A Deep Segmentation Network of Multi-Scale Feature Fusion Based on Attention Mechanism for IVOCT Lumen Contour
Recently, coronary heart disease has attracted more and more attention, where segmentation and analysis for vascular lumen contour are helpful for treatment. And intravascular optical coherence tomography (IVOCT) images are used to display lumen shapes in clinic. Thus, an automatic segmentation meth...
Saved in:
| Published in | IEEE/ACM transactions on computational biology and bioinformatics Vol. 18; no. 1; pp. 62 - 69 |
|---|---|
| Main Authors | , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1545-5963 1557-9964 1557-9964 |
| DOI | 10.1109/TCBB.2020.2973971 |
Cover
| Abstract | Recently, coronary heart disease has attracted more and more attention, where segmentation and analysis for vascular lumen contour are helpful for treatment. And intravascular optical coherence tomography (IVOCT) images are used to display lumen shapes in clinic. Thus, an automatic segmentation method for IVOCT lumen contour is necessary to reduce the doctors' workload while ensuring diagnostic accuracy. In this paper, we proposed a deep residual segmentation network of multi-scale feature fusion based on attention mechanism (RSM-Network, Residual Squeezed Multi-Scale Network) to segment the lumen contour in IVOCT images. Firstly, three different data augmentation methods including mirror level turnover, rotation and vertical flip are considered to expand the training set. Then in the proposed RSM-Network, U-Net is contained as the main body, considering its characteristic of accepting input images with any sizes. Meanwhile, the combination of residual network and attention mechanism is applied to improve the ability of global feature extraction and solve the vanishing gradient problem. Moreover, the pyramid feature extraction structure is introduced to enhance the learning ability for multi-scale features. Finally, in order to increase the matching degree between the actual output and expected output, the cross entropy loss function is also used. A series of metrics are presented to evaluate the performance of our proposed network and the experimental results demonstrate that the proposed RSM-Network can learn the contour details better, contributing to strong robustness and accuracy for IVOCT lumen contour segmentation. |
|---|---|
| AbstractList | Recently, coronary heart disease has attracted more and more attention, where segmentation and analysis for vascular lumen contour are helpful for treatment. And intravascular optical coherence tomography (IVOCT) images are used to display lumen shapes in clinic. Thus, an automatic segmentation method for IVOCT lumen contour is necessary to reduce the doctors' workload while ensuring diagnostic accuracy. In this paper, we proposed a deep residual segmentation network of multi-scale feature fusion based on attention mechanism (RSM-Network, Residual Squeezed Multi-Scale Network) to segment the lumen contour in IVOCT images. Firstly, three different data augmentation methods including mirror level turnover, rotation and vertical flip are considered to expand the training set. Then in the proposed RSM-Network, U-Net is contained as the main body, considering its characteristic of accepting input images with any sizes. Meanwhile, the combination of residual network and attention mechanism is applied to improve the ability of global feature extraction and solve the vanishing gradient problem. Moreover, the pyramid feature extraction structure is introduced to enhance the learning ability for multi-scale features. Finally, in order to increase the matching degree between the actual output and expected output, the cross entropy loss function is also used. A series of metrics are presented to evaluate the performance of our proposed network and the experimental results demonstrate that the proposed RSM-Network can learn the contour details better, contributing to strong robustness and accuracy for IVOCT lumen contour segmentation.Recently, coronary heart disease has attracted more and more attention, where segmentation and analysis for vascular lumen contour are helpful for treatment. And intravascular optical coherence tomography (IVOCT) images are used to display lumen shapes in clinic. Thus, an automatic segmentation method for IVOCT lumen contour is necessary to reduce the doctors' workload while ensuring diagnostic accuracy. In this paper, we proposed a deep residual segmentation network of multi-scale feature fusion based on attention mechanism (RSM-Network, Residual Squeezed Multi-Scale Network) to segment the lumen contour in IVOCT images. Firstly, three different data augmentation methods including mirror level turnover, rotation and vertical flip are considered to expand the training set. Then in the proposed RSM-Network, U-Net is contained as the main body, considering its characteristic of accepting input images with any sizes. Meanwhile, the combination of residual network and attention mechanism is applied to improve the ability of global feature extraction and solve the vanishing gradient problem. Moreover, the pyramid feature extraction structure is introduced to enhance the learning ability for multi-scale features. Finally, in order to increase the matching degree between the actual output and expected output, the cross entropy loss function is also used. A series of metrics are presented to evaluate the performance of our proposed network and the experimental results demonstrate that the proposed RSM-Network can learn the contour details better, contributing to strong robustness and accuracy for IVOCT lumen contour segmentation. Recently, coronary heart disease has attracted more and more attention, where segmentation and analysis for vascular lumen contour are helpful for treatment. And intravascular optical coherence tomography (IVOCT) images are used to display lumen shapes in clinic. Thus, an automatic segmentation method for IVOCT lumen contour is necessary to reduce the doctors' workload while ensuring diagnostic accuracy. In this paper, we proposed a deep residual segmentation network of multi-scale feature fusion based on attention mechanism (RSM-Network, Residual Squeezed Multi-Scale Network) to segment the lumen contour in IVOCT images. Firstly, three different data augmentation methods including mirror level turnover, rotation and vertical flip are considered to expand the training set. Then in the proposed RSM-Network, U-Net is contained as the main body, considering its characteristic of accepting input images with any sizes. Meanwhile, the combination of residual network and attention mechanism is applied to improve the ability of global feature extraction and solve the vanishing gradient problem. Moreover, the pyramid feature extraction structure is introduced to enhance the learning ability for multi-scale features. Finally, in order to increase the matching degree between the actual output and expected output, the cross entropy loss function is also used. A series of metrics are presented to evaluate the performance of our proposed network and the experimental results demonstrate that the proposed RSM-Network can learn the contour details better, contributing to strong robustness and accuracy for IVOCT lumen contour segmentation. |
| Author | Zeng, Nianyin Zhang, Guokai Chen, Fei Huang, Chenxi Xu, Gaowei Peng, Yonghong Wu, Jipeng Lin, Fan Hong, Qingqi Ng, E. Y. K. Zhai, Xiaojun Lan, Yisha |
| Author_xml | – sequence: 1 givenname: Chenxi orcidid: 0000-0002-2100-0259 surname: Huang fullname: Huang, Chenxi email: tongchenhuang@126.com organization: School of Informatics, Xiamen University, Xiamen, FJ, China – sequence: 2 givenname: Yisha orcidid: 0000-0003-4675-4767 surname: Lan fullname: Lan, Yisha email: angellanyisha@163.com organization: Department of Computer Science and Technology, Tongji University, Shanghai, SH, China – sequence: 3 givenname: Gaowei orcidid: 0000-0003-3752-7749 surname: Xu fullname: Xu, Gaowei email: 1710050@tongji.edu.cn organization: College of Electronics and Information Engineering, Tongji University, Shanghai, SH, China – sequence: 4 givenname: Xiaojun orcidid: 0000-0002-1030-8311 surname: Zhai fullname: Zhai, Xiaojun email: xzhai@essex.ac.uk organization: School of Computer Science and Electronic Engineering, University of Essex, Colchester, U.K – sequence: 5 givenname: Jipeng surname: Wu fullname: Wu, Jipeng email: jipengwu@stu.xmu.edu.cn organization: Media Analytics and Computing Lab, Department of Artificial Intelligence, School of Informatics, Xiamen University, Xiamen, FJ, China – sequence: 6 givenname: Fan orcidid: 0000-0003-2530-859X surname: Lin fullname: Lin, Fan email: iamafan@xmu.edu.cn organization: School of Informatics, Xiamen University, Xiamen, FJ, China – sequence: 7 givenname: Nianyin orcidid: 0000-0002-6957-2942 surname: Zeng fullname: Zeng, Nianyin email: zny@xmu.edu.cn organization: School of Aerospace Engineering, Xiamen University, Xiamen, FJ, China – sequence: 8 givenname: Qingqi orcidid: 0000-0002-9996-6870 surname: Hong fullname: Hong, Qingqi email: hongqq@gmail.com organization: School of Informatics, Xiamen University, Xiamen, FJ, China – sequence: 9 givenname: E. Y. K. orcidid: 0000-0002-5701-1080 surname: Ng fullname: Ng, E. Y. K. email: mykng@ntu.edu.sg organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore – sequence: 10 givenname: Yonghong orcidid: 0000-0002-5508-1819 surname: Peng fullname: Peng, Yonghong email: yonghong.peng@sunderland.ac.uk organization: Faculty of Computer Science, University of Sunderland, Sunderland, U.K – sequence: 11 givenname: Fei surname: Chen fullname: Chen, Fei email: riverapt@126.com organization: Department of Cardiology, Shanghai Tongji Hospital, Tongji University, Shanghai, SH, China – sequence: 12 givenname: Guokai orcidid: 0000-0002-0952-8325 surname: Zhang fullname: Zhang, Guokai email: zhangguokai_01@163.com organization: School of Software Engineering, Tongji University, Shanghai, SH, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32078556$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtv1DAUhS1URB_wAxASssSmmwx-xvZyJrRQaUoXHdhansw1pCTx1HaE-Pc4mimLLljdq6vvHF2dc45OxjACQm8pWVBKzMdNs1otGGFkwYziRtEX6IxKqSpjanEy70JW0tT8FJ2n9EAIE4aIV-iUM6K0lPUZGpf4E8Ae38OPAcbschdG_BXy7xB_4eDx7dTnrrpvXQ_4GlyeYplTmqmVS7DDZVnmXKTz6Rban27s0oB9iPjm-12zweupGOMmjDlM8TV66V2f4M1xXqBv11eb5ku1vvt80yzXVcuFyZXyTFJnnPQcqJP1VirnDCMCnN5xZ7zaKu299LDllGglaqc1AykF2znhDL9AlwfffQyPE6Rshy610PduhDAly3jNKJXcsIJ-eIY-lEfH8p1lQtfSGEFmw_dHatoOsLP72A0u_rFPSRZAHYA2hpQieNt2hzhzdF1vKbFzZ3buzM6d2WNnRUmfKZ_M_6d5d9B0APCP18YYqTX_C7B2oA4 |
| CODEN | ITCBCY |
| CitedBy_id | crossref_primary_10_1109_JBHI_2023_3288757 crossref_primary_10_1155_2020_7902072 crossref_primary_10_1109_ACCESS_2022_3232561 crossref_primary_10_1080_00207721_2021_2005178 crossref_primary_10_1007_s40747_021_00589_2 crossref_primary_10_1109_TMI_2022_3202910 crossref_primary_10_1007_s13239_022_00636_0 crossref_primary_10_1155_2021_7800144 crossref_primary_10_1007_s10489_023_05088_0 crossref_primary_10_1016_j_heliyon_2023_e18832 crossref_primary_10_2139_ssrn_3989551 crossref_primary_10_1016_j_inffus_2024_102582 crossref_primary_10_1109_TCBB_2020_3039834 crossref_primary_10_1109_TMI_2023_3291719 crossref_primary_10_1088_2057_1976_adb290 crossref_primary_10_3390_jcdd10120485 crossref_primary_10_1016_j_irbm_2023_100814 crossref_primary_10_1109_JBHI_2023_3276422 crossref_primary_10_1002_mp_15477 crossref_primary_10_1109_TMI_2024_3417007 crossref_primary_10_1109_JBHI_2023_3272342 crossref_primary_10_3390_electronics11132055 crossref_primary_10_1109_TMRB_2022_3194320 crossref_primary_10_1364_BOE_459623 crossref_primary_10_1007_s13246_024_01509_7 crossref_primary_10_1109_TCDS_2021_3137316 crossref_primary_10_1142_S0219519422400383 |
| Cites_doi | 10.1109/CVPR.2018.00122 10.1186/1475-925X-12-78 doi:10.1007/978-3-319-24574-4_28 10.1109/TPAMI.2016.2644615 doi:10.1109/JBHI.2015.2403713 10.1109/CVPR.2016.90 10.1016/S0893-6080(98)00116-6 10.1109/ICPR.2018.8546150 10.1007/s10554-011-9824-3 10.1016/j.media.2014.06.011 10.1109/ISBI.2011.5872481 10.1051/matecconf/201823202025 10.1109/CVPR.2017.660 10.1007/978-3-030-26766-7_22 10.1118/1.4943374 10.1109/TPAMI.2002.1017616 10.1109/ICBBE.2010.5515979 10.1109/5.726791 10.1109/FSKD.2018.8687296 10.1002/ima.22337 10.1016/j.patcog.2005.10.028 10.1016/j.ijcard.2014.01.071 10.1109/ACCESS.2018.2855060 10.1109/CVPR.2015.7298965 10.1023/A:1018628609742 10.1214/aos/1176345513 doi:10.11897/SP.J.1016.2017.01229 10.1109/CVPR.2018.00745 10.1117/12.876003 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TCBB.2020.2973971 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1557-9964 |
| EndPage | 69 |
| ExternalDocumentID | 32078556 10_1109_TCBB_2020_2973971 8999588 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 22120190211 funderid: 10.13039/501100012226 |
| GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL AEBYY AEFXT AEJOY AENEX AENSD AETIX AFRAH AFWIH AFWXC AGQYO AGSQL AHBIQ AIBXA AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNI RNS ROL RZB TN5 XOL AAYXX CITATION AAYOK ADPZR CGR CUY CVF ECM EIF NPM RIG W7O 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c349t-7f251a9a5f3e1a56b57aa9204ea8d3a9f7b78ff5feb3108746a882e5542da4a93 |
| IEDL.DBID | RIE |
| ISSN | 1545-5963 1557-9964 |
| IngestDate | Sun Sep 28 01:19:02 EDT 2025 Sun Jun 29 16:47:44 EDT 2025 Thu Apr 03 07:07:55 EDT 2025 Sat Oct 25 04:05:12 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Wed Aug 27 05:48:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-7f251a9a5f3e1a56b57aa9204ea8d3a9f7b78ff5feb3108746a882e5542da4a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9996-6870 0000-0003-2530-859X 0000-0003-4675-4767 0000-0003-3752-7749 0000-0002-2100-0259 0000-0002-6957-2942 0000-0002-5508-1819 0000-0002-1030-8311 0000-0002-0952-8325 0000-0002-5701-1080 |
| PMID | 32078556 |
| PQID | 2486599409 |
| PQPubID | 85499 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_8999588 crossref_citationtrail_10_1109_TCBB_2020_2973971 proquest_journals_2486599409 crossref_primary_10_1109_TCBB_2020_2973971 proquest_miscellaneous_2362115392 pubmed_primary_32078556 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Jan.-Feb.-1 2021-1-1 2021 Jan-Feb 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan.-Feb.-1 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
| PublicationTitleAbbrev | TCBB |
| PublicationTitleAlternate | IEEE/ACM Trans Comput Biol Bioinform |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 krizhevsky (ref19) 2012 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 sutton (ref28) 1986 |
| References_xml | – ident: ref16 doi: 10.1109/CVPR.2018.00122 – start-page: 1097 year: 2012 ident: ref19 article-title: Imagenet classification with deep convolutional neural networks publication-title: Proc Int Conf Neural Inf Process – ident: ref7 doi: 10.1186/1475-925X-12-78 – ident: ref21 doi: doi:10.1007/978-3-319-24574-4_28 – ident: ref31 doi: 10.1109/TPAMI.2016.2644615 – ident: ref10 doi: doi:10.1109/JBHI.2015.2403713 – ident: ref20 doi: 10.1109/CVPR.2016.90 – ident: ref27 doi: 10.1016/S0893-6080(98)00116-6 – ident: ref3 doi: 10.1109/ICPR.2018.8546150 – ident: ref6 doi: 10.1007/s10554-011-9824-3 – ident: ref8 doi: 10.1016/j.media.2014.06.011 – ident: ref4 doi: 10.1109/ISBI.2011.5872481 – ident: ref25 doi: 10.1051/matecconf/201823202025 – ident: ref22 doi: 10.1109/CVPR.2017.660 – ident: ref2 doi: 10.1007/978-3-030-26766-7_22 – ident: ref11 doi: 10.1118/1.4943374 – ident: ref13 doi: 10.1109/TPAMI.2002.1017616 – ident: ref1 doi: 10.1109/ICBBE.2010.5515979 – ident: ref18 doi: 10.1109/5.726791 – ident: ref29 doi: 10.1109/FSKD.2018.8687296 – ident: ref23 doi: 10.1002/ima.22337 – ident: ref12 doi: 10.1016/j.patcog.2005.10.028 – ident: ref9 doi: 10.1016/j.ijcard.2014.01.071 – ident: ref30 doi: 10.1109/ACCESS.2018.2855060 – start-page: 823 year: 1986 ident: ref28 article-title: Two problems with back propagation and other steepest descent learning procedures for networks publication-title: Proc 8th Annu Conf Cognitive Sci Soc – ident: ref26 doi: 10.1109/CVPR.2015.7298965 – ident: ref14 doi: 10.1023/A:1018628609742 – ident: ref15 doi: 10.1214/aos/1176345513 – ident: ref17 doi: doi:10.11897/SP.J.1016.2017.01229 – ident: ref24 doi: 10.1109/CVPR.2018.00745 – ident: ref5 doi: 10.1117/12.876003 |
| SSID | ssj0024904 |
| Score | 2.4243672 |
| Snippet | Recently, coronary heart disease has attracted more and more attention, where segmentation and analysis for vascular lumen contour are helpful for treatment.... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 62 |
| SubjectTerms | attention mechanism Blood Vessels - diagnostic imaging Cardiovascular disease Cardiovascular diseases contour segmentation Contours Convolution Coronary artery disease Data mining Databases, Factual Deep Learning Diagnostic systems Electronic mail Endovascular Procedures - methods Entropy Feature extraction Heart Heart diseases Humans Image Processing, Computer-Assisted - methods Image segmentation IVOCT images Medical imaging Neural Networks, Computer Residual network Tomography, Optical Coherence - methods Training Working conditions |
| Title | A Deep Segmentation Network of Multi-Scale Feature Fusion Based on Attention Mechanism for IVOCT Lumen Contour |
| URI | https://ieeexplore.ieee.org/document/8999588 https://www.ncbi.nlm.nih.gov/pubmed/32078556 https://www.proquest.com/docview/2486599409 https://www.proquest.com/docview/2362115392 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024904 issn: 1545-5963 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZC48CqPQEFG4oTwNg87jo-7C1VBbDl0i3qLnGSMEDRbtckBfj0zTjYgBIhTLMVJHM0k8814Zj6AF7VDoxq00qe1kwq9kbZpEukwJXXRmKfI8Y7VSX58pt6d6_MdeDXVwiBiSD7DGQ_DXn6zqXsOlR2Sb2B1UezCrinyoVbrZ189G6gCGRFITVo17mAmsT1cLxcL8gTTeMZETdYwO0yWkm3UTFv9izkK_Cp_h5rB5BzdhtV2sUOmyZdZ31Wz-vtvfRz_923uwK0Re4r5oCx3YQfbe3BjYKP8tg_tXLxGvBSn-OlirEhqxcmQJi42XoRaXXlKQkXByLG_omPP0TaxIFvYCBrMu27InxQr5Jriz9cXgmCxePvxw3It3vOSBDfEoqXch7OjN-vlsRzpGGSdKdtJ4wkLOeu0zzBxOq-0cc6msUJXNJmz3lSm8F578s-TuDAqdwTfkfBK2jjlbPYA9tpNi49AKE-2WTOPHP0OCuuLLE8wbxAd-cVVrSKIt1Ip67FXOVNmfC2DzxLbkmVaskzLUaYRvJwuuRwadfxr8j7LY5o4iiKCg63oy_FTvi5JZ3NtLfnBETyfTtNHyDsrrsVNT3MIBhC0JqwZwcNBZaZ7bzXt8Z-f-QRuppwmE6I6B7DXXfX4lHBOVz0LCv4Dx7L2XQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb5RAEJ7UGqMvVq1VbNU18cm4V37sAvt4d9pc9e586NX0jSwwa4yWa1p40L_eGeCwMdX4xCYssGQG5pvZmfkAXhcWE1WikS4srFToEmnKMpAWQ1IXjXGIHO9YLOPZqfpwps-24O1QC4OIbfIZjnjY7uWX66LhUNkh-QZGp-ktuK2VUrqr1vrdWc-0ZIGMCaQmver3MAPfHK6mkwn5gqE_YqomkzA_TBSSddRMXH3NILUMK38Hm63ROdqBxWa5Xa7Jt1FT56Pi5x-dHP_3fR7A_R59inGnLg9hC6tHcKfjo_yxC9VYvEO8ECf45byvSarEsksUF2sn2mpdeUJiRcHYsbmkY8PxNjEha1gKGozrusugFAvkquKvV-eCgLE4_vxpuhJzXpLglli0lMdwevR-NZ3JnpBBFpEytUwcoSFrrHYRBlbHuU6sNaGv0KZlZI1L8iR1Tjvy0AM_TVRsCcAjIZawtMqaaA-2q3WFT0EoR9ZZM5Mc_RBS49IoDjAuES15xnmhPPA3UsmKvls5k2Z8z1qvxTcZyzRjmWa9TD14M1xy0bXq-NfkXZbHMLEXhQcHG9Fn_cd8lZHWxtoY8oQ9eDWcps-Q91ZsheuG5hAQIHBNaNODJ53KDPfeaNqzm5_5Eu7OVot5Nj9eftyHeyEnzbQxngPYri8bfE6op85ftMr-C9Wh-ao |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Segmentation+Network+of+Multi-Scale+Feature+Fusion+Based+on+Attention+Mechanism+for+IVOCT+Lumen+Contour&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Huang%2C+Chenxi&rft.au=Lan%2C+Yisha&rft.au=Xu%2C+Gaowei&rft.au=Zhai%2C+Xiaojun&rft.date=2021-01-01&rft.issn=1545-5963&rft.eissn=1557-9964&rft.volume=18&rft.issue=1&rft.spage=62&rft.epage=69&rft_id=info:doi/10.1109%2FTCBB.2020.2973971&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCBB_2020_2973971 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |