpm13020183
crossref_primary_10_1016_j_compbiomed_2021_105051
crossref_primary_10_7717_peerj_cs_1860
crossref_primary_10_1016_j_swevo_2024_101546
crossref_primary_10_1038_s41598_023_30862_y
crossref_primary_10_1016_j_eswa_2023_120130
Cites_doi 10.1038/415436a
10.1136/gutjnl-2011-301373
10.1016/j.eswa.2008.09.070
10.1038/89044
10.1016/j.compbiolchem.2007.10.001
10.1126/science.286.5439.531
10.1016/S0012-1606(03)00256-2
10.1016/j.compbiolchem.2015.03.001
10.1534/genetics.113.150896
10.1016/j.ygeno.2013.11.001
10.1126/science.1205438
10.1186/1471-2105-7-S2-S12
10.1016/j.asoc.2015.10.002
10.1109/TSMCC.2010.2078503
10.1016/j.ygeno.2017.01.004
10.1038/35000501
10.1016/S0165-1684(02)00474-7
10.1038/ng765
10.1016/j.eswa.2009.07.028
10.1016/j.eswa.2010.07.053
10.1186/1471-2105-7-126
10.1016/j.eswa.2011.08.069
10.1186/1471-2105-7-228
10.1016/j.eswa.2011.04.164
10.1142/S0218001405003983
10.1016/j.eswa.2010.06.076
10.1038/jcbfm.2012.24
10.1016/j.procs.2013.05.405
10.1109/TCBB.2012.33
10.1182/blood-2003-09-3243
10.1016/j.cie.2011.06.015
10.1093/bioinformatics/btg227
10.1016/j.eswa.2014.08.014
10.1109/TKDE.2005.66
10.1016/S0893-6080(03)00103-5
10.1186/1471-2105-15-49
10.1093/bioinformatics/17.6.509
10.1016/j.asoc.2016.11.026
10.1186/s12920-016-0204-7
10.1038/gene.2012.41
10.1186/1471-2105-6-67
10.1371/journal.pone.0063826
10.1073/pnas.96.12.6745
10.1109/TPAMI.2005.159
10.1186/1471-2105-8-5
10.1016/j.eswa.2013.09.004
10.1109/TCBB.2011.151
10.1186/s12859-016-0990-0
10.1186/gb-2003-4-4-210
10.1016/B978-1-55860-335-6.50043-X
10.1056/NEJMoa030847
10.1016/j.asoc.2012.03.015
10.1109/TAI.1995.479783
10.1073/pnas.082099299
10.1016/S1672-0229(08)60011-X
10.1109/TITB.2011.2167756
10.1016/S1535-6108(02)00030-2
10.1038/nm0102-68
10.1023/A:1012487302797
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TCBB.2019.2921961
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 632
ExternalDocumentID 31180870
10_1109_TCBB_2019_2921961
8733987
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Jilin Province
  grantid: 20180101331JC
  funderid: 10.13039/100007847
– fundername: National Natural Science Foundation of China
  grantid: 61572105; 61872418; 71774154
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-861b33df5b1cd7ca97c3be0690e00ff259df387d7067d32d53bcd0e51f7fb2693
IEDL.DBID RIE
ISSN 1545-5963
1557-9964
IngestDate Sun Sep 28 09:16:07 EDT 2025
Sun Jun 29 12:23:55 EDT 2025
Mon Jul 21 05:38:21 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Sat Oct 25 04:05:12 EDT 2025
Wed Aug 27 02:41:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-861b33df5b1cd7ca97c3be0690e00ff259df387d7067d32d53bcd0e51f7fb2693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7804-149X
PMID 31180870
PQID 2510432163
PQPubID 85499
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCBB_2019_2921961
proquest_journals_2510432163
pubmed_primary_31180870
proquest_miscellaneous_2254503484
ieee_primary_8733987
crossref_citationtrail_10_1109_TCBB_2019_2921961
PublicationCentury 2000
PublicationDate 2021-March-April-1
2021-3-1
2021 Mar-Apr
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-March-April-1
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationTitleAlternate IEEE/ACM Trans Comput Biol Bioinform
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref18
alon (ref37) 1999; 96
jin (ref21) 2012; 12
ref51
ref50
ref46
ref45
alizadeh (ref35) 2000; 403
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref9
ref4
ref3
ref5
ref40
lin (ref6) 0
deng (ref19) 2012
ref34
ref31
ref30
golub (ref38) 1999; 286
ref33
ref32
ref2
yang (ref59) 2006; 7
wong (ref64) 2012
ref1
ref39
golub (ref7) 1999; 286
notterman (ref36) 2001; 61
blickle (ref61) 1995
ref24
ref67
ref23
ref26
ref25
ref20
ref63
ref22
ref65
reshef (ref15) 2011; 334
ref28
ref27
ref29
ref60
ref62
garro (ref66) 2016; 38
References_xml – volume: 61
  start-page: 3124
  year: 2001
  ident: ref36
  article-title: Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays
  publication-title: Cancer Res
– ident: ref34
  doi: 10.1038/415436a
– year: 2012
  ident: ref64
  article-title: CS2220: Introduction to computational biology, lecture 4: Gene expression analysis
– ident: ref40
  doi: 10.1136/gutjnl-2011-301373
– ident: ref52
  doi: 10.1016/j.eswa.2008.09.070
– ident: ref44
  doi: 10.1038/89044
– ident: ref56
  doi: 10.1016/j.compbiolchem.2007.10.001
– volume: 286
  start-page: 531
  year: 1999
  ident: ref7
  article-title: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
  publication-title: Sci
  doi: 10.1126/science.286.5439.531
– ident: ref10
  doi: 10.1016/S0012-1606(03)00256-2
– ident: ref65
  doi: 10.1016/j.compbiolchem.2015.03.001
– ident: ref1
  doi: 10.1534/genetics.113.150896
– ident: ref30
  doi: 10.1016/j.ygeno.2013.11.001
– volume: 334
  start-page: 1518
  year: 2011
  ident: ref15
  article-title: Detecting novel associations in large data sets
  publication-title: Sci
  doi: 10.1126/science.1205438
– ident: ref28
  doi: 10.1186/1471-2105-7-S2-S12
– volume: 38
  start-page: 548
  year: 2016
  ident: ref66
  article-title: Classification of DNA microarrays using artificial neural networks and abc algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.10.002
– ident: ref50
  doi: 10.1109/TSMCC.2010.2078503
– ident: ref27
  doi: 10.1016/j.ygeno.2017.01.004
– volume: 403
  year: 2000
  ident: ref35
  article-title: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling
  publication-title: Nature
  doi: 10.1038/35000501
– ident: ref46
  doi: 10.1016/S0165-1684(02)00474-7
– ident: ref45
  doi: 10.1038/ng765
– ident: ref58
  doi: 10.1016/j.eswa.2009.07.028
– ident: ref51
  doi: 10.1016/j.eswa.2010.07.053
– ident: ref12
  doi: 10.1186/1471-2105-7-126
– ident: ref49
  doi: 10.1016/j.eswa.2011.08.069
– volume: 7
  year: 2006
  ident: ref59
  article-title: A stable gene selection in microarray data analysis
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-7-228
– ident: ref60
  doi: 10.1016/j.eswa.2011.04.164
– ident: ref62
  doi: 10.1142/S0218001405003983
– ident: ref47
  doi: 10.1016/j.eswa.2010.06.076
– ident: ref43
  doi: 10.1038/jcbfm.2012.24
– ident: ref26
  doi: 10.1016/j.procs.2013.05.405
– ident: ref9
  doi: 10.1109/TCBB.2012.33
– ident: ref33
  doi: 10.1182/blood-2003-09-3243
– ident: ref22
  doi: 10.1016/j.cie.2011.06.015
– ident: ref13
  doi: 10.1093/bioinformatics/btg227
– ident: ref23
  doi: 10.1016/j.eswa.2014.08.014
– ident: ref2
  doi: 10.1109/TKDE.2005.66
– ident: ref29
  doi: 10.1016/S0893-6080(03)00103-5
– ident: ref20
  doi: 10.1186/1471-2105-15-49
– ident: ref11
  doi: 10.1093/bioinformatics/17.6.509
– ident: ref67
  doi: 10.1016/j.asoc.2016.11.026
– year: 1995
  ident: ref61
  article-title: A comparison of selection schemes used in genetic algorithms
– ident: ref24
  doi: 10.1186/s12920-016-0204-7
– ident: ref42
  doi: 10.1038/gene.2012.41
– ident: ref48
  doi: 10.1186/1471-2105-6-67
– ident: ref41
  doi: 10.1371/journal.pone.0063826
– volume: 96
  start-page: 6745
  year: 1999
  ident: ref37
  article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
  publication-title: Proc Natl Acad Sci United States America
  doi: 10.1073/pnas.96.12.6745
– ident: ref14
  doi: 10.1016/j.compbiolchem.2007.10.001
– ident: ref5
  doi: 10.1109/TPAMI.2005.159
– ident: ref54
  doi: 10.1186/1471-2105-8-5
– ident: ref25
  doi: 10.1016/j.eswa.2013.09.004
– ident: ref55
  doi: 10.1109/TCBB.2011.151
– ident: ref16
  doi: 10.1186/s12859-016-0990-0
– ident: ref8
  doi: 10.1186/gb-2003-4-4-210
– ident: ref18
  doi: 10.1016/B978-1-55860-335-6.50043-X
– start-page: 1
  year: 0
  ident: ref6
  article-title: Maximal information coefficient for feature selection for clinical document classification
  publication-title: Proc ICML Workshop Mach Learn Clinical Data
– ident: ref39
  doi: 10.1056/NEJMoa030847
– volume: 12
  start-page: 2147
  year: 2012
  ident: ref21
  article-title: Attribute selection method based on a hybrid BPNN and PSO algorithms
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.03.015
– ident: ref4
  doi: 10.1109/TAI.1995.479783
– ident: ref63
  doi: 10.1186/1471-2105-15-49
– ident: ref57
  doi: 10.1073/pnas.082099299
– ident: ref3
  doi: 10.1016/S1672-0229(08)60011-X
– ident: ref53
  doi: 10.1109/TITB.2011.2167756
– start-page: 1
  year: 2012
  ident: ref19
  article-title: Feature selection via regularized trees
  publication-title: Proc Int Joint Conf Neural Netw
– ident: ref32
  doi: 10.1016/S1535-6108(02)00030-2
– ident: ref31
  doi: 10.1038/nm0102-68
– ident: ref17
  doi: 10.1023/A:1012487302797
– volume: 286
  start-page: 531
  year: 1999
  ident: ref38
  article-title: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
  publication-title: Sci
  doi: 10.1126/science.286.5439.531
SSID ssj0024904
Score 2.458715
Snippet Microarray gene expression data have become a topic of great interest for cancer classification and for further research in the field of bioinformatics....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 621
SubjectTerms Algorithms
Bioinformatics
Cancer
cancer classification
Classification
Computational Biology - methods
Databases, Genetic
Datasets
DNA microarrays
Feature extraction
Feature selection
Gene expression
Gene Expression Profiling
Gene selection
Genes
genetic algorithm
Genetic algorithms
Heuristic algorithms
Humans
microarray data
Microwave integrated circuits
Models, Genetic
Multilayers
Neoplasms - classification
Neoplasms - genetics
Neoplasms - metabolism
Nonhomogeneous media
Oligonucleotide Array Sequence Analysis
Phenotypes
Polynomials
recursive feature elimination
Source code
Transcriptome - genetics
Title MGRFE: Multilayer Recursive Feature Elimination Based on an Embedded Genetic Algorithm for Cancer Classification
URI https://ieeexplore.ieee.org/document/8733987
https://www.ncbi.nlm.nih.gov/pubmed/31180870
https://www.proquest.com/docview/2510432163
https://www.proquest.com/docview/2254503484
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024904
  issn: 1545-5963
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZC48CqPQEFG4oTI1omdh7l1V7tUSOVQtVJvkZ-A2GarJTnAr2fGyQaEAHFKpDhOohlnvrHH3wfwSnqZG2Fk6rOQp1KLPDW1y1MVrMxCWRobItvnh_L0Ur6_Kq724M20F8Z7H4vP_IxO41q-29iepsqO60oIzJH3Yb-qy2Gv1k9ePRWlAgkRpAV61biCmXF1fLGYz6mIS81yhQO0JHUYQdRnNUkU_xKOor7K36FmDDmru3C2e9mh0uTLrO_MzH7_jcfxf7_mHtwZsSc7GZzlPuz59gHcGtQovx3Czdm789XyLYt7ctcasTg7p9l4KnBnBBX7rWfLdZQBI3OyOUZAx_BEt2x5bTz-wxwjHmvsn52sP262n7tP1wxhMVuQc-GBsDoVJ8UOHsLlanmxOE1HQYbUCqm6tC4zI4QLhcmsq6xWlRXGE9ex5zwEzKRcEHXlKgyBTuSuEMY67ossVMHkpRKP4KDdtP4JsGCsyQxir0ITJuLaRyilrXS81kWdAN_ZpbEjWzmJZqybmLVw1ZBVG7JqM1o1gdfTLTcDVce_Gh-SRaaGozESONoZvxkH89cGISARFyJyTeDldBmHIa2t6NZvemyDiXbBhaxlAo8Hp5n63vna0z8_8xnczqlQJha2HcFBt-39c0Q6nXkRXfwH9AP25g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQXXqUlUMBInBDZJrGdB7fuapcFuj1UW6m3KH5BxTZbLckBfj0zTjYgBIhTIsVxEs048409_j6AV8KKRHElQhu7JBQVT0KVmyQsnBaxS1OlnWf7PE3n5-LDhbzYgTfDXhhrrS8-syM69Wv5Zq1bmio7yjPOMUe-ATelEEJ2u7V-MusVXiyQMEEo0a_6Ncw4Ko6Wk_GYyriKUVLgEE1JH4YT-VlOIsW_BCSvsPJ3sOmDzuweLLav29WafBm1jRrp778xOf7v99yHuz36ZMeduzyAHVs_hFudHuW3PbhevDubTd8yvyt3VSEaZ2c0H08l7ozAYruxbLryQmBkUDbGGGgYnlQ1m14pi38xw4jJGvtnx6tP681l8_mKITBmE3IvPBBap_Ik38EjOJ9Nl5N52EsyhJqLognzNFacGydVrE2mqyLTXFliO7ZR5BzmUsbxPDMZBkHDEyO50iayMnaZU0la8H3Yrde1fQzMKa1ihehLVoSKosp6MFVpYaK8knkA0dYupe75ykk2Y1X6vCUqSrJqSVYte6sG8Hq45boj6_hX4z2yyNCwN0YAh1vjl_1w_loiCCTqQsSuAbwcLuNApNWVqrbrFttgqi0jLnIRwEHnNEPfW1978udnvoDb8-XipDx5f_rxKdxJqGzGl7kdwm6zae0zxD2Neu7d_QcIFfoz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MGRFE%3A+Multilayer+Recursive+Feature+Elimination+Based+on+an+Embedded+Genetic+Algorithm+for+Cancer+Classification&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Peng%2C+Cheng&rft.au=Wu%2C+Xinyu&rft.au=Yuan%2C+Wen&rft.au=Zhang%2C+Xinran&rft.date=2021-03-01&rft.eissn=1557-9964&rft.volume=18&rft.issue=2&rft.spage=621&rft_id=info:doi/10.1109%2FTCBB.2019.2921961&rft_id=info%3Apmid%2F31180870&rft.externalDocID=31180870
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon