A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques
Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach t...
        Saved in:
      
    
          | Published in | IEEE journal of biomedical and health informatics Vol. 21; no. 6; pp. 1730 - 1740 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.11.2017
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2168-2194 2168-2208 2168-2208  | 
| DOI | 10.1109/JBHI.2017.2691715 | 
Cover
| Abstract | Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach that combines data mining techniques with a traditional mechanism-driven model. First, 14 features derived from simultaneous electrocardiogram and photoplethysmogram signals were extracted for beat-to-beat BP estimation. A genetic algorithm-based feature selection method was then used to select BP indicators for each subject. Multivariate linear regression and support vector regression were employed to develop the BP model. The accuracy and robustness of the proposed approach were validated for static, dynamic, and follow-up performance. Experimental results based on 73 subjects showed that the proposed approach exhibited excellent accuracy in static BP estimation, with a correlation coefficient and mean error of 0.852 and -0.001 ± 3.102 mmHg for systolic BP, and 0.790 and -0.004 ± 2.199 mmHg for diastolic BP. Similar performance was observed for dynamic BP estimation. The robustness results indicated that the estimation accuracy was lower by a certain degree one day after model construction but was relatively stable from one day to six months after construction. The proposed approach is superior to the state-of-the-art PTT-based model for an approximately 2-mmHg reduction in the standard derivation at different time intervals, thus providing potentially novel insights for cuffless BP estimation. | 
    
|---|---|
| AbstractList | Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach that combines data mining techniques with a traditional mechanism-driven model. First, 14 features derived from simultaneous electrocardiogram and photoplethysmogram signals were extracted for beat-to-beat BP estimation. A genetic algorithm-based feature selection method was then used to select BP indicators for each subject. Multivariate linear regression and support vector regression were employed to develop the BP model. The accuracy and robustness of the proposed approach were validated for static, dynamic, and follow-up performance. Experimental results based on 73 subjects showed that the proposed approach exhibited excellent accuracy in static BP estimation, with a correlation coefficient and mean error of 0.852 and -0.001 ± 3.102 mmHg for systolic BP, and 0.790 and -0.004 ± 2.199 mmHg for diastolic BP. Similar performance was observed for dynamic BP estimation. The robustness results indicated that the estimation accuracy was lower by a certain degree one day after model construction but was relatively stable from one day to six months after construction. The proposed approach is superior to the state-of-the-art PTT-based model for an approximately 2-mmHg reduction in the standard derivation at different time intervals, thus providing potentially novel insights for cuffless BP estimation.Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach that combines data mining techniques with a traditional mechanism-driven model. First, 14 features derived from simultaneous electrocardiogram and photoplethysmogram signals were extracted for beat-to-beat BP estimation. A genetic algorithm-based feature selection method was then used to select BP indicators for each subject. Multivariate linear regression and support vector regression were employed to develop the BP model. The accuracy and robustness of the proposed approach were validated for static, dynamic, and follow-up performance. Experimental results based on 73 subjects showed that the proposed approach exhibited excellent accuracy in static BP estimation, with a correlation coefficient and mean error of 0.852 and -0.001 ± 3.102 mmHg for systolic BP, and 0.790 and -0.004 ± 2.199 mmHg for diastolic BP. Similar performance was observed for dynamic BP estimation. The robustness results indicated that the estimation accuracy was lower by a certain degree one day after model construction but was relatively stable from one day to six months after construction. The proposed approach is superior to the state-of-the-art PTT-based model for an approximately 2-mmHg reduction in the standard derivation at different time intervals, thus providing potentially novel insights for cuffless BP estimation. Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach that combines data mining techniques with a traditional mechanism-driven model. First, 14 features derived from simultaneous electrocardiogram and photoplethysmogram signals were extracted for beat-to-beat BP estimation. A genetic algorithm-based feature selection method was then used to select BP indicators for each subject. Multivariate linear regression and support vector regression were employed to develop the BP model. The accuracy and robustness of the proposed approach were validated for static, dynamic, and follow-up performance. Experimental results based on 73 subjects showed that the proposed approach exhibited excellent accuracy in static BP estimation, with a correlation coefficient and mean error of 0.852 and -0.001 ± 3.102 mmHg for systolic BP, and 0.790 and -0.004 ± 2.199 mmHg for diastolic BP. Similar performance was observed for dynamic BP estimation. The robustness results indicated that the estimation accuracy was lower by a certain degree one day after model construction but was relatively stable from one day to six months after construction. The proposed approach is superior to the state-of-the-art PTT-based model for an approximately 2-mmHg reduction in the standard derivation at different time intervals, thus providing potentially novel insights for cuffless BP estimation. Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach that combines data mining techniques with a traditional mechanism-driven model. First, 14 features derived from simultaneous electrocardiogram and photoplethysmogram signals were extracted for beat-to-beat BP estimation. A genetic algorithm-based feature selection method was then used to select BP indicators for each subject. Multivariate linear regression and support vector regression were employed to develop the BP model. The accuracy and robustness of the proposed approach were validated for static, dynamic, and follow-up performance. Experimental results based on 73 subjects showed that the proposed approach exhibited excellent accuracy in static BP estimation, with a correlation coefficient and mean error of 0.852 and -0.001 ± 3.102 mmHg for systolic BP, and 0.790 and -0.004 ± 2.199 mmHg for diastolic BP. Similar performance was observed for dynamic BP estimation. The robustness results indicated that the estimation accuracy was lower by a certain degree one day after model construction but was relatively stable from one day to six months after construction. The proposed approach is superior to the state-of-the-art PTT-based model for an approximately 2-mmHg reduction in the standard derivation at different time intervals, thus providing potentially novel insights for cuffless BP estimation.  | 
    
| Author | Qingyun He Xiao-Rong Ding Ye Li Nan Fu Xi Hong Yuan-Ting Zhang Fen Miao  | 
    
| Author_xml | – sequence: 1 givenname: Fen orcidid: 0000-0003-3054-807X surname: Miao fullname: Miao, Fen – sequence: 2 givenname: Nan surname: Fu fullname: Fu, Nan – sequence: 3 givenname: Yuan-Ting surname: Zhang fullname: Zhang, Yuan-Ting – sequence: 4 givenname: Xiao-Rong orcidid: 0000-0002-3269-2852 surname: Ding fullname: Ding, Xiao-Rong – sequence: 5 givenname: Xi surname: Hong fullname: Hong, Xi – sequence: 6 givenname: Qingyun surname: He fullname: He, Qingyun – sequence: 7 givenname: Ye orcidid: 0000-0002-5351-8546 surname: Li fullname: Li, Ye  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28463207$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kctOGzEUhi0EItweAFWqLHXDJsG3mbGXSaBcRAuLZG15PGeK0cRO7Rmkvn2dJmTBot4c6-j7z-0_RYc-eEDokpIJpURdP87uHyaM0GrCSkUrWhygE0ZLOWaMyMOPP1VihC5SeiP5yZxS5TEaMSlKzkh1gpZT_DO8Q4fnwffOD2FIeNaF0OCXCCkNEfBt6t3K9C54PF2vYzD2Fc9MggbnzI3pDf7hvPO_8ALsq3e_B0jn6Kg1XYKLXTxDy--3i_n9-On57mE-fRpbLlQ_lgLqgjWNsqoiQgBvCwaNaE1rZF3zGogsjBKMs9oS1fK6NYpxS3gDrYWy4Gfoals3j7Xp2-uVSxa6znjIm2gqlSgYEZxm9Nsn9C0M0efpNFUlL1lFiipTX3fUUK-g0euYV49_9MfBMkC3gI0hpQjtHqFEb3zRG1_0xhe98yVrqk8a6_p_B-2jcd1_lV-2SgcA-06VoqKUgv8F_dmZAQ | 
    
| CODEN | IJBHA9 | 
    
| CitedBy_id | crossref_primary_10_1109_JIOT_2024_3484752 crossref_primary_10_1109_JSEN_2020_2967759 crossref_primary_10_1016_j_cmpb_2022_107027 crossref_primary_10_3390_s20226558 crossref_primary_10_1088_1361_6579_ab7d78 crossref_primary_10_1007_s13246_019_00813_x crossref_primary_10_1016_j_aej_2021_04_035 crossref_primary_10_1109_TBME_2021_3136492 crossref_primary_10_1109_JSEN_2023_3267695 crossref_primary_10_1109_JSEN_2018_2880434 crossref_primary_10_1109_RBME_2020_2992838 crossref_primary_10_1016_j_compositesb_2021_109365 crossref_primary_10_1016_j_cmpb_2023_107716 crossref_primary_10_1109_OJEMB_2023_3329728 crossref_primary_10_1007_s13246_021_00989_1 crossref_primary_10_1038_s41598_022_27170_2 crossref_primary_10_1109_ACCESS_2018_2875548 crossref_primary_10_1109_JBHI_2019_2919896 crossref_primary_10_1088_1361_6579_ac7841 crossref_primary_10_1016_j_bspc_2021_102760 crossref_primary_10_1109_JBHI_2022_3181328 crossref_primary_10_1109_JBHI_2023_3278168 crossref_primary_10_1016_j_bspc_2024_106741 crossref_primary_10_1016_j_bspc_2021_102478 crossref_primary_10_1109_TCYB_2022_3141380 crossref_primary_10_1111_psyp_14173 crossref_primary_10_1038_s41378_023_00590_4 crossref_primary_10_1109_TCE_2022_3174689 crossref_primary_10_1088_1742_6596_2071_1_012028 crossref_primary_10_1039_D3MH01999C crossref_primary_10_1007_s00542_018_3877_3 crossref_primary_10_1109_TIM_2024_3480192 crossref_primary_10_1007_s11517_024_03157_1 crossref_primary_10_1016_j_bspc_2023_105862 crossref_primary_10_1016_j_artmed_2020_101919 crossref_primary_10_1088_1361_6579_ab030e crossref_primary_10_3390_a11050062 crossref_primary_10_1109_JBHI_2020_3009658 crossref_primary_10_1016_j_bspc_2021_103001 crossref_primary_10_1016_j_bspc_2023_105067 crossref_primary_10_3390_diagnostics12020408 crossref_primary_10_1016_j_bspc_2020_102198 crossref_primary_10_3390_bios13030321 crossref_primary_10_1109_JBHI_2019_2901724 crossref_primary_10_3390_bios12050292 crossref_primary_10_1007_s11036_022_01984_w crossref_primary_10_1016_j_dsp_2025_105040 crossref_primary_10_1109_TBME_2018_2873754 crossref_primary_10_1088_1757_899X_1084_1_012031 crossref_primary_10_1155_2021_9934998 crossref_primary_10_1093_ajh_hpaa102 crossref_primary_10_1016_j_bspc_2020_101942 crossref_primary_10_1109_JBHI_2024_3395445 crossref_primary_10_1109_JSEN_2022_3177205 crossref_primary_10_1016_j_bbe_2023_06_002 crossref_primary_10_1109_JSEN_2023_3327683 crossref_primary_10_1109_JBHI_2024_3377128 crossref_primary_10_1109_TBME_2018_2865751 crossref_primary_10_1109_JSEN_2021_3073850 crossref_primary_10_3390_app132212403 crossref_primary_10_3390_bioengineering10010027 crossref_primary_10_1109_ACCESS_2019_2942936 crossref_primary_10_1109_RBME_2019_2931587 crossref_primary_10_1038_s41598_021_03612_1 crossref_primary_10_1007_s44174_023_00146_0 crossref_primary_10_31893_multirev_2025218 crossref_primary_10_3390_jcm11113203 crossref_primary_10_1016_j_bspc_2020_101870 crossref_primary_10_3390_s18124227 crossref_primary_10_1007_s11517_021_02362_6 crossref_primary_10_1109_ACCESS_2021_3094227 crossref_primary_10_1145_3471571 crossref_primary_10_1038_s41598_022_12087_7 crossref_primary_10_1002_cnm_3303 crossref_primary_10_1007_s11906_020_01056_y crossref_primary_10_1109_JSEN_2024_3468316 crossref_primary_10_1109_TBCAS_2019_2946661 crossref_primary_10_1016_j_bspc_2018_12_006 crossref_primary_10_1016_j_buildenv_2023_110661 crossref_primary_10_1109_ACCESS_2021_3103763 crossref_primary_10_1109_RBME_2022_3141877 crossref_primary_10_1186_s12911_023_02215_2 crossref_primary_10_3390_app13137473 crossref_primary_10_1016_j_bspc_2020_102301 crossref_primary_10_1016_j_bspc_2021_102984 crossref_primary_10_3390_electronics10232896 crossref_primary_10_1016_j_eswa_2022_116788 crossref_primary_10_1088_1361_6579_abf889 crossref_primary_10_1016_j_apacoust_2020_107534 crossref_primary_10_47093_2218_7332_2021_12_1_39_49 crossref_primary_10_1016_j_measurement_2024_115446 crossref_primary_10_1109_JBHI_2022_3199199 crossref_primary_10_3389_fmedt_2021_666671 crossref_primary_10_3390_s19132922 crossref_primary_10_1007_s10462_022_10353_8 crossref_primary_10_1038_s41440_021_00795_y crossref_primary_10_1109_ACCESS_2020_2965396 crossref_primary_10_1016_j_compbiomed_2023_106900 crossref_primary_10_1109_TIM_2025_3545993 crossref_primary_10_1111_jch_13700 crossref_primary_10_1109_ACCESS_2021_3054236  | 
    
| Cites_doi | 10.1007/s00421-010-1626-0 10.1109/TBME.2013.2243148 10.1109/IEEESTD.2014.6882122 10.1109/IEMBS.2005.1615827 10.1109/IEMBS.2001.1019611 10.1109/BSN.2016.7516258 10.2147/VHRM.S43784 10.1016/j.eswa.2012.02.063 10.1109/TBME.2013.2286998 10.1109/IEMBS.2006.260275 10.1152/jappl.1993.74.5.2566 10.1161/HYPERTENSIONAHA.114.03694 10.1109/JBHI.2016.2620995 10.1038/jhh.2013.41 10.1016/S0735-1097(99)00441-6 10.1109/TBME.2015.2480679 10.1152/japplphysiol.00657.2005 10.1109/ICARCV.2010.5707813 10.1016/S0895-7061(03)00569-7 10.1042/cs1030371 10.1109/IEMBS.2008.4649409 10.1109/TII.2013.2288498 10.1117/12.838236 10.1109/BSN.2009.23 10.1109/5254.671091 10.1007/s11517-008-0359-2 10.1161/01.HYP.32.2.365 10.1111/j.1469-8986.1981.tb03042.x 10.4258/hir.2013.19.2.121 10.1161/01.HYP.36.6.952 10.1097/ALN.0b013e31824f94ed 10.1161/01.HYP.0000158306.87582.43 10.1109/TBME.2014.2318779 10.1007/s00421-011-1983-3 10.1109/TBME.2013.2244892 10.1001/jama.289.19.2560 10.1109/IEMBS.2003.1280811 10.1038/sj.jhh.1000600 10.1016/0161-7346(79)90028-2 10.1088/0967-3334/37/2/227  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8  | 
    
| DOI | 10.1109/JBHI.2017.2691715 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2168-2208 | 
    
| EndPage | 1740 | 
    
| ExternalDocumentID | 28463207 10_1109_JBHI_2017_2691715 7914684  | 
    
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: National 863 Project of China grantid: SS2015AA020109 – fundername: National Natural Science Foundation of China grantid: 61502472 funderid: 10.13039/501100001809 – fundername: Science and Technology Planning Project of Guangdong Province grantid: 2015B010129012 – fundername: Basic Research Program of Shenzhen grantid: JCYJ20150630114942316 – fundername: Guangdong Province Special Support Program grantid: 2014TX01X060  | 
    
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 6IL ADZIZ CGR CHZPO CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8  | 
    
| ID | FETCH-LOGICAL-c349t-84eb52dd9c97044e3f52ed4fafa8bb3be085a94232bc09f3bfa923c03defce653 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2168-2194 2168-2208  | 
    
| IngestDate | Thu Oct 02 03:59:53 EDT 2025 Mon Jun 30 04:25:52 EDT 2025 Wed Feb 19 02:43:21 EST 2025 Thu Apr 24 23:11:28 EDT 2025 Wed Oct 01 03:39:56 EDT 2025 Wed Aug 27 02:58:11 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c349t-84eb52dd9c97044e3f52ed4fafa8bb3be085a94232bc09f3bfa923c03defce653 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-3054-807X 0000-0002-5351-8546 0000-0002-3269-2852  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7914684 | 
    
| PMID | 28463207 | 
    
| PQID | 1963627057 | 
    
| PQPubID | 85417 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_miscellaneous_1894520431 ieee_primary_7914684 proquest_journals_1963627057 crossref_primary_10_1109_JBHI_2017_2691715 crossref_citationtrail_10_1109_JBHI_2017_2691715 pubmed_primary_28463207  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-Nov. 2017-11-00 20171101  | 
    
| PublicationDateYYYYMMDD | 2017-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-Nov.  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Piscataway  | 
    
| PublicationTitle | IEEE journal of biomedical and health informatics | 
    
| PublicationTitleAbbrev | JBHI | 
    
| PublicationTitleAlternate | IEEE J Biomed Health Inform | 
    
| PublicationYear | 2017 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 wesseling (ref46) 1983; 5 ref51 ref50 wesseling (ref47) 1993; 74 goldberg (ref31) 1989 ref45 ref48 ref42 ref41 isabelle (ref32) 2003; 3 ref44 ref43 (ref34) 2000 ref49 ref8 ref7 špulák (ref35) 0 ref9 ref4 ref3 ref5 ref40 ref37 ref30 ref2 wood (ref36) 2013; 190 ref1 ref39 ref38 christopher (ref18) 2010 kim (ref25) 0 ref24 ref23 ref26 drucker (ref33) 1996; 28 ref20 ref22 ref21 hwesseling (ref6) 1996; 85 ref28 ref27 ref29  | 
    
| References_xml | – ident: ref39 doi: 10.1007/s00421-010-1626-0 – ident: ref50 doi: 10.1109/TBME.2013.2243148 – ident: ref53 doi: 10.1109/IEEESTD.2014.6882122 – ident: ref10 doi: 10.1109/IEMBS.2005.1615827 – ident: ref8 doi: 10.1109/IEMBS.2001.1019611 – ident: ref27 doi: 10.1109/BSN.2016.7516258 – ident: ref48 doi: 10.2147/VHRM.S43784 – ident: ref19 doi: 10.1016/j.eswa.2012.02.063 – volume: 5 start-page: 16 year: 1983 ident: ref46 article-title: A simple device for the continuous measurement of cardiac output publication-title: Advanced Cardiovascular Physiology – ident: ref12 doi: 10.1109/TBME.2013.2286998 – start-page: 1 year: 0 ident: ref35 article-title: Parameters for mean blood pressure estimation based on electrocardiography and photoplethysmography publication-title: Proc Int Conf Appl Electron – ident: ref38 doi: 10.1109/IEMBS.2006.260275 – ident: ref16 doi: 10.1007/s00421-010-1626-0 – volume: 74 start-page: 2566 year: 1993 ident: ref47 article-title: Computation of aortic flow from pressure in humans using a nonlinear, three-element model publication-title: J Appl Physiol doi: 10.1152/jappl.1993.74.5.2566 – ident: ref3 doi: 10.1161/HYPERTENSIONAHA.114.03694 – ident: ref7 doi: 10.1109/JBHI.2016.2620995 – ident: ref51 doi: 10.1038/jhh.2013.41 – ident: ref42 doi: 10.1016/S0735-1097(99)00441-6 – ident: ref14 doi: 10.1109/TBME.2015.2480679 – ident: ref15 doi: 10.1152/japplphysiol.00657.2005 – ident: ref11 doi: 10.1109/ICARCV.2010.5707813 – ident: ref45 doi: 10.1016/S0895-7061(03)00569-7 – ident: ref44 doi: 10.1042/cs1030371 – ident: ref24 doi: 10.1109/IEMBS.2008.4649409 – ident: ref26 doi: 10.1109/TII.2013.2288498 – ident: ref21 doi: 10.1117/12.838236 – ident: ref9 doi: 10.1109/BSN.2009.23 – volume: 85 start-page: 38 year: 1996 ident: ref6 article-title: Finger arterial pressure measurement with Finapres publication-title: Zeitschrift fur Kardiologie – ident: ref30 doi: 10.1109/5254.671091 – ident: ref29 doi: 10.1007/s11517-008-0359-2 – ident: ref22 doi: 10.1161/01.HYP.32.2.365 – ident: ref37 doi: 10.1111/j.1469-8986.1981.tb03042.x – ident: ref20 doi: 10.4258/hir.2013.19.2.121 – ident: ref43 doi: 10.1161/01.HYP.36.6.952 – ident: ref5 doi: 10.1097/ALN.0b013e31824f94ed – ident: ref2 doi: 10.1161/01.HYP.0000158306.87582.43 – year: 2010 ident: ref18 article-title: Encyclopædia britannica: Definition of data mining – volume: 28 start-page: 779 year: 1996 ident: ref33 article-title: Support vector regression machines publication-title: Adv Neural Inf Process Syst – ident: ref40 doi: 10.1109/TBME.2013.2286998 – ident: ref13 doi: 10.1109/TBME.2014.2318779 – year: 1989 ident: ref31 publication-title: Genetic Algorithms in Search Optimization and Machine Learning – ident: ref49 doi: 10.1007/s00421-011-1983-3 – volume: 190 start-page: 39 year: 2013 ident: ref36 article-title: Using individualized pulse transit time calibration to monitor blood pressure during exercise publication-title: Studies Health Technol Informat – volume: 3 start-page: 1157 year: 2003 ident: ref32 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – ident: ref4 doi: 10.1109/TBME.2013.2244892 – start-page: 6942 year: 0 ident: ref25 article-title: Comparative study on artificial neural network with multiple regressions for continuous estimation of blood pressure publication-title: Proc 2005 IEEE Eng Med Biol 27th Annu Conf – ident: ref1 doi: 10.1001/jama.289.19.2560 – ident: ref41 doi: 10.1161/01.HYP.32.2.365 – ident: ref23 doi: 10.1109/IEMBS.2003.1280811 – ident: ref52 doi: 10.1038/sj.jhh.1000600 – ident: ref28 doi: 10.1016/0161-7346(79)90028-2 – year: 2000 ident: ref34 article-title: Factors that affect blood pressure. – ident: ref17 doi: 10.1088/0967-3334/37/2/227  | 
    
| SSID | ssj0000816896 | 
    
| Score | 2.5377746 | 
    
| Snippet | Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this... | 
    
| SourceID | proquest pubmed crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1730 | 
    
| SubjectTerms | Accuracy Adult Biomedical monitoring Blood pressure Blood Pressure - physiology Blood Pressure Determination - methods Construction Continuous blood pressure (BP) Correlation coefficient Correlation coefficients Data mining Data Mining - methods Data processing EKG Electrocardiography Electrocardiography - methods Estimation Feature extraction feature selection Female Genetic algorithms Humans Informatics Linear Models Male Model accuracy multivariate linear regression (MLR) Photoplethysmography - methods Robustness Signal Processing, Computer-Assisted Support Vector Machine Support vector machines support vector regression (SVR) Transit time Young Adult  | 
    
| Title | A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques | 
    
| URI | https://ieeexplore.ieee.org/document/7914684 https://www.ncbi.nlm.nih.gov/pubmed/28463207 https://www.proquest.com/docview/1963627057 https://www.proquest.com/docview/1894520431  | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSAuFCiPtAUZiRMi22zsPHzchVZLpe2pK_UWje2JhKiyqJv00F9fj_MQQoC4OYmdODNj-7PnBfCxxpySWtvYGYOxsiqNUVrnL5GcKTN0JTsKr6_y1UZd3mQ3e_B58oUhomB8RjMuBl2-29qOj8rOCs2OQmof9osy7321pvOUkEAipONKfSH2A1ENSsx5os8ul6tvbMdVzNLcb1DmnLDGT8y5TDmP7C8rUkix8ne0GVadi0NYj_3tjU1-zLrWzOzDb6Ec__eHnsOzAX6KRS8vL2CPmpfwZD0o2I9gsxBX23u6FRy16nvTbbudWLJtu-j9CO9InPtJofd3FIshILlY-rXQCX_nK7Yo1iHphLgew8PuXsHm4vz6yyoeMi_EVirdxqUik6XOaauLRCmSdZaSUzXWWBojDXmghpp1vMYmupamRg8UbSId1ZbyTL6Gg2bb0FsQHhH4lh4lIqFCzEpUHLUKpYduhgqKIBmpX9khLDlnx7itwvYk0RXzrmLeVQPvIvg0NfnZx-T4V-UjpvtUcSB5BKcji6th1O4qno3ytPAQNoIP02M_3liJgg15mlfzUquMHYrnEbzpRWN69yhRx3_-5gk85Z71noyncNDedfTOQ5rWvA-y_Ag4-PB2 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgEXXuURKGAkTohss4mdxMddaLUtzZ52pd4sPyYSosqibsKBX4_HeQghQNycxE6cmbH92fMCeFfrHJNa2tgZo2NueRrrzDp_qdGZUmhXkqNwtc5XW35xJa4O4MPkC4OIwfgMZ1QMuny3sx0dlZ0UkhyF-C24LTjnovfWmk5UQgqJkJAr9YXYD0U-qDHniTy5WK7OyZKrmKW536LMKWWNn5rzLKVMsr-sSSHJyt_xZlh3zh5ANfa4Nzf5OutaM7M_fgvm-L-_9BDuDwCULXqJeQQH2DyGO9WgYj-C7YKtd9_xmlHcqi9Nt-v2bEnW7az3JLxBduqnhd7jkS2GkORs6VdDx_ydT7rVrAppJ9hmDBC7fwLbs9PNx1U85F6IbcZlG5ccjUidk1YWCeeY1SJFx2td69KYzKCHalqSltfYRNaZqbWHijbJHNYWc5E9hcNm1-BzYB4T-JYeJ2rUXGtRak5xq3TmwZvBAiNIRuorOwQmp_wY1ypsUBKpiHeKeKcG3kXwfmryrY_K8a_KR0T3qeJA8giORxarYdzuFc1HeVp4EBvB2-mxH3GkRtENepqreSm5IJfieQTPetGY3j1K1Is_f_MN3F1tqkt1eb7-_BLuUS97v8ZjOGxvOnzlAU5rXge5_gn5f_PD | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Continuous+Blood+Pressure+Estimation+Approach+Based+on+Data+Mining+Techniques&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Miao%2C+Fen&rft.au=Fu%2C+Nan&rft.au=Zhang%2C+Yuan-Ting&rft.au=Ding%2C+Xiao-Rong&rft.date=2017-11-01&rft.eissn=2168-2208&rft.volume=21&rft.issue=6&rft.spage=1730&rft_id=info:doi/10.1109%2FJBHI.2017.2691715&rft_id=info%3Apmid%2F28463207&rft.externalDocID=28463207 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |