A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques

Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach t...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 21; no. 6; pp. 1730 - 1740
Main Authors Miao, Fen, Fu, Nan, Zhang, Yuan-Ting, Ding, Xiao-Rong, Hong, Xi, He, Qingyun, Li, Ye
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2017.2691715

Cover

Abstract Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach that combines data mining techniques with a traditional mechanism-driven model. First, 14 features derived from simultaneous electrocardiogram and photoplethysmogram signals were extracted for beat-to-beat BP estimation. A genetic algorithm-based feature selection method was then used to select BP indicators for each subject. Multivariate linear regression and support vector regression were employed to develop the BP model. The accuracy and robustness of the proposed approach were validated for static, dynamic, and follow-up performance. Experimental results based on 73 subjects showed that the proposed approach exhibited excellent accuracy in static BP estimation, with a correlation coefficient and mean error of 0.852 and -0.001 ± 3.102 mmHg for systolic BP, and 0.790 and -0.004 ± 2.199 mmHg for diastolic BP. Similar performance was observed for dynamic BP estimation. The robustness results indicated that the estimation accuracy was lower by a certain degree one day after model construction but was relatively stable from one day to six months after construction. The proposed approach is superior to the state-of-the-art PTT-based model for an approximately 2-mmHg reduction in the standard derivation at different time intervals, thus providing potentially novel insights for cuffless BP estimation.
AbstractList Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach that combines data mining techniques with a traditional mechanism-driven model. First, 14 features derived from simultaneous electrocardiogram and photoplethysmogram signals were extracted for beat-to-beat BP estimation. A genetic algorithm-based feature selection method was then used to select BP indicators for each subject. Multivariate linear regression and support vector regression were employed to develop the BP model. The accuracy and robustness of the proposed approach were validated for static, dynamic, and follow-up performance. Experimental results based on 73 subjects showed that the proposed approach exhibited excellent accuracy in static BP estimation, with a correlation coefficient and mean error of 0.852 and -0.001 ± 3.102 mmHg for systolic BP, and 0.790 and -0.004 ± 2.199 mmHg for diastolic BP. Similar performance was observed for dynamic BP estimation. The robustness results indicated that the estimation accuracy was lower by a certain degree one day after model construction but was relatively stable from one day to six months after construction. The proposed approach is superior to the state-of-the-art PTT-based model for an approximately 2-mmHg reduction in the standard derivation at different time intervals, thus providing potentially novel insights for cuffless BP estimation.Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach that combines data mining techniques with a traditional mechanism-driven model. First, 14 features derived from simultaneous electrocardiogram and photoplethysmogram signals were extracted for beat-to-beat BP estimation. A genetic algorithm-based feature selection method was then used to select BP indicators for each subject. Multivariate linear regression and support vector regression were employed to develop the BP model. The accuracy and robustness of the proposed approach were validated for static, dynamic, and follow-up performance. Experimental results based on 73 subjects showed that the proposed approach exhibited excellent accuracy in static BP estimation, with a correlation coefficient and mean error of 0.852 and -0.001 ± 3.102 mmHg for systolic BP, and 0.790 and -0.004 ± 2.199 mmHg for diastolic BP. Similar performance was observed for dynamic BP estimation. The robustness results indicated that the estimation accuracy was lower by a certain degree one day after model construction but was relatively stable from one day to six months after construction. The proposed approach is superior to the state-of-the-art PTT-based model for an approximately 2-mmHg reduction in the standard derivation at different time intervals, thus providing potentially novel insights for cuffless BP estimation.
Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach that combines data mining techniques with a traditional mechanism-driven model. First, 14 features derived from simultaneous electrocardiogram and photoplethysmogram signals were extracted for beat-to-beat BP estimation. A genetic algorithm-based feature selection method was then used to select BP indicators for each subject. Multivariate linear regression and support vector regression were employed to develop the BP model. The accuracy and robustness of the proposed approach were validated for static, dynamic, and follow-up performance. Experimental results based on 73 subjects showed that the proposed approach exhibited excellent accuracy in static BP estimation, with a correlation coefficient and mean error of 0.852 and -0.001 ± 3.102 mmHg for systolic BP, and 0.790 and -0.004 ± 2.199 mmHg for diastolic BP. Similar performance was observed for dynamic BP estimation. The robustness results indicated that the estimation accuracy was lower by a certain degree one day after model construction but was relatively stable from one day to six months after construction. The proposed approach is superior to the state-of-the-art PTT-based model for an approximately 2-mmHg reduction in the standard derivation at different time intervals, thus providing potentially novel insights for cuffless BP estimation.
Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach that combines data mining techniques with a traditional mechanism-driven model. First, 14 features derived from simultaneous electrocardiogram and photoplethysmogram signals were extracted for beat-to-beat BP estimation. A genetic algorithm-based feature selection method was then used to select BP indicators for each subject. Multivariate linear regression and support vector regression were employed to develop the BP model. The accuracy and robustness of the proposed approach were validated for static, dynamic, and follow-up performance. Experimental results based on 73 subjects showed that the proposed approach exhibited excellent accuracy in static BP estimation, with a correlation coefficient and mean error of 0.852 and -0.001 ± 3.102 mmHg for systolic BP, and 0.790 and -0.004 ± 2.199 mmHg for diastolic BP. Similar performance was observed for dynamic BP estimation. The robustness results indicated that the estimation accuracy was lower by a certain degree one day after model construction but was relatively stable from one day to six months after construction. The proposed approach is superior to the state-of-the-art PTT-based model for an approximately 2-mmHg reduction in the standard derivation at different time intervals, thus providing potentially novel insights for cuffless BP estimation.
Author Qingyun He
Xiao-Rong Ding
Ye Li
Nan Fu
Xi Hong
Yuan-Ting Zhang
Fen Miao
Author_xml – sequence: 1
  givenname: Fen
  orcidid: 0000-0003-3054-807X
  surname: Miao
  fullname: Miao, Fen
– sequence: 2
  givenname: Nan
  surname: Fu
  fullname: Fu, Nan
– sequence: 3
  givenname: Yuan-Ting
  surname: Zhang
  fullname: Zhang, Yuan-Ting
– sequence: 4
  givenname: Xiao-Rong
  orcidid: 0000-0002-3269-2852
  surname: Ding
  fullname: Ding, Xiao-Rong
– sequence: 5
  givenname: Xi
  surname: Hong
  fullname: Hong, Xi
– sequence: 6
  givenname: Qingyun
  surname: He
  fullname: He, Qingyun
– sequence: 7
  givenname: Ye
  orcidid: 0000-0002-5351-8546
  surname: Li
  fullname: Li, Ye
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28463207$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOGzEUhi0EItweAFWqLHXDJsG3mbGXSaBcRAuLZG15PGeK0cRO7Rmkvn2dJmTBot4c6-j7z-0_RYc-eEDokpIJpURdP87uHyaM0GrCSkUrWhygE0ZLOWaMyMOPP1VihC5SeiP5yZxS5TEaMSlKzkh1gpZT_DO8Q4fnwffOD2FIeNaF0OCXCCkNEfBt6t3K9C54PF2vYzD2Fc9MggbnzI3pDf7hvPO_8ALsq3e_B0jn6Kg1XYKLXTxDy--3i_n9-On57mE-fRpbLlQ_lgLqgjWNsqoiQgBvCwaNaE1rZF3zGogsjBKMs9oS1fK6NYpxS3gDrYWy4Gfoals3j7Xp2-uVSxa6znjIm2gqlSgYEZxm9Nsn9C0M0efpNFUlL1lFiipTX3fUUK-g0euYV49_9MfBMkC3gI0hpQjtHqFEb3zRG1_0xhe98yVrqk8a6_p_B-2jcd1_lV-2SgcA-06VoqKUgv8F_dmZAQ
CODEN IJBHA9
CitedBy_id crossref_primary_10_1109_JIOT_2024_3484752
crossref_primary_10_1109_JSEN_2020_2967759
crossref_primary_10_1016_j_cmpb_2022_107027
crossref_primary_10_3390_s20226558
crossref_primary_10_1088_1361_6579_ab7d78
crossref_primary_10_1007_s13246_019_00813_x
crossref_primary_10_1016_j_aej_2021_04_035
crossref_primary_10_1109_TBME_2021_3136492
crossref_primary_10_1109_JSEN_2023_3267695
crossref_primary_10_1109_JSEN_2018_2880434
crossref_primary_10_1109_RBME_2020_2992838
crossref_primary_10_1016_j_compositesb_2021_109365
crossref_primary_10_1016_j_cmpb_2023_107716
crossref_primary_10_1109_OJEMB_2023_3329728
crossref_primary_10_1007_s13246_021_00989_1
crossref_primary_10_1038_s41598_022_27170_2
crossref_primary_10_1109_ACCESS_2018_2875548
crossref_primary_10_1109_JBHI_2019_2919896
crossref_primary_10_1088_1361_6579_ac7841
crossref_primary_10_1016_j_bspc_2021_102760
crossref_primary_10_1109_JBHI_2022_3181328
crossref_primary_10_1109_JBHI_2023_3278168
crossref_primary_10_1016_j_bspc_2024_106741
crossref_primary_10_1016_j_bspc_2021_102478
crossref_primary_10_1109_TCYB_2022_3141380
crossref_primary_10_1111_psyp_14173
crossref_primary_10_1038_s41378_023_00590_4
crossref_primary_10_1109_TCE_2022_3174689
crossref_primary_10_1088_1742_6596_2071_1_012028
crossref_primary_10_1039_D3MH01999C
crossref_primary_10_1007_s00542_018_3877_3
crossref_primary_10_1109_TIM_2024_3480192
crossref_primary_10_1007_s11517_024_03157_1
crossref_primary_10_1016_j_bspc_2023_105862
crossref_primary_10_1016_j_artmed_2020_101919
crossref_primary_10_1088_1361_6579_ab030e
crossref_primary_10_3390_a11050062
crossref_primary_10_1109_JBHI_2020_3009658
crossref_primary_10_1016_j_bspc_2021_103001
crossref_primary_10_1016_j_bspc_2023_105067
crossref_primary_10_3390_diagnostics12020408
crossref_primary_10_1016_j_bspc_2020_102198
crossref_primary_10_3390_bios13030321
crossref_primary_10_1109_JBHI_2019_2901724
crossref_primary_10_3390_bios12050292
crossref_primary_10_1007_s11036_022_01984_w
crossref_primary_10_1016_j_dsp_2025_105040
crossref_primary_10_1109_TBME_2018_2873754
crossref_primary_10_1088_1757_899X_1084_1_012031
crossref_primary_10_1155_2021_9934998
crossref_primary_10_1093_ajh_hpaa102
crossref_primary_10_1016_j_bspc_2020_101942
crossref_primary_10_1109_JBHI_2024_3395445
crossref_primary_10_1109_JSEN_2022_3177205
crossref_primary_10_1016_j_bbe_2023_06_002
crossref_primary_10_1109_JSEN_2023_3327683
crossref_primary_10_1109_JBHI_2024_3377128
crossref_primary_10_1109_TBME_2018_2865751
crossref_primary_10_1109_JSEN_2021_3073850
crossref_primary_10_3390_app132212403
crossref_primary_10_3390_bioengineering10010027
crossref_primary_10_1109_ACCESS_2019_2942936
crossref_primary_10_1109_RBME_2019_2931587
crossref_primary_10_1038_s41598_021_03612_1
crossref_primary_10_1007_s44174_023_00146_0
crossref_primary_10_31893_multirev_2025218
crossref_primary_10_3390_jcm11113203
crossref_primary_10_1016_j_bspc_2020_101870
crossref_primary_10_3390_s18124227
crossref_primary_10_1007_s11517_021_02362_6
crossref_primary_10_1109_ACCESS_2021_3094227
crossref_primary_10_1145_3471571
crossref_primary_10_1038_s41598_022_12087_7
crossref_primary_10_1002_cnm_3303
crossref_primary_10_1007_s11906_020_01056_y
crossref_primary_10_1109_JSEN_2024_3468316
crossref_primary_10_1109_TBCAS_2019_2946661
crossref_primary_10_1016_j_bspc_2018_12_006
crossref_primary_10_1016_j_buildenv_2023_110661
crossref_primary_10_1109_ACCESS_2021_3103763
crossref_primary_10_1109_RBME_2022_3141877
crossref_primary_10_1186_s12911_023_02215_2
crossref_primary_10_3390_app13137473
crossref_primary_10_1016_j_bspc_2020_102301
crossref_primary_10_1016_j_bspc_2021_102984
crossref_primary_10_3390_electronics10232896
crossref_primary_10_1016_j_eswa_2022_116788
crossref_primary_10_1088_1361_6579_abf889
crossref_primary_10_1016_j_apacoust_2020_107534
crossref_primary_10_47093_2218_7332_2021_12_1_39_49
crossref_primary_10_1016_j_measurement_2024_115446
crossref_primary_10_1109_JBHI_2022_3199199
crossref_primary_10_3389_fmedt_2021_666671
crossref_primary_10_3390_s19132922
crossref_primary_10_1007_s10462_022_10353_8
crossref_primary_10_1038_s41440_021_00795_y
crossref_primary_10_1109_ACCESS_2020_2965396
crossref_primary_10_1016_j_compbiomed_2023_106900
crossref_primary_10_1109_TIM_2025_3545993
crossref_primary_10_1111_jch_13700
crossref_primary_10_1109_ACCESS_2021_3054236
Cites_doi 10.1007/s00421-010-1626-0
10.1109/TBME.2013.2243148
10.1109/IEEESTD.2014.6882122
10.1109/IEMBS.2005.1615827
10.1109/IEMBS.2001.1019611
10.1109/BSN.2016.7516258
10.2147/VHRM.S43784
10.1016/j.eswa.2012.02.063
10.1109/TBME.2013.2286998
10.1109/IEMBS.2006.260275
10.1152/jappl.1993.74.5.2566
10.1161/HYPERTENSIONAHA.114.03694
10.1109/JBHI.2016.2620995
10.1038/jhh.2013.41
10.1016/S0735-1097(99)00441-6
10.1109/TBME.2015.2480679
10.1152/japplphysiol.00657.2005
10.1109/ICARCV.2010.5707813
10.1016/S0895-7061(03)00569-7
10.1042/cs1030371
10.1109/IEMBS.2008.4649409
10.1109/TII.2013.2288498
10.1117/12.838236
10.1109/BSN.2009.23
10.1109/5254.671091
10.1007/s11517-008-0359-2
10.1161/01.HYP.32.2.365
10.1111/j.1469-8986.1981.tb03042.x
10.4258/hir.2013.19.2.121
10.1161/01.HYP.36.6.952
10.1097/ALN.0b013e31824f94ed
10.1161/01.HYP.0000158306.87582.43
10.1109/TBME.2014.2318779
10.1007/s00421-011-1983-3
10.1109/TBME.2013.2244892
10.1001/jama.289.19.2560
10.1109/IEMBS.2003.1280811
10.1038/sj.jhh.1000600
10.1016/0161-7346(79)90028-2
10.1088/0967-3334/37/2/227
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2017.2691715
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 1740
ExternalDocumentID 28463207
10_1109_JBHI_2017_2691715
7914684
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National 863 Project of China
  grantid: SS2015AA020109
– fundername: National Natural Science Foundation of China
  grantid: 61502472
  funderid: 10.13039/501100001809
– fundername: Science and Technology Planning Project of Guangdong Province
  grantid: 2015B010129012
– fundername: Basic Research Program of Shenzhen
  grantid: JCYJ20150630114942316
– fundername: Guangdong Province Special Support Program
  grantid: 2014TX01X060
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
6IL
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c349t-84eb52dd9c97044e3f52ed4fafa8bb3be085a94232bc09f3bfa923c03defce653
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Thu Oct 02 03:59:53 EDT 2025
Mon Jun 30 04:25:52 EDT 2025
Wed Feb 19 02:43:21 EST 2025
Thu Apr 24 23:11:28 EDT 2025
Wed Oct 01 03:39:56 EDT 2025
Wed Aug 27 02:58:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-84eb52dd9c97044e3f52ed4fafa8bb3be085a94232bc09f3bfa923c03defce653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3054-807X
0000-0002-5351-8546
0000-0002-3269-2852
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7914684
PMID 28463207
PQID 1963627057
PQPubID 85417
PageCount 11
ParticipantIDs proquest_miscellaneous_1894520431
ieee_primary_7914684
proquest_journals_1963627057
crossref_primary_10_1109_JBHI_2017_2691715
crossref_citationtrail_10_1109_JBHI_2017_2691715
pubmed_primary_28463207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Nov.
2017-11-00
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-Nov.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
wesseling (ref46) 1983; 5
ref51
ref50
wesseling (ref47) 1993; 74
goldberg (ref31) 1989
ref45
ref48
ref42
ref41
isabelle (ref32) 2003; 3
ref44
ref43
(ref34) 2000
ref49
ref8
ref7
špulák (ref35) 0
ref9
ref4
ref3
ref5
ref40
ref37
ref30
ref2
wood (ref36) 2013; 190
ref1
ref39
ref38
christopher (ref18) 2010
kim (ref25) 0
ref24
ref23
ref26
drucker (ref33) 1996; 28
ref20
ref22
ref21
hwesseling (ref6) 1996; 85
ref28
ref27
ref29
References_xml – ident: ref39
  doi: 10.1007/s00421-010-1626-0
– ident: ref50
  doi: 10.1109/TBME.2013.2243148
– ident: ref53
  doi: 10.1109/IEEESTD.2014.6882122
– ident: ref10
  doi: 10.1109/IEMBS.2005.1615827
– ident: ref8
  doi: 10.1109/IEMBS.2001.1019611
– ident: ref27
  doi: 10.1109/BSN.2016.7516258
– ident: ref48
  doi: 10.2147/VHRM.S43784
– ident: ref19
  doi: 10.1016/j.eswa.2012.02.063
– volume: 5
  start-page: 16
  year: 1983
  ident: ref46
  article-title: A simple device for the continuous measurement of cardiac output
  publication-title: Advanced Cardiovascular Physiology
– ident: ref12
  doi: 10.1109/TBME.2013.2286998
– start-page: 1
  year: 0
  ident: ref35
  article-title: Parameters for mean blood pressure estimation based on electrocardiography and photoplethysmography
  publication-title: Proc Int Conf Appl Electron
– ident: ref38
  doi: 10.1109/IEMBS.2006.260275
– ident: ref16
  doi: 10.1007/s00421-010-1626-0
– volume: 74
  start-page: 2566
  year: 1993
  ident: ref47
  article-title: Computation of aortic flow from pressure in humans using a nonlinear, three-element model
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1993.74.5.2566
– ident: ref3
  doi: 10.1161/HYPERTENSIONAHA.114.03694
– ident: ref7
  doi: 10.1109/JBHI.2016.2620995
– ident: ref51
  doi: 10.1038/jhh.2013.41
– ident: ref42
  doi: 10.1016/S0735-1097(99)00441-6
– ident: ref14
  doi: 10.1109/TBME.2015.2480679
– ident: ref15
  doi: 10.1152/japplphysiol.00657.2005
– ident: ref11
  doi: 10.1109/ICARCV.2010.5707813
– ident: ref45
  doi: 10.1016/S0895-7061(03)00569-7
– ident: ref44
  doi: 10.1042/cs1030371
– ident: ref24
  doi: 10.1109/IEMBS.2008.4649409
– ident: ref26
  doi: 10.1109/TII.2013.2288498
– ident: ref21
  doi: 10.1117/12.838236
– ident: ref9
  doi: 10.1109/BSN.2009.23
– volume: 85
  start-page: 38
  year: 1996
  ident: ref6
  article-title: Finger arterial pressure measurement with Finapres
  publication-title: Zeitschrift fur Kardiologie
– ident: ref30
  doi: 10.1109/5254.671091
– ident: ref29
  doi: 10.1007/s11517-008-0359-2
– ident: ref22
  doi: 10.1161/01.HYP.32.2.365
– ident: ref37
  doi: 10.1111/j.1469-8986.1981.tb03042.x
– ident: ref20
  doi: 10.4258/hir.2013.19.2.121
– ident: ref43
  doi: 10.1161/01.HYP.36.6.952
– ident: ref5
  doi: 10.1097/ALN.0b013e31824f94ed
– ident: ref2
  doi: 10.1161/01.HYP.0000158306.87582.43
– year: 2010
  ident: ref18
  article-title: Encyclopædia britannica: Definition of data mining
– volume: 28
  start-page: 779
  year: 1996
  ident: ref33
  article-title: Support vector regression machines
  publication-title: Adv Neural Inf Process Syst
– ident: ref40
  doi: 10.1109/TBME.2013.2286998
– ident: ref13
  doi: 10.1109/TBME.2014.2318779
– year: 1989
  ident: ref31
  publication-title: Genetic Algorithms in Search Optimization and Machine Learning
– ident: ref49
  doi: 10.1007/s00421-011-1983-3
– volume: 190
  start-page: 39
  year: 2013
  ident: ref36
  article-title: Using individualized pulse transit time calibration to monitor blood pressure during exercise
  publication-title: Studies Health Technol Informat
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref32
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– ident: ref4
  doi: 10.1109/TBME.2013.2244892
– start-page: 6942
  year: 0
  ident: ref25
  article-title: Comparative study on artificial neural network with multiple regressions for continuous estimation of blood pressure
  publication-title: Proc 2005 IEEE Eng Med Biol 27th Annu Conf
– ident: ref1
  doi: 10.1001/jama.289.19.2560
– ident: ref41
  doi: 10.1161/01.HYP.32.2.365
– ident: ref23
  doi: 10.1109/IEMBS.2003.1280811
– ident: ref52
  doi: 10.1038/sj.jhh.1000600
– ident: ref28
  doi: 10.1016/0161-7346(79)90028-2
– year: 2000
  ident: ref34
  article-title: Factors that affect blood pressure.
– ident: ref17
  doi: 10.1088/0967-3334/37/2/227
SSID ssj0000816896
Score 2.5377746
Snippet Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1730
SubjectTerms Accuracy
Adult
Biomedical monitoring
Blood pressure
Blood Pressure - physiology
Blood Pressure Determination - methods
Construction
Continuous blood pressure (BP)
Correlation coefficient
Correlation coefficients
Data mining
Data Mining - methods
Data processing
EKG
Electrocardiography
Electrocardiography - methods
Estimation
Feature extraction
feature selection
Female
Genetic algorithms
Humans
Informatics
Linear Models
Male
Model accuracy
multivariate linear regression (MLR)
Photoplethysmography - methods
Robustness
Signal Processing, Computer-Assisted
Support Vector Machine
Support vector machines
support vector regression (SVR)
Transit time
Young Adult
Title A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques
URI https://ieeexplore.ieee.org/document/7914684
https://www.ncbi.nlm.nih.gov/pubmed/28463207
https://www.proquest.com/docview/1963627057
https://www.proquest.com/docview/1894520431
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSAuFCiPtAUZiRMi22zsPHzchVZLpe2pK_UWje2JhKiyqJv00F9fj_MQQoC4OYmdODNj-7PnBfCxxpySWtvYGYOxsiqNUVrnL5GcKTN0JTsKr6_y1UZd3mQ3e_B58oUhomB8RjMuBl2-29qOj8rOCs2OQmof9osy7321pvOUkEAipONKfSH2A1ENSsx5os8ul6tvbMdVzNLcb1DmnLDGT8y5TDmP7C8rUkix8ne0GVadi0NYj_3tjU1-zLrWzOzDb6Ec__eHnsOzAX6KRS8vL2CPmpfwZD0o2I9gsxBX23u6FRy16nvTbbudWLJtu-j9CO9InPtJofd3FIshILlY-rXQCX_nK7Yo1iHphLgew8PuXsHm4vz6yyoeMi_EVirdxqUik6XOaauLRCmSdZaSUzXWWBojDXmghpp1vMYmupamRg8UbSId1ZbyTL6Gg2bb0FsQHhH4lh4lIqFCzEpUHLUKpYduhgqKIBmpX9khLDlnx7itwvYk0RXzrmLeVQPvIvg0NfnZx-T4V-UjpvtUcSB5BKcji6th1O4qno3ytPAQNoIP02M_3liJgg15mlfzUquMHYrnEbzpRWN69yhRx3_-5gk85Z71noyncNDedfTOQ5rWvA-y_Ag4-PB2
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgEXXuURKGAkTohss4mdxMddaLUtzZ52pd4sPyYSosqibsKBX4_HeQghQNycxE6cmbH92fMCeFfrHJNa2tgZo2NueRrrzDp_qdGZUmhXkqNwtc5XW35xJa4O4MPkC4OIwfgMZ1QMuny3sx0dlZ0UkhyF-C24LTjnovfWmk5UQgqJkJAr9YXYD0U-qDHniTy5WK7OyZKrmKW536LMKWWNn5rzLKVMsr-sSSHJyt_xZlh3zh5ANfa4Nzf5OutaM7M_fgvm-L-_9BDuDwCULXqJeQQH2DyGO9WgYj-C7YKtd9_xmlHcqi9Nt-v2bEnW7az3JLxBduqnhd7jkS2GkORs6VdDx_ydT7rVrAppJ9hmDBC7fwLbs9PNx1U85F6IbcZlG5ccjUidk1YWCeeY1SJFx2td69KYzKCHalqSltfYRNaZqbWHijbJHNYWc5E9hcNm1-BzYB4T-JYeJ2rUXGtRak5xq3TmwZvBAiNIRuorOwQmp_wY1ypsUBKpiHeKeKcG3kXwfmryrY_K8a_KR0T3qeJA8giORxarYdzuFc1HeVp4EBvB2-mxH3GkRtENepqreSm5IJfieQTPetGY3j1K1Is_f_MN3F1tqkt1eb7-_BLuUS97v8ZjOGxvOnzlAU5rXge5_gn5f_PD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Continuous+Blood+Pressure+Estimation+Approach+Based+on+Data+Mining+Techniques&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Miao%2C+Fen&rft.au=Fu%2C+Nan&rft.au=Zhang%2C+Yuan-Ting&rft.au=Ding%2C+Xiao-Rong&rft.date=2017-11-01&rft.eissn=2168-2208&rft.volume=21&rft.issue=6&rft.spage=1730&rft_id=info:doi/10.1109%2FJBHI.2017.2691715&rft_id=info%3Apmid%2F28463207&rft.externalDocID=28463207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon