Automated Quantification of Hyperreflective Foci in SD-OCT With Diabetic Retinopathy
The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and anatomical outcome in various retinal diseases. However, lack of efficient quantitative tools for evaluating the HFs has deprived ophthalmologist...
Saved in:
| Published in | IEEE journal of biomedical and health informatics Vol. 24; no. 4; pp. 1125 - 1136 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2194 2168-2208 2168-2208 |
| DOI | 10.1109/JBHI.2019.2929842 |
Cover
| Abstract | The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and anatomical outcome in various retinal diseases. However, lack of efficient quantitative tools for evaluating the HFs has deprived ophthalmologist of assessing the volume of HFs. For this reason, we propose an automated quantification algorithm to segment and quantify HFs in spectral domain optical coherence tomography (SD-OCT). The proposed algorithm consists of two parallel processes namely: region of interest (ROI) generation and HFs estimation. To generate the ROI, we use morphological reconstruction to obtain the reconstructed image and histogram constructed for data distributions and clustering. In parallel, we estimate the HFs by extracting the extremal regions from the connected regions obtained from a component tree. Finally, both the ROI and the HFs estimation process are merged to obtain the segmented HFs. The proposed algorithm was tested on 40 3D SD-OCT volumes from 40 patients diagnosed with non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and diabetic macular edema (DME). The average dice similarity coefficient (DSC) and correlation coefficient ( r ) are 69.70%, 0.99 for NPDR, 70.31%, 0.99 for PDR, and 71.30%, 0.99 for DME, respectively. The proposed algorithm can provide ophthalmologist with good HFs quantitative information, such as volume, size, and location of the HFs. |
|---|---|
| AbstractList | The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and anatomical outcome in various retinal diseases. However, lack of efficient quantitative tools for evaluating the HFs has deprived ophthalmologist of assessing the volume of HFs. For this reason, we propose an automated quantification algorithm to segment and quantify HFs in spectral domain optical coherence tomography (SD-OCT). The proposed algorithm consists of two parallel processes namely: region of interest (ROI) generation and HFs estimation. To generate the ROI, we use morphological reconstruction to obtain the reconstructed image and histogram constructed for data distributions and clustering. In parallel, we estimate the HFs by extracting the extremal regions from the connected regions obtained from a component tree. Finally, both the ROI and the HFs estimation process are merged to obtain the segmented HFs. The proposed algorithm was tested on 40 3D SD-OCT volumes from 40 patients diagnosed with non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and diabetic macular edema (DME). The average dice similarity coefficient (DSC) and correlation coefficient ( r ) are 69.70%, 0.99 for NPDR, 70.31%, 0.99 for PDR, and 71.30%, 0.99 for DME, respectively. The proposed algorithm can provide ophthalmologist with good HFs quantitative information, such as volume, size, and location of the HFs. The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and anatomical outcome in various retinal diseases. However, lack of efficient quantitative tools for evaluating the HFs has deprived ophthalmologist of assessing the volume of HFs. For this reason, we propose an automated quantification algorithm to segment and quantify HFs in spectral domain optical coherence tomography (SD-OCT). The proposed algorithm consists of two parallel processes namely: region of interest (ROI) generation and HFs estimation. To generate the ROI, we use morphological reconstruction to obtain the reconstructed image and histogram constructed for data distributions and clustering. In parallel, we estimate the HFs by extracting the extremal regions from the connected regions obtained from a component tree. Finally, both the ROI and the HFs estimation process are merged to obtain the segmented HFs. The proposed algorithm was tested on 40 3D SD-OCT volumes from 40 patients diagnosed with non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and diabetic macular edema (DME). The average dice similarity coefficient (DSC) and correlation coefficient (r) are 69.70%, 0.99 for NPDR, 70.31%, 0.99 for PDR, and 71.30%, 0.99 for DME, respectively. The proposed algorithm can provide ophthalmologist with good HFs quantitative information, such as volume, size, and location of the HFs.The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and anatomical outcome in various retinal diseases. However, lack of efficient quantitative tools for evaluating the HFs has deprived ophthalmologist of assessing the volume of HFs. For this reason, we propose an automated quantification algorithm to segment and quantify HFs in spectral domain optical coherence tomography (SD-OCT). The proposed algorithm consists of two parallel processes namely: region of interest (ROI) generation and HFs estimation. To generate the ROI, we use morphological reconstruction to obtain the reconstructed image and histogram constructed for data distributions and clustering. In parallel, we estimate the HFs by extracting the extremal regions from the connected regions obtained from a component tree. Finally, both the ROI and the HFs estimation process are merged to obtain the segmented HFs. The proposed algorithm was tested on 40 3D SD-OCT volumes from 40 patients diagnosed with non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and diabetic macular edema (DME). The average dice similarity coefficient (DSC) and correlation coefficient (r) are 69.70%, 0.99 for NPDR, 70.31%, 0.99 for PDR, and 71.30%, 0.99 for DME, respectively. The proposed algorithm can provide ophthalmologist with good HFs quantitative information, such as volume, size, and location of the HFs. |
| Author | Yuan, Songtao Okuwobi, Idowu Paul Ji, Zexuan Bekalo, Loza Chen, Qiang Fan, Wen |
| Author_xml | – sequence: 1 givenname: Idowu Paul orcidid: 0000-0002-4752-8254 surname: Okuwobi fullname: Okuwobi, Idowu Paul email: paulokuwobi@hotmail.com organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 2 givenname: Zexuan orcidid: 0000-0003-1665-0270 surname: Ji fullname: Ji, Zexuan email: jizexuan@njust.edu.cn organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 3 givenname: Wen orcidid: 0000-0001-5224-6895 surname: Fan fullname: Fan, Wen email: fanwen1029@163.com organization: Department of Ophthalmology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China – sequence: 4 givenname: Songtao orcidid: 0000-0001-9212-0664 surname: Yuan fullname: Yuan, Songtao email: yuansongtao@vip.sina.com organization: Department of Ophthalmology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China – sequence: 5 givenname: Loza orcidid: 0000-0001-5064-2608 surname: Bekalo fullname: Bekalo, Loza email: elimloza@yahoo.com organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 6 givenname: Qiang orcidid: 0000-0002-6685-2447 surname: Chen fullname: Chen, Qiang email: chen2qiang@ njust.edu.cn organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31329137$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtLAzEUhYMovn-ACBJw42ZqHtM8ltqqVQRRKy5DJnMHI9NJnckI_femtrpwYRZ58Z2bm3P20GYTGkDoiJIBpUSf311ObgeMUD1gmmmVsw20y6hQGWNEbf7sqc530GHXvZM0VLrSYhvtcMqZplzuoulFH8PMRijxY2-b6CvvbPShwaHCk8Uc2haqGlz0n4Cvg_PYN_h5nD2MpvjVxzc89raA6B1-SnMT5ja-LQ7QVmXrDg7X6z56ub6ajibZ_cPN7ejiPnM81zGTigy5YkUlhkRIrStd5ITLQlTDIdB0ZqUTpaY5BQvpO1VRSpBKlypJqNV8H52t6s7b8NFDF83Mdw7q2jYQ-s4wJqiWuRIioad_0PfQt03qzjCuJJFLdxJ1sqb6Ygalmbd-ZtuF-fErAXQFuDZ0XbLmF6HELGMxy1jMMhazjiVp5B-N8_Hb49haX_-rPF4pPQD8vqSkEKlX_gX6Opd0 |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_1007_s40747_022_00941_0 crossref_primary_10_1007_s10278_023_00786_0 crossref_primary_10_1167_tvst_9_3_19 crossref_primary_10_1364_BOE_419809 crossref_primary_10_1364_BOE_480564 crossref_primary_10_1016_j_compbiomed_2022_106277 crossref_primary_10_1109_JBHI_2021_3079430 crossref_primary_10_1109_JBHI_2020_3041848 crossref_primary_10_3390_diagnostics14010076 crossref_primary_10_1364_BOE_449796 crossref_primary_10_3389_fmed_2021_688986 crossref_primary_10_1007_s10792_025_03439_z crossref_primary_10_1109_TBME_2021_3115552 crossref_primary_10_1364_BOE_467623 crossref_primary_10_1016_j_optlaseng_2023_107872 crossref_primary_10_1364_BOE_485999 crossref_primary_10_1111_aos_14514 crossref_primary_10_3389_fmed_2023_1280714 crossref_primary_10_1038_s41598_025_87290_3 crossref_primary_10_3233_JIFS_220066 crossref_primary_10_1038_s41598_023_35713_4 crossref_primary_10_1088_2631_8695_adb011 crossref_primary_10_1007_s11517_022_02538_8 crossref_primary_10_1016_j_cmpb_2023_107632 crossref_primary_10_1371_journal_pone_0304146 crossref_primary_10_3390_jpm11111161 crossref_primary_10_1111_ene_70038 crossref_primary_10_1186_s12886_022_02315_z crossref_primary_10_1186_s40662_024_00389_y crossref_primary_10_1002_mp_15848 crossref_primary_10_17116_oftalma2021137052314 crossref_primary_10_1097_APO_0000000000000583 crossref_primary_10_1016_j_medntd_2023_100234 |
| Cites_doi | 10.1038/s41467-018-04770-z 10.1109/TIP.2011.2170702 10.1109/91.413225 10.1109/TIP.2014.2336551 10.1016/j.ajo.2011.08.041 10.1016/j.cmpb.2013.05.019 10.1016/j.ophtha.2008.12.039 10.1016/j.ophtha.2012.10.018 10.1016/j.ophtha.2017.06.032 10.1016/j.jcm.2016.02.012 10.1097/IAE.0000000000001070 10.1016/j.psychres.2018.03.011 10.1109/TPAMI.2007.1176 10.1109/EMBC.2017.8037119 10.1117/1.JMI.5.1.014002 10.1109/TSMCB.2004.831165 10.1167/iovs.12-9950 10.1155/2013/491835 10.1016/j.msard.2018.03.007 10.1007/978-1-4757-0450-1 10.1016/j.visres.2017.07.006 10.1007/s11892-017-0928-6 10.1007/s10384-018-0570-0 10.1007/978-3-319-93000-8_80 10.2307/2533093 10.1016/j.exer.2010.10.009 10.1109/TIP.2016.2548363 10.1109/TPAMI.2016.2572683 10.1001/jamaophthalmol.2015.3949 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/JBHI.2019.2929842 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-2208 |
| EndPage | 1136 |
| ExternalDocumentID | 31329137 10_1109_JBHI_2019_2929842 8766813 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61671242; 61701222 funderid: 10.13039/501100001809 – fundername: Suzhou Industrial Innovation Project grantid: SS201759 – fundername: Jiangsu Science and Technology Department grantid: BE2018131 funderid: 10.13039/501100008868 |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 6IL ADZIZ CGR CHZPO CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c349t-7805382bf6506799f9b4037b6f55e199f2dc6d9141eae216fbd7e789d8bf61a93 |
| IEDL.DBID | RIE |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Sat Sep 27 18:27:33 EDT 2025 Mon Jun 30 04:00:16 EDT 2025 Thu Jan 02 22:55:48 EST 2025 Wed Oct 01 03:39:57 EDT 2025 Thu Apr 24 23:12:14 EDT 2025 Wed Aug 27 02:35:31 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-7805382bf6506799f9b4037b6f55e199f2dc6d9141eae216fbd7e789d8bf61a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9212-0664 0000-0002-4752-8254 0000-0003-1665-0270 0000-0001-5224-6895 0000-0002-6685-2447 0000-0001-5064-2608 |
| PMID | 31329137 |
| PQID | 2387070081 |
| PQPubID | 85417 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_8766813 pubmed_primary_31329137 proquest_miscellaneous_2261974866 proquest_journals_2387070081 crossref_primary_10_1109_JBHI_2019_2929842 crossref_citationtrail_10_1109_JBHI_2019_2929842 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref2 ref1 coscas (ref10) 2008; 31 ref17 ref16 ref19 ref18 ref24 ref23 ref26 cormen (ref27) 2009 ref25 ref20 ref22 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref19 doi: 10.1038/s41467-018-04770-z – ident: ref26 doi: 10.1109/TIP.2011.2170702 – ident: ref23 doi: 10.1109/91.413225 – ident: ref28 doi: 10.1109/TIP.2014.2336551 – ident: ref8 doi: 10.1016/j.ajo.2011.08.041 – ident: ref24 doi: 10.1016/j.cmpb.2013.05.019 – ident: ref9 doi: 10.1016/j.ophtha.2008.12.039 – ident: ref11 doi: 10.1016/j.ophtha.2012.10.018 – ident: ref12 doi: 10.1016/j.ophtha.2017.06.032 – start-page: 168 year: 2009 ident: ref27 publication-title: Introduction to Algorithms – ident: ref29 doi: 10.1016/j.jcm.2016.02.012 – volume: 31 start-page: 353 year: 2008 ident: ref10 article-title: Spectral domain OCT in age-related macular degeneration: Preliminary results with spectralis HRA-OCT publication-title: Ophtalmology – ident: ref13 doi: 10.1097/IAE.0000000000001070 – ident: ref1 doi: 10.1016/j.psychres.2018.03.011 – ident: ref21 doi: 10.1109/TPAMI.2007.1176 – ident: ref14 doi: 10.1109/EMBC.2017.8037119 – ident: ref15 doi: 10.1117/1.JMI.5.1.014002 – ident: ref25 doi: 10.1109/TSMCB.2004.831165 – ident: ref7 doi: 10.1167/iovs.12-9950 – ident: ref4 doi: 10.1155/2013/491835 – ident: ref2 doi: 10.1016/j.msard.2018.03.007 – ident: ref22 doi: 10.1007/978-1-4757-0450-1 – ident: ref3 doi: 10.1016/j.visres.2017.07.006 – ident: ref6 doi: 10.1007/s11892-017-0928-6 – ident: ref5 doi: 10.1007/s10384-018-0570-0 – ident: ref16 doi: 10.1007/978-3-319-93000-8_80 – ident: ref31 doi: 10.2307/2533093 – ident: ref18 doi: 10.1016/j.exer.2010.10.009 – ident: ref20 doi: 10.1109/TIP.2016.2548363 – ident: ref30 doi: 10.1109/TPAMI.2016.2572683 – ident: ref17 doi: 10.1001/jamaophthalmol.2015.3949 |
| SSID | ssj0000816896 |
| Score | 2.4585226 |
| Snippet | The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1125 |
| SubjectTerms | Algorithms Automation Clustering Clustering algorithms Correlation coefficient Correlation coefficients Databases, Factual Diabetes Diabetes mellitus Diabetic retinopathy Diabetic Retinopathy - diagnostic imaging Edema Hafnium Histograms Humans Hyperreflective foci segmentation Image Interpretation, Computer-Assisted - methods Image reconstruction Image segmentation Macular Edema - diagnostic imaging morphological reconstruction Optical Coherence Tomography Retina Retinopathy spectral domain optical coherence Tomography, Optical Coherence - methods Visual aspects |
| Title | Automated Quantification of Hyperreflective Foci in SD-OCT With Diabetic Retinopathy |
| URI | https://ieeexplore.ieee.org/document/8766813 https://www.ncbi.nlm.nih.gov/pubmed/31329137 https://www.proquest.com/docview/2387070081 https://www.proquest.com/docview/2261974866 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcFR6QL1QoLSkLMhIPaFmGydOHB-XwmqptFTAVvQW2bGjrqiSqk0O8PXMONlIRQVxS5Rx4szDnvG8AI5EqpXLlQlLm5pQIEyojSYnr3HcJpabhJKTl5-zxYU4u0wvt-B4zIVxzvngMzelS-_Lt03Z0VHZCUpullOL2kcyz_pcrfE8xTeQ8O24YrwIURDF4MTkkTo5e7_4RHFcahqjPpCL-N425Puq_F3F9FvNfBeWm0n2ESY_pl1rpuWvP-o3_u9fPIUng87JZj2TPIMtVz-Hx8vBq74Hq1nXNqi5Osu-dLqPHvIEY03FFmio3uL8r_uVkc2Rmmxds28fwvPTFfu-bq9YH1azLtlXSqBuqMvxzxdwMf-4Ol2EQ7eFsEyEakNqbpDksalQZ8ukUpUyIkqkyao0dRzvY1tmVnHBnXaI48pY6WSubI5DuFbJPmzXTe1eAlMmkrHGtUFqIayR2qEOb1OOpo20lZYBRBvkF-VQipw6YlwX3iSJVEH0KohexUCvAN6NQ276Ohz_At4jtI-AA8YDmGwoXAySelegyiJx2UP2CeDt-BhljBwnunZNhzBkZkqRZ1kABz1njO-m0peKJ_Lw4W--gp2YLHQf6zOB7fa2c69RjWnNG8-_vwHtiuxL |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db5Uw9GSZifoyP6YOnVoTn4zcUSiUPs7pDZu7M-pd3BtpaYk3W2CZ8LD9es8pXBKNGt8gnEI5H-05PV8Ar0WqlcuVCSubmlAgTKiNJievcdwmlpuEkpMXJ1lxKo7O0rMNeDvlwjjnfPCZm9Gl9-XbturpqGwPJTfLqUXtrVQIkQ7ZWtOJim8h4RtyxXgRoiiK0Y3JI7V39K44pEguNYtRI8hF_MtG5Dur_F3J9JvN_B4s1tMcYkzOZ31nZtXNbxUc__c_7sPWqHWy_YFNHsCGax7C7cXoV9-G5X7ftai7Oss-93qIH_IkY23NCjRVr3D-F8PayOZIT7Zq2Nf34aeDJfu26r6zIbBmVbEvlELdUp_j60dwOv-wPCjCsd9CWCVCdSG1N0jy2NSotWVSqVoZESXSZHWaOo73sa0yq7jgTjvEcW2sdDJXNschXKvkMWw2beN2gCkTyVjj6iC1ENZI7VCLtylH40baWssAojXyy2osRk49MS5Kb5REqiR6lUSvcqRXAG-mIZdDJY5_AW8T2ifAEeMB7K4pXI6y-qNEpUXiwofsE8Cr6TFKGblOdOPaHmHI0JQiz7IAngycMb2bil8qnsinf_7mS7hTLBfH5fHhycdncDcme91H_uzCZnfVu-eo1HTmhefln3Ye75g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Quantification+of+Hyperreflective+Foci+in+SD-OCT+With+Diabetic+Retinopathy&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Okuwobi%2C+Idowu+Paul&rft.au=Ji%2C+Zexuan&rft.au=Fan%2C+Wen&rft.au=Yuan%2C+Songtao&rft.date=2020-04-01&rft.issn=2168-2208&rft.eissn=2168-2208&rft.volume=24&rft.issue=4&rft.spage=1125&rft_id=info:doi/10.1109%2FJBHI.2019.2929842&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |