Robust Variable Zero Attractor Controller Based ZA-LMS Algorithm for Variable Sparsity Environment

The zero attraction least mean square algorithm (ZA-LMS) provides excellent performance than LMS algorithm when the system is sparse. But when the sparsity level decreases, the performance of ZA-LMS is worse than standard LMS. Hence a novel approach is proposed to work in variable sparsity environme...

Full description

Saved in:
Bibliographic Details
Published inNational Academy science letters Vol. 41; no. 2; pp. 85 - 89
Main Authors Radhika, S., Arumugam, Sivabalan
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.04.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0250-541X
2250-1754
DOI10.1007/s40009-018-0619-0

Cover

Abstract The zero attraction least mean square algorithm (ZA-LMS) provides excellent performance than LMS algorithm when the system is sparse. But when the sparsity level decreases, the performance of ZA-LMS is worse than standard LMS. Hence a novel approach is proposed to work in variable sparsity environment, i.e. the fixed zero attractor controller is replaced by a variable one and the variation is done by comparing the instantaneous error with a threshold which is based on steady state mean square error (MSE) of standard LMS algorithm. Simulations were performed to compare the proposed variable ZA-LMS (VZA-LMS) algorithm with LMS and ZA-LMS algorithms. The proposed algorithm is tested for non sparse, semi sparse and sparse systems and it is found that it converges to a steady state value equal to LMS when the system is non sparse and in case of sparse and semi sparse systems, the steady state MSE is less than LMS and ZA-LMS, thus making the algorithm robust against variable sparsity conditions.
AbstractList The zero attraction least mean square algorithm (ZA-LMS) provides excellent performance than LMS algorithm when the system is sparse. But when the sparsity level decreases, the performance of ZA-LMS is worse than standard LMS. Hence a novel approach is proposed to work in variable sparsity environment, i.e. the fixed zero attractor controller is replaced by a variable one and the variation is done by comparing the instantaneous error with a threshold which is based on steady state mean square error (MSE) of standard LMS algorithm. Simulations were performed to compare the proposed variable ZA-LMS (VZA-LMS) algorithm with LMS and ZA-LMS algorithms. The proposed algorithm is tested for non sparse, semi sparse and sparse systems and it is found that it converges to a steady state value equal to LMS when the system is non sparse and in case of sparse and semi sparse systems, the steady state MSE is less than LMS and ZA-LMS, thus making the algorithm robust against variable sparsity conditions.
Author Radhika, S.
Arumugam, Sivabalan
Author_xml – sequence: 1
  givenname: S.
  surname: Radhika
  fullname: Radhika, S.
  email: radhikachandru79@gmail.com
  organization: Faculty of Electrical and Electronics Engineering, Sathyabama University
– sequence: 2
  givenname: Sivabalan
  surname: Arumugam
  fullname: Arumugam, Sivabalan
  organization: NEC Mobile Networks Excellence Centre
BookMark eNp9kE1LxDAQhoMouK7-AG8BL16qk7Rp2uO6-AUrgl-Il5B2pxrpJmuSFfz3pqwoCHqa9_A8mcm7Qzats0jIPoMjBiCPQwEAdQasyqBkKWyQEecCMiZFsUlGMGRRsMdtshfCa4JBlEIwPiLNjWtWIdIH7Y1ueqRP6B2dxOh1G52nU2ejd32Pnp7ogHP6NMlmV7d00j87b-LLgnaJ-rZvl9oHEz_oqX033tkF2rhLtjrdB9z7mmNyf3Z6N73IZtfnl9PJLGvzoo6ZnNdNDrWcd_OaQyNY0WGOWHe6EFIzbNqq4wVK0WiABkvJQaePtV1KZa4xH5PD9btL795WGKJamNBi32uLbhUUZ8ByqGoGCT34hb66lbfpOsUhr2Qp82qg2JpqvQvBY6eW3iy0_1AM1FC8WhevUvFqKF4NjvzltCbqaIYaten_NfnaDGmLfUb_c9Pf0icfi5jK
CitedBy_id crossref_primary_10_1109_TAC_2020_3033712
Cites_doi 10.1109/LSP.2009.2024736
10.1109/5.387095
10.1109/89.861368
10.1109/LSP.2004.842262
10.1016/j.sigpro.2010.05.015
10.1016/0165-1684(92)90074-7
10.1109/TCSI.2013.2289407
10.1109/MWSCAS.2002.1186837
ContentType Journal Article
Copyright The National Academy of Sciences, India 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: The National Academy of Sciences, India 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1007/s40009-018-0619-0
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2250-1754
EndPage 89
ExternalDocumentID 10_1007_s40009_018_0619_0
GroupedDBID -EM
06D
0R~
203
30V
4.4
406
408
96X
AAAVM
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACPRK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYQZM
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PT4
RLLFE
ROL
RSV
SHS
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABRTQ
AFDZB
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
7S9
L.6
ID FETCH-LOGICAL-c349t-7d9b3097dfd920b514fe3ee9fa457a1ebc8f24e75ba00be6720a025cf67263ae3
IEDL.DBID AGYKE
ISSN 0250-541X
IngestDate Thu Sep 04 17:05:48 EDT 2025
Thu Sep 25 00:54:40 EDT 2025
Wed Oct 01 03:08:36 EDT 2025
Thu Apr 24 23:12:22 EDT 2025
Fri Feb 21 02:32:47 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Steady state mean square error
Zero attraction
Sparsity
Least mean square algorithm
Convergence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-7d9b3097dfd920b514fe3ee9fa457a1ebc8f24e75ba00be6720a025cf67263ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2038767380
PQPubID 2044000
PageCount 5
ParticipantIDs proquest_miscellaneous_2101308910
proquest_journals_2038767380
crossref_primary_10_1007_s40009_018_0619_0
crossref_citationtrail_10_1007_s40009_018_0619_0
springer_journals_10_1007_s40009_018_0619_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationTitle National Academy science letters
PublicationTitleAbbrev Natl. Acad. Sci. Lett
PublicationYear 2018
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Gu, Jin, Mei (CR8) 2009; 16
Duttweiler (CR5) 2000; 8
CR2
Deng, Doroslovacki (CR6) 2005; 12
CR4
Sayed (CR11) 2003
Schreiber (CR1) 1995; 83
CR7
Hansler (CR3) 1992; 27
Shi, Shi (CR9) 2010; 90
Das, Chakraborty (CR10) 2014; 61
E Hansler (619_CR3) 1992; 27
BK Das (619_CR10) 2014; 61
DL Duttweiler (619_CR5) 2000; 8
K Shi (619_CR9) 2010; 90
619_CR4
AH Sayed (619_CR11) 2003
619_CR7
W Schreiber (619_CR1) 1995; 83
Y Gu (619_CR8) 2009; 16
H Deng (619_CR6) 2005; 12
619_CR2
References_xml – volume: 16
  start-page: 774
  issue: 9
  year: 2009
  end-page: 777
  ident: CR8
  article-title: l Norm constraint LMS algorithm for sparse system identification
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2009.2024736
– volume: 83
  start-page: 958
  issue: 6
  year: 1995
  end-page: 981
  ident: CR1
  article-title: Advanced television systems for terrestrial broadcasting
  publication-title: Proc IEEE
  doi: 10.1109/5.387095
– volume: 8
  start-page: 508
  issue: 5
  year: 2000
  end-page: 518
  ident: CR5
  article-title: Proportionate normalized least mean square adaptation in echo cancellers
  publication-title: IEEE Trans Speech Audio Process
  doi: 10.1109/89.861368
– volume: 12
  start-page: 181
  issue: 3
  year: 2005
  end-page: 184
  ident: CR6
  article-title: Improving convergence of the PNLMS algorithm for sparse impulse response identification
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2004.842262
– volume: 90
  start-page: 3289
  issue: 12
  year: 2010
  end-page: 3293
  ident: CR9
  article-title: Convergence analysis of sparse LMS algorithms with l -norm penalty
  publication-title: Sig Process
  doi: 10.1016/j.sigpro.2010.05.015
– year: 2003
  ident: CR11
  publication-title: Fundamentals of adaptive filtering
– ident: CR7
– ident: CR4
– ident: CR2
– volume: 27
  start-page: 259
  issue: 3
  year: 1992
  end-page: 271
  ident: CR3
  article-title: The hands-free telephone problem—an annotated bibliography
  publication-title: Sig Process
  doi: 10.1016/0165-1684(92)90074-7
– volume: 61
  start-page: 1499
  issue: 5
  year: 2014
  end-page: 1507
  ident: CR10
  article-title: Sparse adaptive filtering by an adaptive convex combination of the LMS and the ZA-LMS algorithms
  publication-title: IEEE Trans Circuits Syst I Regul Pap
  doi: 10.1109/TCSI.2013.2289407
– volume: 8
  start-page: 508
  issue: 5
  year: 2000
  ident: 619_CR5
  publication-title: IEEE Trans Speech Audio Process
  doi: 10.1109/89.861368
– volume-title: Fundamentals of adaptive filtering
  year: 2003
  ident: 619_CR11
– volume: 16
  start-page: 774
  issue: 9
  year: 2009
  ident: 619_CR8
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2009.2024736
– volume: 12
  start-page: 181
  issue: 3
  year: 2005
  ident: 619_CR6
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2004.842262
– volume: 27
  start-page: 259
  issue: 3
  year: 1992
  ident: 619_CR3
  publication-title: Sig Process
  doi: 10.1016/0165-1684(92)90074-7
– volume: 90
  start-page: 3289
  issue: 12
  year: 2010
  ident: 619_CR9
  publication-title: Sig Process
  doi: 10.1016/j.sigpro.2010.05.015
– ident: 619_CR2
  doi: 10.1109/MWSCAS.2002.1186837
– volume: 61
  start-page: 1499
  issue: 5
  year: 2014
  ident: 619_CR10
  publication-title: IEEE Trans Circuits Syst I Regul Pap
  doi: 10.1109/TCSI.2013.2289407
– volume: 83
  start-page: 958
  issue: 6
  year: 1995
  ident: 619_CR1
  publication-title: Proc IEEE
  doi: 10.1109/5.387095
– ident: 619_CR4
– ident: 619_CR7
SSID ssj0000565512
Score 2.0690243
Snippet The zero attraction least mean square algorithm (ZA-LMS) provides excellent performance than LMS algorithm when the system is sparse. But when the sparsity...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 85
SubjectTerms Algorithms
Computer simulation
History of Science
Humanities and Social Sciences
least squares
multidisciplinary
Robust control
Science
Science (multidisciplinary)
Short Communication
simulation models
Sparsity
Steady state
Title Robust Variable Zero Attractor Controller Based ZA-LMS Algorithm for Variable Sparsity Environment
URI https://link.springer.com/article/10.1007/s40009-018-0619-0
https://www.proquest.com/docview/2038767380
https://www.proquest.com/docview/2101308910
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2250-1754
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000565512
  issn: 0250-541X
  databaseCode: AGYKE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9sKFUgpioUVG4lBArpzESdbHtOpDLe2hD7T0EtnxpCC2myqbvfTXd-xNNqKiSL1Z8iOJx8589jcPgM-oTKKMDHmAynIZSORaKsELkaKJQ6Gtl_TJaXJ4KY_G8bj145511u4dJen_1EtnNyn8RX4wctkIqPAcVny4rQGsZAc_j_urFdLphAM8f0AKnscyGHd85r_G-Vsj9TDzATPqFc7-Klx0r7qwM_mzPW_MdnH3IIrjE7_lFbxsASjLFitmDZ7h9DWstVt8xrbaONRf1sGcVWY-a9gPOk47Byt2hXXFsqapfY4etruwcp9gzXZIF1p2lfHvJ-csm1xX9e_m1w0jQNz3Pr_V3gCE7fW-dW_gcn_vYveQtykZeBFJ1fDUKhMJldrSqlAYQlslRoiq1DJOdYCmGJWhxDQ2WgiDSUrSJiEUJZWSSGP0FgbTaorvgKlICJsgQcDCyKQINUHD0KY0qKXOGA1BdGLJizZeuUubMcmXkZb9LOY0i7mbxVwM4euyy-0iWMf_Gm90ss7bfTvLQ8fmu0SoVP1pWU07ztEoeorVnNoEju0dEc4awrdOvP0Qjz7w_ZNaf4AXoV8fzkhoAwZNPcdNwj-N-diu93sVRvnT
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-C7gAXYHxohQFG4sCHMjmOk9THMG0U1u7AOlR2iez4BRClmdL0wl_Ps5s0YgKk3Sz5I4mfnfezf-8D4CUqkygjRRCisoEMJQZaKh4UPEUTC66tl_T0NBmfy4_zeN76ca86a_eOkvR_6q2zm-T-Ij8cuWwEVLgJO5LOJ2IAO9n7Lyf91QrpdMIBnj8gBR_EMpx3fObfxvlTI_Uw8woz6hXO8V2Yda-6sTP5cbBuzEHx60oUx2t-yz240wJQlm1WzC7cwOV92G23-Iq9auNQv34A5lNl1quGfabjtHOwYhdYVyxrmtrn6GGHGyv3BdbsHelCyy6yYDI9Y9nia1V_b779ZASI-95nl9obgLCj3rfuIZwfH80Ox0GbkiEoIqmaILXKRFyltrRKcENoq8QIUZVaxqkO0RSjUkhMY6M5N5ikJG0SQlFSKYk0Ro9gsKyWuAdMRZzbBAkCFkYmhdAEDYVNaVBLnTEaAu_EkhdtvHKXNmORbyMt-1nMaRZzN4s5H8KbbZfLTbCO_zXe72Sdt_t2lQvH5rtEqFT9YltNO87RKHqJ1ZrahI7tHRHOGsLbTrz9EP984ONrtX4Ot8az6SSffDg9eQK3hV8rzmBoHwZNvcanhIUa86xd-78ByiP8sg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELaglRAvPTjEtgWMxAOH3DqJk6wfQ-m20EOIUrTtS7DjSYtYklXW-9JfzzjHRq0ACfFmyUdiz4zms-ci5CVIHUktfOaBNEx4ApgSkrOMx6BDnytTU_r4JDo4Ex_H4bitczrrvN07k2QT0-CyNBV2Z2rynUXgm-D1o743dJUJsHGXLOPNJEZGX072zw_7ZxbU74gJalsCKnsWCm_c2TZ_t85N7dRDzltW0lr5jFbJt-63G5-TH9tzq7ez61sZHf9jX2tkpQWmNGk4aZ3cgeIBWW9Ff0ZftfmpXz8k-nOp5zNLv-I12wVe0QuoSppYW9W1e-hu4_0-gYq-Qx1p6EXCjo5PaTK5LKvv9uonRaDczz6dqtoxhO71MXePyNlo78vuAWtLNbAsENKy2EgdcBmb3Eifa0RhOQQAMlcijJUHOhvmvoA41IpzDVGMXIAEyXJsRYGC4DFZKsoCnhAqA85NBAgNMy2izFcIGX0T46IGJ0MwILwjUZq1ecxdOY1JusjAXJ9iiqeYulNM-YC8WUyZNkk8_jZ4q6N72srzLPWdld8VSMXuF4tulERnXlEFlHMc4zkr8BDx14C87UjdL_HHD2780-jn5N6n96P06MPJ4Sa579es4vyItsiSrebwFCGS1c9aMfgFKL8FpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Variable+Zero+Attractor+Controller+Based+ZA-LMS+Algorithm+for+Variable+Sparsity+Environment&rft.jtitle=National+Academy+science+letters&rft.au=Radhika%2C+S.&rft.au=Arumugam%2C+Sivabalan&rft.date=2018-04-01&rft.issn=0250-541X&rft.eissn=2250-1754&rft.volume=41&rft.issue=2&rft.spage=85&rft.epage=89&rft_id=info:doi/10.1007%2Fs40009-018-0619-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40009_018_0619_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0250-541X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0250-541X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0250-541X&client=summon