Automated Quantification of Hyperreflective Foci in SD-OCT With Diabetic Retinopathy

The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and anatomical outcome in various retinal diseases. However, lack of efficient quantitative tools for evaluating the HFs has deprived ophthalmologist...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 24; no. 4; pp. 1125 - 1136
Main Authors Okuwobi, Idowu Paul, Ji, Zexuan, Fan, Wen, Yuan, Songtao, Bekalo, Loza, Chen, Qiang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2019.2929842

Cover

Abstract The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and anatomical outcome in various retinal diseases. However, lack of efficient quantitative tools for evaluating the HFs has deprived ophthalmologist of assessing the volume of HFs. For this reason, we propose an automated quantification algorithm to segment and quantify HFs in spectral domain optical coherence tomography (SD-OCT). The proposed algorithm consists of two parallel processes namely: region of interest (ROI) generation and HFs estimation. To generate the ROI, we use morphological reconstruction to obtain the reconstructed image and histogram constructed for data distributions and clustering. In parallel, we estimate the HFs by extracting the extremal regions from the connected regions obtained from a component tree. Finally, both the ROI and the HFs estimation process are merged to obtain the segmented HFs. The proposed algorithm was tested on 40 3D SD-OCT volumes from 40 patients diagnosed with non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and diabetic macular edema (DME). The average dice similarity coefficient (DSC) and correlation coefficient ( r ) are 69.70%, 0.99 for NPDR, 70.31%, 0.99 for PDR, and 71.30%, 0.99 for DME, respectively. The proposed algorithm can provide ophthalmologist with good HFs quantitative information, such as volume, size, and location of the HFs.
AbstractList The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and anatomical outcome in various retinal diseases. However, lack of efficient quantitative tools for evaluating the HFs has deprived ophthalmologist of assessing the volume of HFs. For this reason, we propose an automated quantification algorithm to segment and quantify HFs in spectral domain optical coherence tomography (SD-OCT). The proposed algorithm consists of two parallel processes namely: region of interest (ROI) generation and HFs estimation. To generate the ROI, we use morphological reconstruction to obtain the reconstructed image and histogram constructed for data distributions and clustering. In parallel, we estimate the HFs by extracting the extremal regions from the connected regions obtained from a component tree. Finally, both the ROI and the HFs estimation process are merged to obtain the segmented HFs. The proposed algorithm was tested on 40 3D SD-OCT volumes from 40 patients diagnosed with non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and diabetic macular edema (DME). The average dice similarity coefficient (DSC) and correlation coefficient ( r ) are 69.70%, 0.99 for NPDR, 70.31%, 0.99 for PDR, and 71.30%, 0.99 for DME, respectively. The proposed algorithm can provide ophthalmologist with good HFs quantitative information, such as volume, size, and location of the HFs.
The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and anatomical outcome in various retinal diseases. However, lack of efficient quantitative tools for evaluating the HFs has deprived ophthalmologist of assessing the volume of HFs. For this reason, we propose an automated quantification algorithm to segment and quantify HFs in spectral domain optical coherence tomography (SD-OCT). The proposed algorithm consists of two parallel processes namely: region of interest (ROI) generation and HFs estimation. To generate the ROI, we use morphological reconstruction to obtain the reconstructed image and histogram constructed for data distributions and clustering. In parallel, we estimate the HFs by extracting the extremal regions from the connected regions obtained from a component tree. Finally, both the ROI and the HFs estimation process are merged to obtain the segmented HFs. The proposed algorithm was tested on 40 3D SD-OCT volumes from 40 patients diagnosed with non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and diabetic macular edema (DME). The average dice similarity coefficient (DSC) and correlation coefficient (r) are 69.70%, 0.99 for NPDR, 70.31%, 0.99 for PDR, and 71.30%, 0.99 for DME, respectively. The proposed algorithm can provide ophthalmologist with good HFs quantitative information, such as volume, size, and location of the HFs.The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and anatomical outcome in various retinal diseases. However, lack of efficient quantitative tools for evaluating the HFs has deprived ophthalmologist of assessing the volume of HFs. For this reason, we propose an automated quantification algorithm to segment and quantify HFs in spectral domain optical coherence tomography (SD-OCT). The proposed algorithm consists of two parallel processes namely: region of interest (ROI) generation and HFs estimation. To generate the ROI, we use morphological reconstruction to obtain the reconstructed image and histogram constructed for data distributions and clustering. In parallel, we estimate the HFs by extracting the extremal regions from the connected regions obtained from a component tree. Finally, both the ROI and the HFs estimation process are merged to obtain the segmented HFs. The proposed algorithm was tested on 40 3D SD-OCT volumes from 40 patients diagnosed with non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and diabetic macular edema (DME). The average dice similarity coefficient (DSC) and correlation coefficient (r) are 69.70%, 0.99 for NPDR, 70.31%, 0.99 for PDR, and 71.30%, 0.99 for DME, respectively. The proposed algorithm can provide ophthalmologist with good HFs quantitative information, such as volume, size, and location of the HFs.
Author Yuan, Songtao
Okuwobi, Idowu Paul
Ji, Zexuan
Bekalo, Loza
Chen, Qiang
Fan, Wen
Author_xml – sequence: 1
  givenname: Idowu Paul
  orcidid: 0000-0002-4752-8254
  surname: Okuwobi
  fullname: Okuwobi, Idowu Paul
  email: paulokuwobi@hotmail.com
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Zexuan
  orcidid: 0000-0003-1665-0270
  surname: Ji
  fullname: Ji, Zexuan
  email: jizexuan@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 3
  givenname: Wen
  orcidid: 0000-0001-5224-6895
  surname: Fan
  fullname: Fan, Wen
  email: fanwen1029@163.com
  organization: Department of Ophthalmology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
– sequence: 4
  givenname: Songtao
  orcidid: 0000-0001-9212-0664
  surname: Yuan
  fullname: Yuan, Songtao
  email: yuansongtao@vip.sina.com
  organization: Department of Ophthalmology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
– sequence: 5
  givenname: Loza
  orcidid: 0000-0001-5064-2608
  surname: Bekalo
  fullname: Bekalo, Loza
  email: elimloza@yahoo.com
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 6
  givenname: Qiang
  orcidid: 0000-0002-6685-2447
  surname: Chen
  fullname: Chen, Qiang
  email: chen2qiang@ njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31329137$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLAzEUhYMovn-ACBJw42ZqHtM8ltqqVQRRKy5DJnMHI9NJnckI_femtrpwYRZ58Z2bm3P20GYTGkDoiJIBpUSf311ObgeMUD1gmmmVsw20y6hQGWNEbf7sqc530GHXvZM0VLrSYhvtcMqZplzuoulFH8PMRijxY2-b6CvvbPShwaHCk8Uc2haqGlz0n4Cvg_PYN_h5nD2MpvjVxzc89raA6B1-SnMT5ja-LQ7QVmXrDg7X6z56ub6ajibZ_cPN7ejiPnM81zGTigy5YkUlhkRIrStd5ITLQlTDIdB0ZqUTpaY5BQvpO1VRSpBKlypJqNV8H52t6s7b8NFDF83Mdw7q2jYQ-s4wJqiWuRIioad_0PfQt03qzjCuJJFLdxJ1sqb6Ygalmbd-ZtuF-fErAXQFuDZ0XbLmF6HELGMxy1jMMhazjiVp5B-N8_Hb49haX_-rPF4pPQD8vqSkEKlX_gX6Opd0
CODEN IJBHA9
CitedBy_id crossref_primary_10_1007_s40747_022_00941_0
crossref_primary_10_1007_s10278_023_00786_0
crossref_primary_10_1167_tvst_9_3_19
crossref_primary_10_1364_BOE_419809
crossref_primary_10_1364_BOE_480564
crossref_primary_10_1016_j_compbiomed_2022_106277
crossref_primary_10_1109_JBHI_2021_3079430
crossref_primary_10_1109_JBHI_2020_3041848
crossref_primary_10_3390_diagnostics14010076
crossref_primary_10_1364_BOE_449796
crossref_primary_10_3389_fmed_2021_688986
crossref_primary_10_1007_s10792_025_03439_z
crossref_primary_10_1109_TBME_2021_3115552
crossref_primary_10_1364_BOE_467623
crossref_primary_10_1016_j_optlaseng_2023_107872
crossref_primary_10_1364_BOE_485999
crossref_primary_10_1111_aos_14514
crossref_primary_10_3389_fmed_2023_1280714
crossref_primary_10_1038_s41598_025_87290_3
crossref_primary_10_3233_JIFS_220066
crossref_primary_10_1038_s41598_023_35713_4
crossref_primary_10_1088_2631_8695_adb011
crossref_primary_10_1007_s11517_022_02538_8
crossref_primary_10_1016_j_cmpb_2023_107632
crossref_primary_10_1371_journal_pone_0304146
crossref_primary_10_3390_jpm11111161
crossref_primary_10_1111_ene_70038
crossref_primary_10_1186_s12886_022_02315_z
crossref_primary_10_1186_s40662_024_00389_y
crossref_primary_10_1002_mp_15848
crossref_primary_10_17116_oftalma2021137052314
crossref_primary_10_1097_APO_0000000000000583
crossref_primary_10_1016_j_medntd_2023_100234
Cites_doi 10.1038/s41467-018-04770-z
10.1109/TIP.2011.2170702
10.1109/91.413225
10.1109/TIP.2014.2336551
10.1016/j.ajo.2011.08.041
10.1016/j.cmpb.2013.05.019
10.1016/j.ophtha.2008.12.039
10.1016/j.ophtha.2012.10.018
10.1016/j.ophtha.2017.06.032
10.1016/j.jcm.2016.02.012
10.1097/IAE.0000000000001070
10.1016/j.psychres.2018.03.011
10.1109/TPAMI.2007.1176
10.1109/EMBC.2017.8037119
10.1117/1.JMI.5.1.014002
10.1109/TSMCB.2004.831165
10.1167/iovs.12-9950
10.1155/2013/491835
10.1016/j.msard.2018.03.007
10.1007/978-1-4757-0450-1
10.1016/j.visres.2017.07.006
10.1007/s11892-017-0928-6
10.1007/s10384-018-0570-0
10.1007/978-3-319-93000-8_80
10.2307/2533093
10.1016/j.exer.2010.10.009
10.1109/TIP.2016.2548363
10.1109/TPAMI.2016.2572683
10.1001/jamaophthalmol.2015.3949
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2019.2929842
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 1136
ExternalDocumentID 31329137
10_1109_JBHI_2019_2929842
8766813
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61671242; 61701222
  funderid: 10.13039/501100001809
– fundername: Suzhou Industrial Innovation Project
  grantid: SS201759
– fundername: Jiangsu Science and Technology Department
  grantid: BE2018131
  funderid: 10.13039/501100008868
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
6IL
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c349t-7805382bf6506799f9b4037b6f55e199f2dc6d9141eae216fbd7e789d8bf61a93
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Sat Sep 27 18:27:33 EDT 2025
Mon Jun 30 04:00:16 EDT 2025
Thu Jan 02 22:55:48 EST 2025
Wed Oct 01 03:39:57 EDT 2025
Thu Apr 24 23:12:14 EDT 2025
Wed Aug 27 02:35:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-7805382bf6506799f9b4037b6f55e199f2dc6d9141eae216fbd7e789d8bf61a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9212-0664
0000-0002-4752-8254
0000-0003-1665-0270
0000-0001-5224-6895
0000-0002-6685-2447
0000-0001-5064-2608
PMID 31329137
PQID 2387070081
PQPubID 85417
PageCount 12
ParticipantIDs ieee_primary_8766813
pubmed_primary_31329137
proquest_miscellaneous_2261974866
proquest_journals_2387070081
crossref_primary_10_1109_JBHI_2019_2929842
crossref_citationtrail_10_1109_JBHI_2019_2929842
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref2
ref1
coscas (ref10) 2008; 31
ref17
ref16
ref19
ref18
ref24
ref23
ref26
cormen (ref27) 2009
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref19
  doi: 10.1038/s41467-018-04770-z
– ident: ref26
  doi: 10.1109/TIP.2011.2170702
– ident: ref23
  doi: 10.1109/91.413225
– ident: ref28
  doi: 10.1109/TIP.2014.2336551
– ident: ref8
  doi: 10.1016/j.ajo.2011.08.041
– ident: ref24
  doi: 10.1016/j.cmpb.2013.05.019
– ident: ref9
  doi: 10.1016/j.ophtha.2008.12.039
– ident: ref11
  doi: 10.1016/j.ophtha.2012.10.018
– ident: ref12
  doi: 10.1016/j.ophtha.2017.06.032
– start-page: 168
  year: 2009
  ident: ref27
  publication-title: Introduction to Algorithms
– ident: ref29
  doi: 10.1016/j.jcm.2016.02.012
– volume: 31
  start-page: 353
  year: 2008
  ident: ref10
  article-title: Spectral domain OCT in age-related macular degeneration: Preliminary results with spectralis HRA-OCT
  publication-title: Ophtalmology
– ident: ref13
  doi: 10.1097/IAE.0000000000001070
– ident: ref1
  doi: 10.1016/j.psychres.2018.03.011
– ident: ref21
  doi: 10.1109/TPAMI.2007.1176
– ident: ref14
  doi: 10.1109/EMBC.2017.8037119
– ident: ref15
  doi: 10.1117/1.JMI.5.1.014002
– ident: ref25
  doi: 10.1109/TSMCB.2004.831165
– ident: ref7
  doi: 10.1167/iovs.12-9950
– ident: ref4
  doi: 10.1155/2013/491835
– ident: ref2
  doi: 10.1016/j.msard.2018.03.007
– ident: ref22
  doi: 10.1007/978-1-4757-0450-1
– ident: ref3
  doi: 10.1016/j.visres.2017.07.006
– ident: ref6
  doi: 10.1007/s11892-017-0928-6
– ident: ref5
  doi: 10.1007/s10384-018-0570-0
– ident: ref16
  doi: 10.1007/978-3-319-93000-8_80
– ident: ref31
  doi: 10.2307/2533093
– ident: ref18
  doi: 10.1016/j.exer.2010.10.009
– ident: ref20
  doi: 10.1109/TIP.2016.2548363
– ident: ref30
  doi: 10.1109/TPAMI.2016.2572683
– ident: ref17
  doi: 10.1001/jamaophthalmol.2015.3949
SSID ssj0000816896
Score 2.4585226
Snippet The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1125
SubjectTerms Algorithms
Automation
Clustering
Clustering algorithms
Correlation coefficient
Correlation coefficients
Databases, Factual
Diabetes
Diabetes mellitus
Diabetic retinopathy
Diabetic Retinopathy - diagnostic imaging
Edema
Hafnium
Histograms
Humans
Hyperreflective foci segmentation
Image Interpretation, Computer-Assisted - methods
Image reconstruction
Image segmentation
Macular Edema - diagnostic imaging
morphological reconstruction
Optical Coherence Tomography
Retina
Retinopathy
spectral domain optical coherence
Tomography, Optical Coherence - methods
Visual aspects
Title Automated Quantification of Hyperreflective Foci in SD-OCT With Diabetic Retinopathy
URI https://ieeexplore.ieee.org/document/8766813
https://www.ncbi.nlm.nih.gov/pubmed/31329137
https://www.proquest.com/docview/2387070081
https://www.proquest.com/docview/2261974866
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcFR6QL1QoLSkLMhIPaFmGydOHB-XwmqptFTAVvQW2bGjrqiSqk0O8PXMONlIRQVxS5Rx4szDnvG8AI5EqpXLlQlLm5pQIEyojSYnr3HcJpabhJKTl5-zxYU4u0wvt-B4zIVxzvngMzelS-_Lt03Z0VHZCUpullOL2kcyz_pcrfE8xTeQ8O24YrwIURDF4MTkkTo5e7_4RHFcahqjPpCL-N425Puq_F3F9FvNfBeWm0n2ESY_pl1rpuWvP-o3_u9fPIUng87JZj2TPIMtVz-Hx8vBq74Hq1nXNqi5Osu-dLqPHvIEY03FFmio3uL8r_uVkc2Rmmxds28fwvPTFfu-bq9YH1azLtlXSqBuqMvxzxdwMf-4Ol2EQ7eFsEyEakNqbpDksalQZ8ukUpUyIkqkyao0dRzvY1tmVnHBnXaI48pY6WSubI5DuFbJPmzXTe1eAlMmkrHGtUFqIayR2qEOb1OOpo20lZYBRBvkF-VQipw6YlwX3iSJVEH0KohexUCvAN6NQ276Ohz_At4jtI-AA8YDmGwoXAySelegyiJx2UP2CeDt-BhljBwnunZNhzBkZkqRZ1kABz1njO-m0peKJ_Lw4W--gp2YLHQf6zOB7fa2c69RjWnNG8-_vwHtiuxL
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db5Uw9GSZifoyP6YOnVoTn4zcUSiUPs7pDZu7M-pd3BtpaYk3W2CZ8LD9es8pXBKNGt8gnEI5H-05PV8Ar0WqlcuVCSubmlAgTKiNJievcdwmlpuEkpMXJ1lxKo7O0rMNeDvlwjjnfPCZm9Gl9-XbturpqGwPJTfLqUXtrVQIkQ7ZWtOJim8h4RtyxXgRoiiK0Y3JI7V39K44pEguNYtRI8hF_MtG5Dur_F3J9JvN_B4s1tMcYkzOZ31nZtXNbxUc__c_7sPWqHWy_YFNHsCGax7C7cXoV9-G5X7ftai7Oss-93qIH_IkY23NCjRVr3D-F8PayOZIT7Zq2Nf34aeDJfu26r6zIbBmVbEvlELdUp_j60dwOv-wPCjCsd9CWCVCdSG1N0jy2NSotWVSqVoZESXSZHWaOo73sa0yq7jgTjvEcW2sdDJXNschXKvkMWw2beN2gCkTyVjj6iC1ENZI7VCLtylH40baWssAojXyy2osRk49MS5Kb5REqiR6lUSvcqRXAG-mIZdDJY5_AW8T2ifAEeMB7K4pXI6y-qNEpUXiwofsE8Cr6TFKGblOdOPaHmHI0JQiz7IAngycMb2bil8qnsinf_7mS7hTLBfH5fHhycdncDcme91H_uzCZnfVu-eo1HTmhefln3Ye75g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Quantification+of+Hyperreflective+Foci+in+SD-OCT+With+Diabetic+Retinopathy&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Okuwobi%2C+Idowu+Paul&rft.au=Ji%2C+Zexuan&rft.au=Fan%2C+Wen&rft.au=Yuan%2C+Songtao&rft.date=2020-04-01&rft.issn=2168-2208&rft.eissn=2168-2208&rft.volume=24&rft.issue=4&rft.spage=1125&rft_id=info:doi/10.1109%2FJBHI.2019.2929842&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon