Brain Tumor Classification Using Fine-Tuned GoogLeNet Features and Machine Learning Algorithms: IoMT Enabled CAD System

In the healthcare research community, Internet of Medical Things (IoMT) is transforming the healthcare system into the world of the future internet. In IoMT enabled Computer aided diagnosis (CAD) system, the Health-related information is stored via the internet, and supportive data is provided to th...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 26; no. 3; pp. 983 - 991
Main Authors Sekhar, Ardhendu, Biswas, Soumen, Hazra, Ranjay, Sunaniya, Arun Kumar, Mukherjee, Amrit, Yang, Lixia
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2021.3100758

Cover

Abstract In the healthcare research community, Internet of Medical Things (IoMT) is transforming the healthcare system into the world of the future internet. In IoMT enabled Computer aided diagnosis (CAD) system, the Health-related information is stored via the internet, and supportive data is provided to the patients. The development of various smart devices is interconnected via the internet, which helps the patient to communicate with a medical expert using IoMT based remote healthcare system for various life threatening diseases, e.g., brain tumors. Often, the tumors are predecessors to cancers, and the survival rates are very low. So, early detection and classification of tumors can save a lot of lives. IoMT enabled CAD system plays a vital role in solving these problems. Deep learning, a new domain in Machine Learning, has attracted a lot of attention in the last few years. The concept of Convolutional Neural Networks (CNNs) has been widely used in this field. In this paper, we have classified brain tumors into three classes, namely glioma, meningioma and pituitary, using transfer learning model. The features of the brain MRI images are extracted using a pre-trained CNN, i.e. GoogLeNet. The features are then classified using classifiers such as softmax, Support Vector Machine (SVM), and K-Nearest Neighbor (K-NN). The proposed model is trained and tested on CE-MRI Figshare and Harvard medical repository datasets. The experimental results are superior to the other existing models. Performance measures such as accuracy, specificity, and F1 score are examined to evaluate the performances of the proposed model.
AbstractList In the healthcare research community, Internet of Medical Things (IoMT) is transforming the healthcare system into the world of the future internet. In IoMT enabled Computer aided diagnosis (CAD) system, the Health-related information is stored via the internet, and supportive data is provided to the patients. The development of various smart devices is interconnected via the internet, which helps the patient to communicate with a medical expert using IoMT based remote healthcare system for various life threatening diseases, e.g., brain tumors. Often, the tumors are predecessors to cancers, and the survival rates are very low. So, early detection and classification of tumors can save a lot of lives. IoMT enabled CAD system plays a vital role in solving these problems. Deep learning, a new domain in Machine Learning, has attracted a lot of attention in the last few years. The concept of Convolutional Neural Networks (CNNs) has been widely used in this field. In this paper, we have classified brain tumors into three classes, namely glioma, meningioma and pituitary, using transfer learning model. The features of the brain MRI images are extracted using a pre-trained CNN, i.e. GoogLeNet. The features are then classified using classifiers such as softmax, Support Vector Machine (SVM), and K-Nearest Neighbor (K-NN). The proposed model is trained and tested on CE-MRI Figshare and Harvard medical repository datasets. The experimental results are superior to the other existing models. Performance measures such as accuracy, specificity, and F1 score are examined to evaluate the performances of the proposed model.
In the healthcare research community, Internet of Medical Things (IoMT) is transforming the healthcare system into the world of the future internet. In IoMT enabled Computer aided diagnosis (CAD) system, the Health-related information is stored via the internet, and supportive data is provided to the patients. The development of various smart devices is interconnected via the internet, which helps the patient to communicate with a medical expert using IoMT based remote healthcare system for various life threatening diseases, e.g., brain tumors. Often, the tumors are predecessors to cancers, and the survival rates are very low. So, early detection and classification of tumors can save a lot of lives. IoMT enabled CAD system plays a vital role in solving these problems. Deep learning, a new domain in Machine Learning, has attracted a lot of attention in the last few years. The concept of Convolutional Neural Networks (CNNs) has been widely used in this field. In this paper, we have classified brain tumors into three classes, namely glioma, meningioma and pituitary, using transfer learning model. The features of the brain MRI images are extracted using a pre-trained CNN, i.e. GoogLeNet. The features are then classified using classifiers such as softmax, Support Vector Machine (SVM), and K-Nearest Neighbor (K-NN). The proposed model is trained and tested on CE-MRI Figshare and Harvard medical repository datasets. The experimental results are superior to the other existing models. Performance measures such as accuracy, specificity, and F1 score are examined to evaluate the performances of the proposed model.In the healthcare research community, Internet of Medical Things (IoMT) is transforming the healthcare system into the world of the future internet. In IoMT enabled Computer aided diagnosis (CAD) system, the Health-related information is stored via the internet, and supportive data is provided to the patients. The development of various smart devices is interconnected via the internet, which helps the patient to communicate with a medical expert using IoMT based remote healthcare system for various life threatening diseases, e.g., brain tumors. Often, the tumors are predecessors to cancers, and the survival rates are very low. So, early detection and classification of tumors can save a lot of lives. IoMT enabled CAD system plays a vital role in solving these problems. Deep learning, a new domain in Machine Learning, has attracted a lot of attention in the last few years. The concept of Convolutional Neural Networks (CNNs) has been widely used in this field. In this paper, we have classified brain tumors into three classes, namely glioma, meningioma and pituitary, using transfer learning model. The features of the brain MRI images are extracted using a pre-trained CNN, i.e. GoogLeNet. The features are then classified using classifiers such as softmax, Support Vector Machine (SVM), and K-Nearest Neighbor (K-NN). The proposed model is trained and tested on CE-MRI Figshare and Harvard medical repository datasets. The experimental results are superior to the other existing models. Performance measures such as accuracy, specificity, and F1 score are examined to evaluate the performances of the proposed model.
Author Sunaniya, Arun Kumar
Yang, Lixia
Mukherjee, Amrit
Hazra, Ranjay
Biswas, Soumen
Sekhar, Ardhendu
Author_xml – sequence: 1
  givenname: Ardhendu
  surname: Sekhar
  fullname: Sekhar, Ardhendu
  email: ardhendu_pg@ei.nits.ac.in
  organization: Department of Electronics and Instru-mentation Engineering, National Institute of Technology Silchar, Silchar, India
– sequence: 2
  givenname: Soumen
  orcidid: 0000-0002-4429-9249
  surname: Biswas
  fullname: Biswas, Soumen
  email: soumenbiswas@outlook.com
  organization: Department of Electronics and Instru-mentation Engineering, National Institute of Technology Silchar, Silchar, India
– sequence: 3
  givenname: Ranjay
  orcidid: 0000-0002-3912-951X
  surname: Hazra
  fullname: Hazra, Ranjay
  email: ranjay@ei.nits.ac.in
  organization: Department of Electronics and Instru-mentation Engineering, National Institute of Technology Silchar, Silchar, India
– sequence: 4
  givenname: Arun Kumar
  orcidid: 0000-0002-2943-2056
  surname: Sunaniya
  fullname: Sunaniya, Arun Kumar
  email: arun@ei.nits.ac.in
  organization: Department of Electronics and Instru-mentation Engineering, National Institute of Technology Silchar, Silchar, India
– sequence: 5
  givenname: Amrit
  orcidid: 0000-0002-6714-5568
  surname: Mukherjee
  fullname: Mukherjee, Amrit
  email: amrit1460@ujs.edu.cn
  organization: School of Electronics and Information Engineering, Anhui University, Hefei, Anhui, China
– sequence: 6
  givenname: Lixia
  orcidid: 0000-0002-7943-9846
  surname: Yang
  fullname: Yang, Lixia
  email: lixiayang43@gmail.com
  organization: School of Electronics and Information Engineering, Anhui University, Hefei, Anhui, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34324425$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v0zAYxi00xP6wD4CQkCUuu6T4X-KYW1fWraiDw8rZcpw3nafEHnYitG-PS7sddsAXW9bveV7Lv1N05IMHhD5QMqOUqC_fL29WM0YYnXFKiCzrN-iE0aouGCP10fOZKnGMzlN6IHnV-UpV79AxF5wJwcoT9OcyGufxZhpCxIvepOQ6Z83ogse_kvNbvHQeis3kocXXIWzX8ANGvAQzThESNr7Ft8beZwivwUS_i8z7bYhuvB_SV7wKtxt85U3T54LF_Bu-e0ojDO_R2870Cc4P-xm6W15tFjfF-uf1ajFfF5YLNRaSSwZN04qKc2JLXqpGtnUlurqyQE3dsgaE4qKSraKKN6xhyjLJWSsNdPwMXexbH2P4PUEa9eCShb43HsKUNCtLyViZCzP6-RX6EKbo89s0q7gUgkrBMvXpQE3NAK1-jG4w8Uk_f2gG6B6wMaQUoXtBKNE7b3rnTe-86YO3nJGvMtaN_xSMWU7_3-THfdIBwMskVRKqlOJ_AWQFooc
CODEN IJBHA9
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106450
crossref_primary_10_3390_diagnostics13203234
crossref_primary_10_48084_etasr_8271
crossref_primary_10_1007_s11042_022_13934_5
crossref_primary_10_1016_j_critrevonc_2025_104682
crossref_primary_10_1007_s00371_024_03524_x
crossref_primary_10_1515_bmt_2022_0336
crossref_primary_10_1007_s00138_023_01371_9
crossref_primary_10_32604_iasc_2024_039009
crossref_primary_10_3390_math11010151
crossref_primary_10_1016_j_bspc_2023_105119
crossref_primary_10_3389_fninf_2024_1444650
crossref_primary_10_1016_j_knosys_2023_111035
crossref_primary_10_1007_s11042_024_20203_0
crossref_primary_10_1007_s00521_024_10168_4
crossref_primary_10_1016_j_jcmds_2024_100103
crossref_primary_10_1016_j_jestch_2023_101455
crossref_primary_10_1016_j_bspc_2024_107033
crossref_primary_10_1155_2022_1465173
crossref_primary_10_4103_ijh_ijh_110_24
crossref_primary_10_3389_fmed_2024_1486995
crossref_primary_10_3390_curroncol29100590
crossref_primary_10_1016_j_acra_2022_11_007
crossref_primary_10_3390_diagnostics13040618
crossref_primary_10_3390_cancers16020300
crossref_primary_10_1002_brb3_3324
crossref_primary_10_3390_diagnostics13040651
crossref_primary_10_3390_info14120642
crossref_primary_10_3390_app13063680
crossref_primary_10_1002_jemt_24767
crossref_primary_10_3390_electronics12051230
crossref_primary_10_1007_s12559_022_10096_2
crossref_primary_10_3390_info15100641
crossref_primary_10_1002_jmri_28671
crossref_primary_10_3390_neuroglia5020008
crossref_primary_10_3390_app14167281
crossref_primary_10_1016_j_compbiomed_2023_107332
crossref_primary_10_1016_j_heliyon_2024_e32596
crossref_primary_10_3390_diagnostics14141472
crossref_primary_10_1049_ipr2_13168
crossref_primary_10_1016_j_compmedimag_2024_102451
crossref_primary_10_1007_s00530_024_01319_7
crossref_primary_10_1016_j_cmpb_2022_106911
crossref_primary_10_1007_s11042_024_20366_w
crossref_primary_10_1007_s11082_022_04087_8
crossref_primary_10_1039_D4NH00592A
crossref_primary_10_1007_s00521_022_07934_7
crossref_primary_10_1007_s11042_023_17215_7
crossref_primary_10_1007_s11042_025_20751_z
crossref_primary_10_3389_fnins_2023_1269100
crossref_primary_10_1016_j_bspc_2023_105778
crossref_primary_10_3390_healthcare10112189
crossref_primary_10_47164_ijngc_v14i1_1032
crossref_primary_10_1016_j_eswa_2024_125443
crossref_primary_10_1109_ACCESS_2024_3430074
crossref_primary_10_3390_diagnostics13040757
crossref_primary_10_3390_jimaging8080205
crossref_primary_10_1007_s11042_025_20668_7
crossref_primary_10_1007_s12553_022_00699_y
crossref_primary_10_1007_s00521_022_07742_z
crossref_primary_10_32604_cmc_2022_030698
crossref_primary_10_1038_s41598_025_92776_1
crossref_primary_10_1007_s11042_023_17367_6
crossref_primary_10_1016_j_seta_2022_102335
crossref_primary_10_3390_e25050727
crossref_primary_10_1016_j_bspc_2024_106565
crossref_primary_10_1016_j_neucom_2024_129109
crossref_primary_10_1080_15368378_2024_2375266
crossref_primary_10_1002_ima_22989
crossref_primary_10_3389_fnins_2024_1288274
crossref_primary_10_54021_seesv5n1_002
crossref_primary_10_1016_j_bspc_2023_105602
crossref_primary_10_1109_ACCESS_2024_3460380
crossref_primary_10_1016_j_cmpb_2025_108615
crossref_primary_10_1007_s00432_024_05986_x
crossref_primary_10_3390_electronics12040964
crossref_primary_10_7717_peerj_cs_2496
crossref_primary_10_3390_diagnostics13050834
crossref_primary_10_1007_s11042_023_17458_4
Cites_doi 10.1016/j.media.2017.07.005
10.1016/j.compbiomed.2019.103345
10.1016/j.patrec.2020.05.019
10.1109/ICIP.2018.8451379
10.1016/j.neucom.2019.06.084
10.1007/978-981-10-9035-6_33
10.22146/ijeis.34713
10.1016/j.sigpro.2021.108043
10.1007/978-3-030-36708-4_44
10.1186/s40537-019-0276-2
10.1109/CIBEC.2018.8641762
10.1117/12.2253982
10.1109/42.993133
10.1016/j.tranon.2018.10.012
10.1016/0893-6080(95)00061-5
10.1109/ICCKE.2018.8566571
10.1007/s12652-020-02568-w
10.1049/iet-ipr.2020.0214
10.4018/978-1-60566-766-9.ch011
10.1016/j.fcij.2017.12.001
10.1371/journal.pone.0157112
10.1109/EIT.2018.8500308
10.1002/mrm.22147
10.1109/ICASSP.2019.8683759
10.1007/s11416-018-0324-z
10.1109/CISP-BMEI.2017.8301998
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2021.3100758
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 991
ExternalDocumentID 34324425
10_1109_JBHI_2021_3100758
9501999
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
6IL
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c349t-7372ebbd46330c5359b7d864f86ce1a8d2be493467d9193b2b29c2732d7aef3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Sun Sep 28 01:30:18 EDT 2025
Mon Jun 30 04:08:00 EDT 2025
Thu Jan 02 22:55:37 EST 2025
Wed Oct 01 03:40:01 EDT 2025
Thu Apr 24 22:52:28 EDT 2025
Wed Aug 27 02:49:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-7372ebbd46330c5359b7d864f86ce1a8d2be493467d9193b2b29c2732d7aef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7943-9846
0000-0002-2943-2056
0000-0002-3912-951X
0000-0002-4429-9249
0000-0002-6714-5568
PMID 34324425
PQID 2637441742
PQPubID 85417
PageCount 9
ParticipantIDs pubmed_primary_34324425
proquest_journals_2637441742
crossref_primary_10_1109_JBHI_2021_3100758
ieee_primary_9501999
proquest_miscellaneous_2557225864
crossref_citationtrail_10_1109_JBHI_2021_3100758
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref23) 2021
ref12
ref15
ref14
(ref28) 2021
ref30
ref11
ref10
ref2
ref1
ref16
ref19
ref18
Bhardwaj (ref17) 2018
ref24
ref25
ref20
ref22
ref21
Sun (ref26) 2014
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1016/j.media.2017.07.005
– volume-title: Deep Learning Essentials: Your Hands-On Guide to the Fundamentals of Deep Learning and Neural Network Modeling
  year: 2018
  ident: ref17
– ident: ref27
  doi: 10.1016/j.compbiomed.2019.103345
– ident: ref6
  doi: 10.1016/j.patrec.2020.05.019
– ident: ref14
  doi: 10.1109/ICIP.2018.8451379
– ident: ref19
  doi: 10.1016/j.neucom.2019.06.084
– ident: ref12
  doi: 10.1007/978-981-10-9035-6_33
– ident: ref16
  doi: 10.22146/ijeis.34713
– ident: ref25
  doi: 10.1016/j.sigpro.2021.108043
– ident: ref3
  doi: 10.1007/978-3-030-36708-4_44
– year: 2021
  ident: ref28
  article-title: Harvard medical dataset
– ident: ref7
  doi: 10.1186/s40537-019-0276-2
– ident: ref5
  doi: 10.1109/CIBEC.2018.8641762
– year: 2014
  ident: ref26
  article-title: Deep learning face representation by joint identification-verification
– ident: ref9
  doi: 10.1117/12.2253982
– ident: ref18
  doi: 10.1109/42.993133
– ident: ref4
  doi: 10.1016/j.tranon.2018.10.012
– ident: ref20
  doi: 10.1016/0893-6080(95)00061-5
– ident: ref13
  doi: 10.1109/ICCKE.2018.8566571
– ident: ref30
  doi: 10.1007/s12652-020-02568-w
– ident: ref24
  doi: 10.1049/iet-ipr.2020.0214
– ident: ref22
  doi: 10.4018/978-1-60566-766-9.ch011
– ident: ref29
  doi: 10.1016/j.fcij.2017.12.001
– ident: ref10
  doi: 10.1371/journal.pone.0157112
– ident: ref11
  doi: 10.1109/EIT.2018.8500308
– year: 2021
  ident: ref23
  article-title: Figshare brain tumor dataset
– ident: ref1
  doi: 10.1002/mrm.22147
– ident: ref15
  doi: 10.1109/ICASSP.2019.8683759
– ident: ref21
  doi: 10.1007/s11416-018-0324-z
– ident: ref8
  doi: 10.1109/CISP-BMEI.2017.8301998
SSID ssj0000816896
Score 2.6414764
Snippet In the healthcare research community, Internet of Medical Things (IoMT) is transforming the healthcare system into the world of the future internet. In IoMT...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 983
SubjectTerms Algorithms
Artificial neural networks
Brain
Brain cancer
Brain modeling
Brain Neoplasms - diagnostic imaging
Brain tumors
Classification
computer aided diagnosis (CAD)
convolution neural network
Deep learning
Electronic devices
Feature extraction
Glioma
Health care
Humans
Internet
Internet of medical things
K-nearest neighbor
Learning algorithms
Machine Learning
Magnetic resonance imaging
Medical diagnosis
Medical diagnostic imaging
Medical research
Meningioma
Neural networks
Neural Networks, Computer
Patients
Pituitary
pre-trained network
Skin
Solid modeling
support vector machine
Support vector machines
Survival
Transfer learning
Tumors
Title Brain Tumor Classification Using Fine-Tuned GoogLeNet Features and Machine Learning Algorithms: IoMT Enabled CAD System
URI https://ieeexplore.ieee.org/document/9501999
https://www.ncbi.nlm.nih.gov/pubmed/34324425
https://www.proquest.com/docview/2637441742
https://www.proquest.com/docview/2557225864
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PVS98CqP0BYZiRMi26ztPNxbi7psK7YXFqm3KLYnC6JN0DYRUn89Y8cbIQSIm6VMJo8Z2zOexwfwRlZFIrDO46ywIpY6xVhJncU5Wc-prWs91b7b51U2_ywvr9PrLXg31sIgok8-w4kb-li-bU3vjsqOVZq4qvlt2CZWQ63WeJ7iASQ8HBenQUwTUYYg5jRRx5dn8wtyBvl04g60yUbeg11XUimlw8j-ZUfyECt_tzb9rjN7CIvN-w7JJt8mfacn5v63Vo7_-0GP4EEwP9npoC-PYQubJ7C7CAH2ffhx5iAj2LK_bdfMA2a6VCIvPeazC9iM6OJlT6sz-9C2q494hR1zhmRPjjurGssWPj8TWWjdumKnN6t2_bX7cnt3wi7axZKd-4Ity0gN2NAy_Sl8mp0v38_jgM0QGyFVFzt0G9TaykyIxKQiVTq3RSbrIjM4rQrLNUolaBm2imxEzTVXhkwlbvMKa_EMdpq2wRfAEmHISSmIhXQhvlolCmWtlSG-WSVEBMlGOqUJbcsdesZN6d2XRJVOtqWTbRlkG8Hb8ZbvQ8-OfxHvO7mMhEEkERxuVKAMs_qu5JnIHWSb5BG8Hi_TfHRBlqrBtieaNM1pjaRfEcHzQXVG3huNe_nnZx7AHnfFFT7D7RB2unWPR2TydPqV1_WfGkn3eQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIpVeeBVooICROCGyzfqRxNxa1GW3bPZCkHqL4kcW1DZB20RI_HrGTjZCCBA3S3Gcx4ztbzyPD-A1L9OI2SoJ49SwkCthQ8lVHCaInoWpKjVVvtrnKp5_5ucX4mIH3o65MNZaH3xmJ67pffmm0Z07KjuWInJZ87fgtuCciz5bazxR8RQSnpCLYiPEqcgHN-Y0ksfnp_MFmoN0OnFH2oiS92HPJVVy7liyf9mTPMnK3_Gm33dm9yDbvnEfbnI56Vo10T9-K-b4v590H-4OAJSc9BrzAHZs_RD2ssHFfgDfTx1pBMm762ZDPGWmCyby8iM-voDMsF-Yd7g-kw9Ns17alW2Jg5Idmu6krA3JfISmJUPx1jU5uVo3m6_tl-ubd2TRZDk58ylbhqAikL5o-iP4NDvL38_DgZ0h1IzLNnT8NlYpw2PGIi2YkCoxacyrNNZ2WqaGKsslw4XYSESJiioqNYIlapLSVuwx7NZNbQ-BREyjmZLiENw5-SoZScsrJTWOG5eMBRBtpVPooXC548-4KrwBE8nCybZwsi0G2QbwZrzlW1-141-dD5xcxo6DSAI42qpAMczrm4LGLHGkbZwG8Gq8jDPSuVnK2jYd9hEiwVUSf0UAT3rVGcfeatzTPz_zJdyZ59myWC5WH5_BPnWpFj7e7Qh2201nnyMAatULr_c_ATgH-sY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Tumor+Classification+Using+Fine-Tuned+GoogLeNet+Features+and+Machine+Learning+Algorithms%3A+IoMT+Enabled+CAD+System&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Sekhar%2C+Ardhendu&rft.au=Biswas%2C+Soumen&rft.au=Hazra%2C+Ranjay&rft.au=Sunaniya%2C+Arun+Kumar&rft.date=2022-03-01&rft.issn=2168-2208&rft.eissn=2168-2208&rft.volume=26&rft.issue=3&rft.spage=983&rft_id=info:doi/10.1109%2FJBHI.2021.3100758&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon