Brain Tumor Classification Using Fine-Tuned GoogLeNet Features and Machine Learning Algorithms: IoMT Enabled CAD System
In the healthcare research community, Internet of Medical Things (IoMT) is transforming the healthcare system into the world of the future internet. In IoMT enabled Computer aided diagnosis (CAD) system, the Health-related information is stored via the internet, and supportive data is provided to th...
Saved in:
| Published in | IEEE journal of biomedical and health informatics Vol. 26; no. 3; pp. 983 - 991 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2194 2168-2208 2168-2208 |
| DOI | 10.1109/JBHI.2021.3100758 |
Cover
| Abstract | In the healthcare research community, Internet of Medical Things (IoMT) is transforming the healthcare system into the world of the future internet. In IoMT enabled Computer aided diagnosis (CAD) system, the Health-related information is stored via the internet, and supportive data is provided to the patients. The development of various smart devices is interconnected via the internet, which helps the patient to communicate with a medical expert using IoMT based remote healthcare system for various life threatening diseases, e.g., brain tumors. Often, the tumors are predecessors to cancers, and the survival rates are very low. So, early detection and classification of tumors can save a lot of lives. IoMT enabled CAD system plays a vital role in solving these problems. Deep learning, a new domain in Machine Learning, has attracted a lot of attention in the last few years. The concept of Convolutional Neural Networks (CNNs) has been widely used in this field. In this paper, we have classified brain tumors into three classes, namely glioma, meningioma and pituitary, using transfer learning model. The features of the brain MRI images are extracted using a pre-trained CNN, i.e. GoogLeNet. The features are then classified using classifiers such as softmax, Support Vector Machine (SVM), and K-Nearest Neighbor (K-NN). The proposed model is trained and tested on CE-MRI Figshare and Harvard medical repository datasets. The experimental results are superior to the other existing models. Performance measures such as accuracy, specificity, and F1 score are examined to evaluate the performances of the proposed model. |
|---|---|
| AbstractList | In the healthcare research community, Internet of Medical Things (IoMT) is transforming the healthcare system into the world of the future internet. In IoMT enabled Computer aided diagnosis (CAD) system, the Health-related information is stored via the internet, and supportive data is provided to the patients. The development of various smart devices is interconnected via the internet, which helps the patient to communicate with a medical expert using IoMT based remote healthcare system for various life threatening diseases, e.g., brain tumors. Often, the tumors are predecessors to cancers, and the survival rates are very low. So, early detection and classification of tumors can save a lot of lives. IoMT enabled CAD system plays a vital role in solving these problems. Deep learning, a new domain in Machine Learning, has attracted a lot of attention in the last few years. The concept of Convolutional Neural Networks (CNNs) has been widely used in this field. In this paper, we have classified brain tumors into three classes, namely glioma, meningioma and pituitary, using transfer learning model. The features of the brain MRI images are extracted using a pre-trained CNN, i.e. GoogLeNet. The features are then classified using classifiers such as softmax, Support Vector Machine (SVM), and K-Nearest Neighbor (K-NN). The proposed model is trained and tested on CE-MRI Figshare and Harvard medical repository datasets. The experimental results are superior to the other existing models. Performance measures such as accuracy, specificity, and F1 score are examined to evaluate the performances of the proposed model. In the healthcare research community, Internet of Medical Things (IoMT) is transforming the healthcare system into the world of the future internet. In IoMT enabled Computer aided diagnosis (CAD) system, the Health-related information is stored via the internet, and supportive data is provided to the patients. The development of various smart devices is interconnected via the internet, which helps the patient to communicate with a medical expert using IoMT based remote healthcare system for various life threatening diseases, e.g., brain tumors. Often, the tumors are predecessors to cancers, and the survival rates are very low. So, early detection and classification of tumors can save a lot of lives. IoMT enabled CAD system plays a vital role in solving these problems. Deep learning, a new domain in Machine Learning, has attracted a lot of attention in the last few years. The concept of Convolutional Neural Networks (CNNs) has been widely used in this field. In this paper, we have classified brain tumors into three classes, namely glioma, meningioma and pituitary, using transfer learning model. The features of the brain MRI images are extracted using a pre-trained CNN, i.e. GoogLeNet. The features are then classified using classifiers such as softmax, Support Vector Machine (SVM), and K-Nearest Neighbor (K-NN). The proposed model is trained and tested on CE-MRI Figshare and Harvard medical repository datasets. The experimental results are superior to the other existing models. Performance measures such as accuracy, specificity, and F1 score are examined to evaluate the performances of the proposed model.In the healthcare research community, Internet of Medical Things (IoMT) is transforming the healthcare system into the world of the future internet. In IoMT enabled Computer aided diagnosis (CAD) system, the Health-related information is stored via the internet, and supportive data is provided to the patients. The development of various smart devices is interconnected via the internet, which helps the patient to communicate with a medical expert using IoMT based remote healthcare system for various life threatening diseases, e.g., brain tumors. Often, the tumors are predecessors to cancers, and the survival rates are very low. So, early detection and classification of tumors can save a lot of lives. IoMT enabled CAD system plays a vital role in solving these problems. Deep learning, a new domain in Machine Learning, has attracted a lot of attention in the last few years. The concept of Convolutional Neural Networks (CNNs) has been widely used in this field. In this paper, we have classified brain tumors into three classes, namely glioma, meningioma and pituitary, using transfer learning model. The features of the brain MRI images are extracted using a pre-trained CNN, i.e. GoogLeNet. The features are then classified using classifiers such as softmax, Support Vector Machine (SVM), and K-Nearest Neighbor (K-NN). The proposed model is trained and tested on CE-MRI Figshare and Harvard medical repository datasets. The experimental results are superior to the other existing models. Performance measures such as accuracy, specificity, and F1 score are examined to evaluate the performances of the proposed model. |
| Author | Sunaniya, Arun Kumar Yang, Lixia Mukherjee, Amrit Hazra, Ranjay Biswas, Soumen Sekhar, Ardhendu |
| Author_xml | – sequence: 1 givenname: Ardhendu surname: Sekhar fullname: Sekhar, Ardhendu email: ardhendu_pg@ei.nits.ac.in organization: Department of Electronics and Instru-mentation Engineering, National Institute of Technology Silchar, Silchar, India – sequence: 2 givenname: Soumen orcidid: 0000-0002-4429-9249 surname: Biswas fullname: Biswas, Soumen email: soumenbiswas@outlook.com organization: Department of Electronics and Instru-mentation Engineering, National Institute of Technology Silchar, Silchar, India – sequence: 3 givenname: Ranjay orcidid: 0000-0002-3912-951X surname: Hazra fullname: Hazra, Ranjay email: ranjay@ei.nits.ac.in organization: Department of Electronics and Instru-mentation Engineering, National Institute of Technology Silchar, Silchar, India – sequence: 4 givenname: Arun Kumar orcidid: 0000-0002-2943-2056 surname: Sunaniya fullname: Sunaniya, Arun Kumar email: arun@ei.nits.ac.in organization: Department of Electronics and Instru-mentation Engineering, National Institute of Technology Silchar, Silchar, India – sequence: 5 givenname: Amrit orcidid: 0000-0002-6714-5568 surname: Mukherjee fullname: Mukherjee, Amrit email: amrit1460@ujs.edu.cn organization: School of Electronics and Information Engineering, Anhui University, Hefei, Anhui, China – sequence: 6 givenname: Lixia orcidid: 0000-0002-7943-9846 surname: Yang fullname: Yang, Lixia email: lixiayang43@gmail.com organization: School of Electronics and Information Engineering, Anhui University, Hefei, Anhui, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34324425$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9v0zAYxi00xP6wD4CQkCUuu6T4X-KYW1fWraiDw8rZcpw3nafEHnYitG-PS7sddsAXW9bveV7Lv1N05IMHhD5QMqOUqC_fL29WM0YYnXFKiCzrN-iE0aouGCP10fOZKnGMzlN6IHnV-UpV79AxF5wJwcoT9OcyGufxZhpCxIvepOQ6Z83ogse_kvNbvHQeis3kocXXIWzX8ANGvAQzThESNr7Ft8beZwivwUS_i8z7bYhuvB_SV7wKtxt85U3T54LF_Bu-e0ojDO_R2870Cc4P-xm6W15tFjfF-uf1ajFfF5YLNRaSSwZN04qKc2JLXqpGtnUlurqyQE3dsgaE4qKSraKKN6xhyjLJWSsNdPwMXexbH2P4PUEa9eCShb43HsKUNCtLyViZCzP6-RX6EKbo89s0q7gUgkrBMvXpQE3NAK1-jG4w8Uk_f2gG6B6wMaQUoXtBKNE7b3rnTe-86YO3nJGvMtaN_xSMWU7_3-THfdIBwMskVRKqlOJ_AWQFooc |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106450 crossref_primary_10_3390_diagnostics13203234 crossref_primary_10_48084_etasr_8271 crossref_primary_10_1007_s11042_022_13934_5 crossref_primary_10_1016_j_critrevonc_2025_104682 crossref_primary_10_1007_s00371_024_03524_x crossref_primary_10_1515_bmt_2022_0336 crossref_primary_10_1007_s00138_023_01371_9 crossref_primary_10_32604_iasc_2024_039009 crossref_primary_10_3390_math11010151 crossref_primary_10_1016_j_bspc_2023_105119 crossref_primary_10_3389_fninf_2024_1444650 crossref_primary_10_1016_j_knosys_2023_111035 crossref_primary_10_1007_s11042_024_20203_0 crossref_primary_10_1007_s00521_024_10168_4 crossref_primary_10_1016_j_jcmds_2024_100103 crossref_primary_10_1016_j_jestch_2023_101455 crossref_primary_10_1016_j_bspc_2024_107033 crossref_primary_10_1155_2022_1465173 crossref_primary_10_4103_ijh_ijh_110_24 crossref_primary_10_3389_fmed_2024_1486995 crossref_primary_10_3390_curroncol29100590 crossref_primary_10_1016_j_acra_2022_11_007 crossref_primary_10_3390_diagnostics13040618 crossref_primary_10_3390_cancers16020300 crossref_primary_10_1002_brb3_3324 crossref_primary_10_3390_diagnostics13040651 crossref_primary_10_3390_info14120642 crossref_primary_10_3390_app13063680 crossref_primary_10_1002_jemt_24767 crossref_primary_10_3390_electronics12051230 crossref_primary_10_1007_s12559_022_10096_2 crossref_primary_10_3390_info15100641 crossref_primary_10_1002_jmri_28671 crossref_primary_10_3390_neuroglia5020008 crossref_primary_10_3390_app14167281 crossref_primary_10_1016_j_compbiomed_2023_107332 crossref_primary_10_1016_j_heliyon_2024_e32596 crossref_primary_10_3390_diagnostics14141472 crossref_primary_10_1049_ipr2_13168 crossref_primary_10_1016_j_compmedimag_2024_102451 crossref_primary_10_1007_s00530_024_01319_7 crossref_primary_10_1016_j_cmpb_2022_106911 crossref_primary_10_1007_s11042_024_20366_w crossref_primary_10_1007_s11082_022_04087_8 crossref_primary_10_1039_D4NH00592A crossref_primary_10_1007_s00521_022_07934_7 crossref_primary_10_1007_s11042_023_17215_7 crossref_primary_10_1007_s11042_025_20751_z crossref_primary_10_3389_fnins_2023_1269100 crossref_primary_10_1016_j_bspc_2023_105778 crossref_primary_10_3390_healthcare10112189 crossref_primary_10_47164_ijngc_v14i1_1032 crossref_primary_10_1016_j_eswa_2024_125443 crossref_primary_10_1109_ACCESS_2024_3430074 crossref_primary_10_3390_diagnostics13040757 crossref_primary_10_3390_jimaging8080205 crossref_primary_10_1007_s11042_025_20668_7 crossref_primary_10_1007_s12553_022_00699_y crossref_primary_10_1007_s00521_022_07742_z crossref_primary_10_32604_cmc_2022_030698 crossref_primary_10_1038_s41598_025_92776_1 crossref_primary_10_1007_s11042_023_17367_6 crossref_primary_10_1016_j_seta_2022_102335 crossref_primary_10_3390_e25050727 crossref_primary_10_1016_j_bspc_2024_106565 crossref_primary_10_1016_j_neucom_2024_129109 crossref_primary_10_1080_15368378_2024_2375266 crossref_primary_10_1002_ima_22989 crossref_primary_10_3389_fnins_2024_1288274 crossref_primary_10_54021_seesv5n1_002 crossref_primary_10_1016_j_bspc_2023_105602 crossref_primary_10_1109_ACCESS_2024_3460380 crossref_primary_10_1016_j_cmpb_2025_108615 crossref_primary_10_1007_s00432_024_05986_x crossref_primary_10_3390_electronics12040964 crossref_primary_10_7717_peerj_cs_2496 crossref_primary_10_3390_diagnostics13050834 crossref_primary_10_1007_s11042_023_17458_4 |
| Cites_doi | 10.1016/j.media.2017.07.005 10.1016/j.compbiomed.2019.103345 10.1016/j.patrec.2020.05.019 10.1109/ICIP.2018.8451379 10.1016/j.neucom.2019.06.084 10.1007/978-981-10-9035-6_33 10.22146/ijeis.34713 10.1016/j.sigpro.2021.108043 10.1007/978-3-030-36708-4_44 10.1186/s40537-019-0276-2 10.1109/CIBEC.2018.8641762 10.1117/12.2253982 10.1109/42.993133 10.1016/j.tranon.2018.10.012 10.1016/0893-6080(95)00061-5 10.1109/ICCKE.2018.8566571 10.1007/s12652-020-02568-w 10.1049/iet-ipr.2020.0214 10.4018/978-1-60566-766-9.ch011 10.1016/j.fcij.2017.12.001 10.1371/journal.pone.0157112 10.1109/EIT.2018.8500308 10.1002/mrm.22147 10.1109/ICASSP.2019.8683759 10.1007/s11416-018-0324-z 10.1109/CISP-BMEI.2017.8301998 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/JBHI.2021.3100758 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-2208 |
| EndPage | 991 |
| ExternalDocumentID | 34324425 10_1109_JBHI_2021_3100758 9501999 |
| Genre | orig-research Journal Article |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 6IL ADZIZ CGR CHZPO CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c349t-7372ebbd46330c5359b7d864f86ce1a8d2be493467d9193b2b29c2732d7aef3 |
| IEDL.DBID | RIE |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Sun Sep 28 01:30:18 EDT 2025 Mon Jun 30 04:08:00 EDT 2025 Thu Jan 02 22:55:37 EST 2025 Wed Oct 01 03:40:01 EDT 2025 Thu Apr 24 22:52:28 EDT 2025 Wed Aug 27 02:49:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-7372ebbd46330c5359b7d864f86ce1a8d2be493467d9193b2b29c2732d7aef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7943-9846 0000-0002-2943-2056 0000-0002-3912-951X 0000-0002-4429-9249 0000-0002-6714-5568 |
| PMID | 34324425 |
| PQID | 2637441742 |
| PQPubID | 85417 |
| PageCount | 9 |
| ParticipantIDs | pubmed_primary_34324425 proquest_journals_2637441742 crossref_primary_10_1109_JBHI_2021_3100758 ieee_primary_9501999 proquest_miscellaneous_2557225864 crossref_citationtrail_10_1109_JBHI_2021_3100758 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 (ref23) 2021 ref12 ref15 ref14 (ref28) 2021 ref30 ref11 ref10 ref2 ref1 ref16 ref19 ref18 Bhardwaj (ref17) 2018 ref24 ref25 ref20 ref22 ref21 Sun (ref26) 2014 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref2 doi: 10.1016/j.media.2017.07.005 – volume-title: Deep Learning Essentials: Your Hands-On Guide to the Fundamentals of Deep Learning and Neural Network Modeling year: 2018 ident: ref17 – ident: ref27 doi: 10.1016/j.compbiomed.2019.103345 – ident: ref6 doi: 10.1016/j.patrec.2020.05.019 – ident: ref14 doi: 10.1109/ICIP.2018.8451379 – ident: ref19 doi: 10.1016/j.neucom.2019.06.084 – ident: ref12 doi: 10.1007/978-981-10-9035-6_33 – ident: ref16 doi: 10.22146/ijeis.34713 – ident: ref25 doi: 10.1016/j.sigpro.2021.108043 – ident: ref3 doi: 10.1007/978-3-030-36708-4_44 – year: 2021 ident: ref28 article-title: Harvard medical dataset – ident: ref7 doi: 10.1186/s40537-019-0276-2 – ident: ref5 doi: 10.1109/CIBEC.2018.8641762 – year: 2014 ident: ref26 article-title: Deep learning face representation by joint identification-verification – ident: ref9 doi: 10.1117/12.2253982 – ident: ref18 doi: 10.1109/42.993133 – ident: ref4 doi: 10.1016/j.tranon.2018.10.012 – ident: ref20 doi: 10.1016/0893-6080(95)00061-5 – ident: ref13 doi: 10.1109/ICCKE.2018.8566571 – ident: ref30 doi: 10.1007/s12652-020-02568-w – ident: ref24 doi: 10.1049/iet-ipr.2020.0214 – ident: ref22 doi: 10.4018/978-1-60566-766-9.ch011 – ident: ref29 doi: 10.1016/j.fcij.2017.12.001 – ident: ref10 doi: 10.1371/journal.pone.0157112 – ident: ref11 doi: 10.1109/EIT.2018.8500308 – year: 2021 ident: ref23 article-title: Figshare brain tumor dataset – ident: ref1 doi: 10.1002/mrm.22147 – ident: ref15 doi: 10.1109/ICASSP.2019.8683759 – ident: ref21 doi: 10.1007/s11416-018-0324-z – ident: ref8 doi: 10.1109/CISP-BMEI.2017.8301998 |
| SSID | ssj0000816896 |
| Score | 2.6414764 |
| Snippet | In the healthcare research community, Internet of Medical Things (IoMT) is transforming the healthcare system into the world of the future internet. In IoMT... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 983 |
| SubjectTerms | Algorithms Artificial neural networks Brain Brain cancer Brain modeling Brain Neoplasms - diagnostic imaging Brain tumors Classification computer aided diagnosis (CAD) convolution neural network Deep learning Electronic devices Feature extraction Glioma Health care Humans Internet Internet of medical things K-nearest neighbor Learning algorithms Machine Learning Magnetic resonance imaging Medical diagnosis Medical diagnostic imaging Medical research Meningioma Neural networks Neural Networks, Computer Patients Pituitary pre-trained network Skin Solid modeling support vector machine Support vector machines Survival Transfer learning Tumors |
| Title | Brain Tumor Classification Using Fine-Tuned GoogLeNet Features and Machine Learning Algorithms: IoMT Enabled CAD System |
| URI | https://ieeexplore.ieee.org/document/9501999 https://www.ncbi.nlm.nih.gov/pubmed/34324425 https://www.proquest.com/docview/2637441742 https://www.proquest.com/docview/2557225864 |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PVS98CqP0BYZiRMi26ztPNxbi7psK7YXFqm3KLYnC6JN0DYRUn89Y8cbIQSIm6VMJo8Z2zOexwfwRlZFIrDO46ywIpY6xVhJncU5Wc-prWs91b7b51U2_ywvr9PrLXg31sIgok8-w4kb-li-bU3vjsqOVZq4qvlt2CZWQ63WeJ7iASQ8HBenQUwTUYYg5jRRx5dn8wtyBvl04g60yUbeg11XUimlw8j-ZUfyECt_tzb9rjN7CIvN-w7JJt8mfacn5v63Vo7_-0GP4EEwP9npoC-PYQubJ7C7CAH2ffhx5iAj2LK_bdfMA2a6VCIvPeazC9iM6OJlT6sz-9C2q494hR1zhmRPjjurGssWPj8TWWjdumKnN6t2_bX7cnt3wi7axZKd-4Ity0gN2NAy_Sl8mp0v38_jgM0QGyFVFzt0G9TaykyIxKQiVTq3RSbrIjM4rQrLNUolaBm2imxEzTVXhkwlbvMKa_EMdpq2wRfAEmHISSmIhXQhvlolCmWtlSG-WSVEBMlGOqUJbcsdesZN6d2XRJVOtqWTbRlkG8Hb8ZbvQ8-OfxHvO7mMhEEkERxuVKAMs_qu5JnIHWSb5BG8Hi_TfHRBlqrBtieaNM1pjaRfEcHzQXVG3huNe_nnZx7AHnfFFT7D7RB2unWPR2TydPqV1_WfGkn3eQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIpVeeBVooICROCGyzfqRxNxa1GW3bPZCkHqL4kcW1DZB20RI_HrGTjZCCBA3S3Gcx4ztbzyPD-A1L9OI2SoJ49SwkCthQ8lVHCaInoWpKjVVvtrnKp5_5ucX4mIH3o65MNZaH3xmJ67pffmm0Z07KjuWInJZ87fgtuCciz5bazxR8RQSnpCLYiPEqcgHN-Y0ksfnp_MFmoN0OnFH2oiS92HPJVVy7liyf9mTPMnK3_Gm33dm9yDbvnEfbnI56Vo10T9-K-b4v590H-4OAJSc9BrzAHZs_RD2ssHFfgDfTx1pBMm762ZDPGWmCyby8iM-voDMsF-Yd7g-kw9Ns17alW2Jg5Idmu6krA3JfISmJUPx1jU5uVo3m6_tl-ubd2TRZDk58ylbhqAikL5o-iP4NDvL38_DgZ0h1IzLNnT8NlYpw2PGIi2YkCoxacyrNNZ2WqaGKsslw4XYSESJiioqNYIlapLSVuwx7NZNbQ-BREyjmZLiENw5-SoZScsrJTWOG5eMBRBtpVPooXC548-4KrwBE8nCybZwsi0G2QbwZrzlW1-141-dD5xcxo6DSAI42qpAMczrm4LGLHGkbZwG8Gq8jDPSuVnK2jYd9hEiwVUSf0UAT3rVGcfeatzTPz_zJdyZ59myWC5WH5_BPnWpFj7e7Qh2201nnyMAatULr_c_ATgH-sY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Tumor+Classification+Using+Fine-Tuned+GoogLeNet+Features+and+Machine+Learning+Algorithms%3A+IoMT+Enabled+CAD+System&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Sekhar%2C+Ardhendu&rft.au=Biswas%2C+Soumen&rft.au=Hazra%2C+Ranjay&rft.au=Sunaniya%2C+Arun+Kumar&rft.date=2022-03-01&rft.issn=2168-2208&rft.eissn=2168-2208&rft.volume=26&rft.issue=3&rft.spage=983&rft_id=info:doi/10.1109%2FJBHI.2021.3100758&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |