A Deep Segmentation Network of Multi-Scale Feature Fusion Based on Attention Mechanism for IVOCT Lumen Contour

Recently, coronary heart disease has attracted more and more attention, where segmentation and analysis for vascular lumen contour are helpful for treatment. And intravascular optical coherence tomography (IVOCT) images are used to display lumen shapes in clinic. Thus, an automatic segmentation meth...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on computational biology and bioinformatics Vol. 18; no. 1; pp. 62 - 69
Main Authors Huang, Chenxi, Lan, Yisha, Xu, Gaowei, Zhai, Xiaojun, Wu, Jipeng, Lin, Fan, Zeng, Nianyin, Hong, Qingqi, Ng, E. Y. K., Peng, Yonghong, Chen, Fei, Zhang, Guokai
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-5963
1557-9964
1557-9964
DOI10.1109/TCBB.2020.2973971

Cover

Abstract Recently, coronary heart disease has attracted more and more attention, where segmentation and analysis for vascular lumen contour are helpful for treatment. And intravascular optical coherence tomography (IVOCT) images are used to display lumen shapes in clinic. Thus, an automatic segmentation method for IVOCT lumen contour is necessary to reduce the doctors' workload while ensuring diagnostic accuracy. In this paper, we proposed a deep residual segmentation network of multi-scale feature fusion based on attention mechanism (RSM-Network, Residual Squeezed Multi-Scale Network) to segment the lumen contour in IVOCT images. Firstly, three different data augmentation methods including mirror level turnover, rotation and vertical flip are considered to expand the training set. Then in the proposed RSM-Network, U-Net is contained as the main body, considering its characteristic of accepting input images with any sizes. Meanwhile, the combination of residual network and attention mechanism is applied to improve the ability of global feature extraction and solve the vanishing gradient problem. Moreover, the pyramid feature extraction structure is introduced to enhance the learning ability for multi-scale features. Finally, in order to increase the matching degree between the actual output and expected output, the cross entropy loss function is also used. A series of metrics are presented to evaluate the performance of our proposed network and the experimental results demonstrate that the proposed RSM-Network can learn the contour details better, contributing to strong robustness and accuracy for IVOCT lumen contour segmentation.
AbstractList Recently, coronary heart disease has attracted more and more attention, where segmentation and analysis for vascular lumen contour are helpful for treatment. And intravascular optical coherence tomography (IVOCT) images are used to display lumen shapes in clinic. Thus, an automatic segmentation method for IVOCT lumen contour is necessary to reduce the doctors' workload while ensuring diagnostic accuracy. In this paper, we proposed a deep residual segmentation network of multi-scale feature fusion based on attention mechanism (RSM-Network, Residual Squeezed Multi-Scale Network) to segment the lumen contour in IVOCT images. Firstly, three different data augmentation methods including mirror level turnover, rotation and vertical flip are considered to expand the training set. Then in the proposed RSM-Network, U-Net is contained as the main body, considering its characteristic of accepting input images with any sizes. Meanwhile, the combination of residual network and attention mechanism is applied to improve the ability of global feature extraction and solve the vanishing gradient problem. Moreover, the pyramid feature extraction structure is introduced to enhance the learning ability for multi-scale features. Finally, in order to increase the matching degree between the actual output and expected output, the cross entropy loss function is also used. A series of metrics are presented to evaluate the performance of our proposed network and the experimental results demonstrate that the proposed RSM-Network can learn the contour details better, contributing to strong robustness and accuracy for IVOCT lumen contour segmentation.Recently, coronary heart disease has attracted more and more attention, where segmentation and analysis for vascular lumen contour are helpful for treatment. And intravascular optical coherence tomography (IVOCT) images are used to display lumen shapes in clinic. Thus, an automatic segmentation method for IVOCT lumen contour is necessary to reduce the doctors' workload while ensuring diagnostic accuracy. In this paper, we proposed a deep residual segmentation network of multi-scale feature fusion based on attention mechanism (RSM-Network, Residual Squeezed Multi-Scale Network) to segment the lumen contour in IVOCT images. Firstly, three different data augmentation methods including mirror level turnover, rotation and vertical flip are considered to expand the training set. Then in the proposed RSM-Network, U-Net is contained as the main body, considering its characteristic of accepting input images with any sizes. Meanwhile, the combination of residual network and attention mechanism is applied to improve the ability of global feature extraction and solve the vanishing gradient problem. Moreover, the pyramid feature extraction structure is introduced to enhance the learning ability for multi-scale features. Finally, in order to increase the matching degree between the actual output and expected output, the cross entropy loss function is also used. A series of metrics are presented to evaluate the performance of our proposed network and the experimental results demonstrate that the proposed RSM-Network can learn the contour details better, contributing to strong robustness and accuracy for IVOCT lumen contour segmentation.
Recently, coronary heart disease has attracted more and more attention, where segmentation and analysis for vascular lumen contour are helpful for treatment. And intravascular optical coherence tomography (IVOCT) images are used to display lumen shapes in clinic. Thus, an automatic segmentation method for IVOCT lumen contour is necessary to reduce the doctors' workload while ensuring diagnostic accuracy. In this paper, we proposed a deep residual segmentation network of multi-scale feature fusion based on attention mechanism (RSM-Network, Residual Squeezed Multi-Scale Network) to segment the lumen contour in IVOCT images. Firstly, three different data augmentation methods including mirror level turnover, rotation and vertical flip are considered to expand the training set. Then in the proposed RSM-Network, U-Net is contained as the main body, considering its characteristic of accepting input images with any sizes. Meanwhile, the combination of residual network and attention mechanism is applied to improve the ability of global feature extraction and solve the vanishing gradient problem. Moreover, the pyramid feature extraction structure is introduced to enhance the learning ability for multi-scale features. Finally, in order to increase the matching degree between the actual output and expected output, the cross entropy loss function is also used. A series of metrics are presented to evaluate the performance of our proposed network and the experimental results demonstrate that the proposed RSM-Network can learn the contour details better, contributing to strong robustness and accuracy for IVOCT lumen contour segmentation.
Author Zeng, Nianyin
Zhang, Guokai
Chen, Fei
Huang, Chenxi
Xu, Gaowei
Peng, Yonghong
Wu, Jipeng
Lin, Fan
Hong, Qingqi
Ng, E. Y. K.
Zhai, Xiaojun
Lan, Yisha
Author_xml – sequence: 1
  givenname: Chenxi
  orcidid: 0000-0002-2100-0259
  surname: Huang
  fullname: Huang, Chenxi
  email: tongchenhuang@126.com
  organization: School of Informatics, Xiamen University, Xiamen, FJ, China
– sequence: 2
  givenname: Yisha
  orcidid: 0000-0003-4675-4767
  surname: Lan
  fullname: Lan, Yisha
  email: angellanyisha@163.com
  organization: Department of Computer Science and Technology, Tongji University, Shanghai, SH, China
– sequence: 3
  givenname: Gaowei
  orcidid: 0000-0003-3752-7749
  surname: Xu
  fullname: Xu, Gaowei
  email: 1710050@tongji.edu.cn
  organization: College of Electronics and Information Engineering, Tongji University, Shanghai, SH, China
– sequence: 4
  givenname: Xiaojun
  orcidid: 0000-0002-1030-8311
  surname: Zhai
  fullname: Zhai, Xiaojun
  email: xzhai@essex.ac.uk
  organization: School of Computer Science and Electronic Engineering, University of Essex, Colchester, U.K
– sequence: 5
  givenname: Jipeng
  surname: Wu
  fullname: Wu, Jipeng
  email: jipengwu@stu.xmu.edu.cn
  organization: Media Analytics and Computing Lab, Department of Artificial Intelligence, School of Informatics, Xiamen University, Xiamen, FJ, China
– sequence: 6
  givenname: Fan
  orcidid: 0000-0003-2530-859X
  surname: Lin
  fullname: Lin, Fan
  email: iamafan@xmu.edu.cn
  organization: School of Informatics, Xiamen University, Xiamen, FJ, China
– sequence: 7
  givenname: Nianyin
  orcidid: 0000-0002-6957-2942
  surname: Zeng
  fullname: Zeng, Nianyin
  email: zny@xmu.edu.cn
  organization: School of Aerospace Engineering, Xiamen University, Xiamen, FJ, China
– sequence: 8
  givenname: Qingqi
  orcidid: 0000-0002-9996-6870
  surname: Hong
  fullname: Hong, Qingqi
  email: hongqq@gmail.com
  organization: School of Informatics, Xiamen University, Xiamen, FJ, China
– sequence: 9
  givenname: E. Y. K.
  orcidid: 0000-0002-5701-1080
  surname: Ng
  fullname: Ng, E. Y. K.
  email: mykng@ntu.edu.sg
  organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
– sequence: 10
  givenname: Yonghong
  orcidid: 0000-0002-5508-1819
  surname: Peng
  fullname: Peng, Yonghong
  email: yonghong.peng@sunderland.ac.uk
  organization: Faculty of Computer Science, University of Sunderland, Sunderland, U.K
– sequence: 11
  givenname: Fei
  surname: Chen
  fullname: Chen, Fei
  email: riverapt@126.com
  organization: Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, SH, China
– sequence: 12
  givenname: Guokai
  orcidid: 0000-0002-0952-8325
  surname: Zhang
  fullname: Zhang, Guokai
  email: zhangguokai_01@163.com
  organization: School of Software Engineering, Tongji University, Shanghai, SH, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32078556$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB_wAxASssSmmwx-xvZyJrRQaUoXHdhansw1pCTx1HaE-Pc4mimLLljdq6vvHF2dc45OxjACQm8pWVBKzMdNs1otGGFkwYziRtEX6IxKqSpjanEy70JW0tT8FJ2n9EAIE4aIV-iUM6K0lPUZGpf4E8Ae38OPAcbschdG_BXy7xB_4eDx7dTnrrpvXQ_4GlyeYplTmqmVS7DDZVnmXKTz6Rban27s0oB9iPjm-12zweupGOMmjDlM8TV66V2f4M1xXqBv11eb5ku1vvt80yzXVcuFyZXyTFJnnPQcqJP1VirnDCMCnN5xZ7zaKu299LDllGglaqc1AykF2znhDL9AlwfffQyPE6Rshy610PduhDAly3jNKJXcsIJ-eIY-lEfH8p1lQtfSGEFmw_dHatoOsLP72A0u_rFPSRZAHYA2hpQieNt2hzhzdF1vKbFzZ3buzM6d2WNnRUmfKZ_M_6d5d9B0APCP18YYqTX_C7B2oA4
CODEN ITCBCY
CitedBy_id crossref_primary_10_1109_JBHI_2023_3288757
crossref_primary_10_1155_2020_7902072
crossref_primary_10_1109_ACCESS_2022_3232561
crossref_primary_10_1080_00207721_2021_2005178
crossref_primary_10_1007_s40747_021_00589_2
crossref_primary_10_1109_TMI_2022_3202910
crossref_primary_10_1007_s13239_022_00636_0
crossref_primary_10_1155_2021_7800144
crossref_primary_10_1007_s10489_023_05088_0
crossref_primary_10_1016_j_heliyon_2023_e18832
crossref_primary_10_2139_ssrn_3989551
crossref_primary_10_1016_j_inffus_2024_102582
crossref_primary_10_1109_TCBB_2020_3039834
crossref_primary_10_1109_TMI_2023_3291719
crossref_primary_10_1088_2057_1976_adb290
crossref_primary_10_3390_jcdd10120485
crossref_primary_10_1016_j_irbm_2023_100814
crossref_primary_10_1109_JBHI_2023_3276422
crossref_primary_10_1002_mp_15477
crossref_primary_10_1109_TMI_2024_3417007
crossref_primary_10_1109_JBHI_2023_3272342
crossref_primary_10_3390_electronics11132055
crossref_primary_10_1109_TMRB_2022_3194320
crossref_primary_10_1364_BOE_459623
crossref_primary_10_1007_s13246_024_01509_7
crossref_primary_10_1109_TCDS_2021_3137316
crossref_primary_10_1142_S0219519422400383
Cites_doi 10.1109/CVPR.2018.00122
10.1186/1475-925X-12-78
doi:10.1007/978-3-319-24574-4_28
10.1109/TPAMI.2016.2644615
doi:10.1109/JBHI.2015.2403713
10.1109/CVPR.2016.90
10.1016/S0893-6080(98)00116-6
10.1109/ICPR.2018.8546150
10.1007/s10554-011-9824-3
10.1016/j.media.2014.06.011
10.1109/ISBI.2011.5872481
10.1051/matecconf/201823202025
10.1109/CVPR.2017.660
10.1007/978-3-030-26766-7_22
10.1118/1.4943374
10.1109/TPAMI.2002.1017616
10.1109/ICBBE.2010.5515979
10.1109/5.726791
10.1109/FSKD.2018.8687296
10.1002/ima.22337
10.1016/j.patcog.2005.10.028
10.1016/j.ijcard.2014.01.071
10.1109/ACCESS.2018.2855060
10.1109/CVPR.2015.7298965
10.1023/A:1018628609742
10.1214/aos/1176345513
doi:10.11897/SP.J.1016.2017.01229
10.1109/CVPR.2018.00745
10.1117/12.876003
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TCBB.2020.2973971
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 69
ExternalDocumentID 32078556
10_1109_TCBB_2020_2973971
8999588
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 22120190211
  funderid: 10.13039/501100012226
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
AAYXX
CITATION
AAYOK
ADPZR
CGR
CUY
CVF
ECM
EIF
NPM
RIG
W7O
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-7f251a9a5f3e1a56b57aa9204ea8d3a9f7b78ff5feb3108746a882e5542da4a93
IEDL.DBID RIE
ISSN 1545-5963
1557-9964
IngestDate Sun Sep 28 01:19:02 EDT 2025
Sun Jun 29 16:47:44 EDT 2025
Thu Apr 03 07:07:55 EDT 2025
Sat Oct 25 04:05:12 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Wed Aug 27 05:48:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-7f251a9a5f3e1a56b57aa9204ea8d3a9f7b78ff5feb3108746a882e5542da4a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9996-6870
0000-0003-2530-859X
0000-0003-4675-4767
0000-0003-3752-7749
0000-0002-2100-0259
0000-0002-6957-2942
0000-0002-5508-1819
0000-0002-1030-8311
0000-0002-0952-8325
0000-0002-5701-1080
PMID 32078556
PQID 2486599409
PQPubID 85499
PageCount 8
ParticipantIDs ieee_primary_8999588
crossref_citationtrail_10_1109_TCBB_2020_2973971
proquest_journals_2486599409
crossref_primary_10_1109_TCBB_2020_2973971
proquest_miscellaneous_2362115392
pubmed_primary_32078556
PublicationCentury 2000
PublicationDate 2021-Jan.-Feb.-1
2021-1-1
2021 Jan-Feb
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.-Feb.-1
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationTitleAlternate IEEE/ACM Trans Comput Biol Bioinform
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
krizhevsky (ref19) 2012
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
sutton (ref28) 1986
References_xml – ident: ref16
  doi: 10.1109/CVPR.2018.00122
– start-page: 1097
  year: 2012
  ident: ref19
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref7
  doi: 10.1186/1475-925X-12-78
– ident: ref21
  doi: doi:10.1007/978-3-319-24574-4_28
– ident: ref31
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref10
  doi: doi:10.1109/JBHI.2015.2403713
– ident: ref20
  doi: 10.1109/CVPR.2016.90
– ident: ref27
  doi: 10.1016/S0893-6080(98)00116-6
– ident: ref3
  doi: 10.1109/ICPR.2018.8546150
– ident: ref6
  doi: 10.1007/s10554-011-9824-3
– ident: ref8
  doi: 10.1016/j.media.2014.06.011
– ident: ref4
  doi: 10.1109/ISBI.2011.5872481
– ident: ref25
  doi: 10.1051/matecconf/201823202025
– ident: ref22
  doi: 10.1109/CVPR.2017.660
– ident: ref2
  doi: 10.1007/978-3-030-26766-7_22
– ident: ref11
  doi: 10.1118/1.4943374
– ident: ref13
  doi: 10.1109/TPAMI.2002.1017616
– ident: ref1
  doi: 10.1109/ICBBE.2010.5515979
– ident: ref18
  doi: 10.1109/5.726791
– ident: ref29
  doi: 10.1109/FSKD.2018.8687296
– ident: ref23
  doi: 10.1002/ima.22337
– ident: ref12
  doi: 10.1016/j.patcog.2005.10.028
– ident: ref9
  doi: 10.1016/j.ijcard.2014.01.071
– ident: ref30
  doi: 10.1109/ACCESS.2018.2855060
– start-page: 823
  year: 1986
  ident: ref28
  article-title: Two problems with back propagation and other steepest descent learning procedures for networks
  publication-title: Proc 8th Annu Conf Cognitive Sci Soc
– ident: ref26
  doi: 10.1109/CVPR.2015.7298965
– ident: ref14
  doi: 10.1023/A:1018628609742
– ident: ref15
  doi: 10.1214/aos/1176345513
– ident: ref17
  doi: doi:10.11897/SP.J.1016.2017.01229
– ident: ref24
  doi: 10.1109/CVPR.2018.00745
– ident: ref5
  doi: 10.1117/12.876003
SSID ssj0024904
Score 2.4243672
Snippet Recently, coronary heart disease has attracted more and more attention, where segmentation and analysis for vascular lumen contour are helpful for treatment....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 62
SubjectTerms attention mechanism
Blood Vessels - diagnostic imaging
Cardiovascular disease
Cardiovascular diseases
contour segmentation
Contours
Convolution
Coronary artery disease
Data mining
Databases, Factual
Deep Learning
Diagnostic systems
Electronic mail
Endovascular Procedures - methods
Entropy
Feature extraction
Heart
Heart diseases
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
IVOCT images
Medical imaging
Neural Networks, Computer
Residual network
Tomography, Optical Coherence - methods
Training
Working conditions
Title A Deep Segmentation Network of Multi-Scale Feature Fusion Based on Attention Mechanism for IVOCT Lumen Contour
URI https://ieeexplore.ieee.org/document/8999588
https://www.ncbi.nlm.nih.gov/pubmed/32078556
https://www.proquest.com/docview/2486599409
https://www.proquest.com/docview/2362115392
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024904
  issn: 1545-5963
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZC48CqPQEFG4oTwNg87jo-7C1VBbDl0i3qLnGSMEDRbtckBfj0zTjYgBIhTLMVJHM0k8814Zj6AF7VDoxq00qe1kwq9kbZpEukwJXXRmKfI8Y7VSX58pt6d6_MdeDXVwiBiSD7DGQ_DXn6zqXsOlR2Sb2B1UezCrinyoVbrZ189G6gCGRFITVo17mAmsT1cLxcL8gTTeMZETdYwO0yWkm3UTFv9izkK_Cp_h5rB5BzdhtV2sUOmyZdZ31Wz-vtvfRz_923uwK0Re4r5oCx3YQfbe3BjYKP8tg_tXLxGvBSn-OlirEhqxcmQJi42XoRaXXlKQkXByLG_omPP0TaxIFvYCBrMu27InxQr5Jriz9cXgmCxePvxw3It3vOSBDfEoqXch7OjN-vlsRzpGGSdKdtJ4wkLOeu0zzBxOq-0cc6msUJXNJmz3lSm8F578s-TuDAqdwTfkfBK2jjlbPYA9tpNi49AKE-2WTOPHP0OCuuLLE8wbxAd-cVVrSKIt1Ip67FXOVNmfC2DzxLbkmVaskzLUaYRvJwuuRwadfxr8j7LY5o4iiKCg63oy_FTvi5JZ3NtLfnBETyfTtNHyDsrrsVNT3MIBhC0JqwZwcNBZaZ7bzXt8Z-f-QRuppwmE6I6B7DXXfX4lHBOVz0LCv4Dx7L2XQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb5RAEJ7UGqMvVq1VbNU18cm4V37sAvt4d9pc9e586NX0jSwwa4yWa1p40L_eGeCwMdX4xCYssGQG5pvZmfkAXhcWE1WikS4srFToEmnKMpAWQ1IXjXGIHO9YLOPZqfpwps-24O1QC4OIbfIZjnjY7uWX66LhUNkh-QZGp-ktuK2VUrqr1vrdWc-0ZIGMCaQmver3MAPfHK6mkwn5gqE_YqomkzA_TBSSddRMXH3NILUMK38Hm63ROdqBxWa5Xa7Jt1FT56Pi5x-dHP_3fR7A_R59inGnLg9hC6tHcKfjo_yxC9VYvEO8ECf45byvSarEsksUF2sn2mpdeUJiRcHYsbmkY8PxNjEha1gKGozrusugFAvkquKvV-eCgLE4_vxpuhJzXpLglli0lMdwevR-NZ3JnpBBFpEytUwcoSFrrHYRBlbHuU6sNaGv0KZlZI1L8iR1Tjvy0AM_TVRsCcAjIZawtMqaaA-2q3WFT0EoR9ZZM5Mc_RBS49IoDjAuES15xnmhPPA3UsmKvls5k2Z8z1qvxTcZyzRjmWa9TD14M1xy0bXq-NfkXZbHMLEXhQcHG9Fn_cd8lZHWxtoY8oQ9eDWcps-Q91ZsheuG5hAQIHBNaNODJ53KDPfeaNqzm5_5Eu7OVot5Nj9eftyHeyEnzbQxngPYri8bfE6op85ftMr-C9Wh-ao
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Segmentation+Network+of+Multi-Scale+Feature+Fusion+Based+on+Attention+Mechanism+for+IVOCT+Lumen+Contour&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Huang%2C+Chenxi&rft.au=Lan%2C+Yisha&rft.au=Xu%2C+Gaowei&rft.au=Zhai%2C+Xiaojun&rft.date=2021-01-01&rft.issn=1545-5963&rft.eissn=1557-9964&rft.volume=18&rft.issue=1&rft.spage=62&rft.epage=69&rft_id=info:doi/10.1109%2FTCBB.2020.2973971&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCBB_2020_2973971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon