Assessment of egg freshness by prediction of Haugh unit and albumen pH using an artificial neural network

Eggs are a good source of high quality protein and knowing their quality (physical and chemical properties) during storage is of great importance. Thus, the aim of this research was to design a computer vision system to assess egg freshness during storage time. To this end, 210 intact eggs were coll...

Full description

Saved in:
Bibliographic Details
Published inJournal of food measurement & characterization Vol. 12; no. 3; pp. 1449 - 1459
Main Authors Nematinia, Elham, Abdanan Mehdizadeh, Saman
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2193-4126
2193-4134
DOI10.1007/s11694-018-9760-1

Cover

Abstract Eggs are a good source of high quality protein and knowing their quality (physical and chemical properties) during storage is of great importance. Thus, the aim of this research was to design a computer vision system to assess egg freshness during storage time. To this end, 210 intact eggs were collected and stored for 30 days under room conditions (25 ± 2 °C and 20 ± 3%). After imaging, every other day, some internal and external quality characteristics including yolk height, yolk and albumen pH, yolk and albumen density and Haugh unit (HU) were measured as destructive parameters and area index (D) egg weight as non-destructive parameters. Based on Pearson correlation coefficients, area index were significantly correlated with all destructive variables ( p  < 0.05). In order to predict egg freshness, artificial neural network was trained by Levenberg–Marquardt, scaled conjugate gradient, Bayesian regulation, resilient and radial basis algorithms. The best result of artificial neural network for HU and albumen pH prediction was achieved by the Levenberg–Marquardt algorithm with the correlation coefficient of 0.93 and 0.87, respectively.
AbstractList Eggs are a good source of high quality protein and knowing their quality (physical and chemical properties) during storage is of great importance. Thus, the aim of this research was to design a computer vision system to assess egg freshness during storage time. To this end, 210 intact eggs were collected and stored for 30 days under room conditions (25 ± 2 °C and 20 ± 3%). After imaging, every other day, some internal and external quality characteristics including yolk height, yolk and albumen pH, yolk and albumen density and Haugh unit (HU) were measured as destructive parameters and area index (D) egg weight as non-destructive parameters. Based on Pearson correlation coefficients, area index were significantly correlated with all destructive variables (p < 0.05). In order to predict egg freshness, artificial neural network was trained by Levenberg–Marquardt, scaled conjugate gradient, Bayesian regulation, resilient and radial basis algorithms. The best result of artificial neural network for HU and albumen pH prediction was achieved by the Levenberg–Marquardt algorithm with the correlation coefficient of 0.93 and 0.87, respectively.
Eggs are a good source of high quality protein and knowing their quality (physical and chemical properties) during storage is of great importance. Thus, the aim of this research was to design a computer vision system to assess egg freshness during storage time. To this end, 210 intact eggs were collected and stored for 30 days under room conditions (25 ± 2 °C and 20 ± 3%). After imaging, every other day, some internal and external quality characteristics including yolk height, yolk and albumen pH, yolk and albumen density and Haugh unit (HU) were measured as destructive parameters and area index (D) egg weight as non-destructive parameters. Based on Pearson correlation coefficients, area index were significantly correlated with all destructive variables ( p  < 0.05). In order to predict egg freshness, artificial neural network was trained by Levenberg–Marquardt, scaled conjugate gradient, Bayesian regulation, resilient and radial basis algorithms. The best result of artificial neural network for HU and albumen pH prediction was achieved by the Levenberg–Marquardt algorithm with the correlation coefficient of 0.93 and 0.87, respectively.
Author Nematinia, Elham
Abdanan Mehdizadeh, Saman
Author_xml – sequence: 1
  givenname: Elham
  surname: Nematinia
  fullname: Nematinia, Elham
  organization: Department of Mechanics of Biosystems Engineering, Faculty of Agricultural Engineering and Rural Development, Ramin Agriculture and Natural Resources University of Khuzestan
– sequence: 2
  givenname: Saman
  orcidid: 0000-0002-4798-8031
  surname: Abdanan Mehdizadeh
  fullname: Abdanan Mehdizadeh, Saman
  email: saman.abdanan@gmail.com, s.abdanan@ramin.ac.ir
  organization: Department of Mechanics of Biosystems Engineering, Faculty of Agricultural Engineering and Rural Development, Ramin Agriculture and Natural Resources University of Khuzestan
BookMark eNp9kU1LJDEQhsOisH79gL0FvOylNdXJ5OMosjoLghc9h0y6uo3bk55N0iz--007sguCnqqoep_ipd5jchCniIR8A3YBjKnLDCCNaBjoxijJGvhCjlowvBHAxcG_vpVfyVnOz4wxACWE5EckXOWMOW8xFjr1FIeB9gnzU6xDunmhu4Rd8CVMcVmv3Tw80TmGQl3sqBs3cyXpbk3nHOJQh9SlEvrggxtpxDm9lvJnSr9OyWHvxoxnb_WEPN78eLheN3f3tz-vr-4az4UpjfQb1QkPRnfKiU73bNOtJBhgomdaw8pILZBLhtAJKZ1pHXCvUIPkK4WGn5Dv-7u7NP2eMRe7DdnjOLqI05xtCxy0NhLaKj1_J32e5hSrO8vb-lKpVmo5qPYqn6acE_bWh-KWl5TkwmiB2SUFu0_B1hTskoKFSsI7cpfC1qWXT5l2z-SqjQOm_54-hv4CWYeajQ
CitedBy_id crossref_primary_10_1016_j_jfca_2022_105049
crossref_primary_10_1016_j_psj_2025_105073
crossref_primary_10_1007_s11694_024_02678_5
crossref_primary_10_1016_j_cej_2024_158183
crossref_primary_10_1016_j_biosystemseng_2024_11_008
crossref_primary_10_1016_j_psj_2024_103829
crossref_primary_10_1080_10408398_2023_2245899
crossref_primary_10_5187_jast_2022_e56
crossref_primary_10_1016_j_jfoodeng_2024_112168
crossref_primary_10_1038_s41598_022_20111_z
crossref_primary_10_1016_j_foodhyd_2019_105393
crossref_primary_10_1016_j_lwt_2024_116151
crossref_primary_10_1590_1806_9061_2023_1895
crossref_primary_10_3390_ani13142354
crossref_primary_10_3390_foods10030632
crossref_primary_10_2139_ssrn_4133566
crossref_primary_10_3390_agriculture11111176
crossref_primary_10_1016_j_psj_2024_104074
crossref_primary_10_1016_j_foodres_2022_111443
crossref_primary_10_3389_fvets_2023_1195074
crossref_primary_10_1007_s12011_024_04078_8
crossref_primary_10_1016_j_jfoodeng_2020_110036
crossref_primary_10_1038_s41598_024_56351_4
crossref_primary_10_1590_fst_110322
crossref_primary_10_3390_s22093496
crossref_primary_10_3923_ijps_2023_73_83
crossref_primary_10_1080_00071668_2023_2220113
crossref_primary_10_1080_1828051X_2020_1870174
crossref_primary_10_3390_foods13223563
crossref_primary_10_2478_azibna_2023_0010
crossref_primary_10_3390_foods11193082
crossref_primary_10_1007_s12393_024_09385_3
crossref_primary_10_1016_j_fpsl_2020_100574
crossref_primary_10_1016_j_ijmst_2022_10_006
crossref_primary_10_1080_00071668_2019_1631446
crossref_primary_10_1093_fqsafe_fyab021
crossref_primary_10_3390_app12010380
crossref_primary_10_1016_j_livsci_2021_104453
Cites_doi 10.1093/ps/79.12.1725
10.13031/2013.19167
10.1111/j.1365-2621.2003.tb05776.x
10.1006/bioe.2002.0122
10.1016/0893-6080(89)90020-8
10.1080/10942912.2015.1075215
10.1111/j.1365-2621.2010.02482.x
10.1007/s13197-014-1509-1
10.1093/ps/84.11.1774
10.1111/j.1750-3841.2006.00008.x
10.1002/jsfa.3454
10.1007/s00217-005-0179-7
10.3382/ps.2009-00028
10.1093/ps/83.10.1619
10.1016/j.aca.2009.07.049
10.1016/j.compag.2007.08.005
10.4314/wsa.v34i2.183640
10.1093/ps/85.3.550
10.1093/japr/14.3.548
10.1093/ps/84.10.1653
10.1093/ps/80.8.1240
10.1002/jsfa.2528
10.1016/j.jfoodeng.2008.04.013
10.1016/j.chemolab.2005.04.012
10.1111/j.1365-2621.2002.tb11398.x
10.1007/s11947-009-0265-0
10.1016/j.jfoodeng.2010.01.018
10.1515/ijfe-2015-0220
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Copyright Springer Nature B.V. Sep 2018
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Copyright Springer Nature B.V. Sep 2018
DBID AAYXX
CITATION
3V.
7X2
8FE
8FG
8FH
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
HCIFZ
L6V
M0K
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
DOI 10.1007/s11694-018-9760-1
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Agricultural Science
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Agricultural Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database

AGRICOLA
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Diet & Clinical Nutrition
EISSN 2193-4134
EndPage 1459
ExternalDocumentID 10_1007_s11694_018_9760_1
GroupedDBID .VR
06C
06D
0R~
203
2J2
2JY
2KG
2KM
2LR
4.4
406
408
409
40E
5VS
7X2
8FE
8FG
8FH
95-
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACOKC
ACPIV
ACREN
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AYJHY
B-.
BENPR
BGLVJ
BGNMA
BHPHI
CCPQU
CSCUP
DDRTE
DPUIP
EBLON
EBS
EJD
ESBYG
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GQ8
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HZ~
IKXTQ
IWAJR
IXD
IZIGR
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
L6V
LLZTM
M0K
M4Y
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
PIMPY
PROAC
PT4
PTHSS
QOR
R89
ROL
RSV
S16
SAP
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SZN
TUC
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
3V.
8FK
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
7S9
L.6
ID FETCH-LOGICAL-c349t-6cb7d4c198d7a4d8f0bd5619104f088159684e360e1d466a92a13c7e816357e93
IEDL.DBID BENPR
ISSN 2193-4126
IngestDate Thu Oct 02 06:01:31 EDT 2025
Thu Jul 24 10:11:06 EDT 2025
Thu Apr 24 23:03:28 EDT 2025
Wed Oct 01 01:09:58 EDT 2025
Fri Feb 21 02:37:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Computer vision
Freshness
Artificial neural network
Egg
Haugh unit
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-6cb7d4c198d7a4d8f0bd5619104f088159684e360e1d466a92a13c7e816357e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4798-8031
OpenAccessLink https://www.proquest.com/docview/3216967579?pq-origsite=%requestingapplication%&accountid=15518
PQID 3216967579
PQPubID 2044295
PageCount 11
ParticipantIDs proquest_miscellaneous_2131889612
proquest_journals_3216967579
crossref_citationtrail_10_1007_s11694_018_9760_1
crossref_primary_10_1007_s11694_018_9760_1
springer_journals_10_1007_s11694_018_9760_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180900
2018-9-00
20180901
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 9
  year: 2018
  text: 20180900
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of food measurement & characterization
PublicationTitleAbbrev Food Measure
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Abdanan MehdizadehSMinaeiSHancockNHKarimi TorshiziMAAn intelligent system for egg quality classification based on visible-infrared transmittance spectroscopyInf. Process. Agric.201412105114
LinJLinYHsiehMYangCAn automatic system for eggshell quality monitoringTrans. ASAE200144313231328
ScottTASilversidesFGThe effect of storage and strain of hen on egg qualityPoult. Sci.200079121725172910.1093/ps/79.12.17251:STN:280:DC%2BD3M7ks1Grtg%3D%3D11194033
MertensKDe KetelaereBKamersBBamelisFRKempsBJVerhoelstEMDe BaerdemaekerJGDecuypereEMDirt detection on brown eggs by means of color computer visionPoult. Sci.200584101653165910.1093/ps/84.10.16531:STN:280:DC%2BD2MnlsVansg%3D%3D16335136
SilversidesFGBudgellKThe relationships among measures of egg albumen height, pH, and whipping volumePoult. Sci.200483101619162310.1093/ps/83.10.16191:STN:280:DC%2BD2crjvFCrtg%3D%3D15510543
KimSHNoHKKimSDPrinyawiwatkulWEffect of plasticizer concentration and solvent types on shelf-life of eggs coated with chitosanJ. Food. Sci.2006714S349S35310.1111/j.1750-3841.2006.00008.x1:CAS:528:DC%2BD28Xms1Wksrg%3D
ŞekerogluAAltuntaşEEffects of egg weight on egg quality characteristicsJ. Sci. Food. Agric.200989337938310.1002/jsfa.34541:CAS:528:DC%2BD1MXhs1Kkur4%3D
GiunchiABerardinelliARagniLFabbriASilaghiFANon-destructive freshness assessment of shell eggs using FT-NIR spectroscopyJ. Food. Eng.200889214214810.1016/j.jfoodeng.2008.04.0131:CAS:528:DC%2BD1cXhtVWnsb3M
KarouiRKempsBBamelisFDe KetelaereBMertenKSchoonheydtRDecuypereEDe BaerdemaekerJDevelopment of a rapid method based on front-face fluorescence spectroscopy for the monitoring of egg freshness: 2—evolution of egg yolkEur. Food. Res. Technol.2006223218018810.1007/s00217-005-0179-71:CAS:528:DC%2BD28Xks1Churw%3D
NarushinVGRomanovMNBogatyrVPAP–animal production technology: relationship between pre-incubation egg parameters and chick weight after hatching in layer breedsBiosyst. Eng.200283337338110.1006/bioe.2002.0122
CraninxMFievezVVlaeminckBDe BaetsBArtificial neural network models of the rumen fermentation pattern in dairy cattleComput. Electron. Agric.200860222623810.1016/j.compag.2007.08.005
ZhaoJLinHChenQHuangXSunZZhouFIdentification of egg’s freshness using NIR and support vector data descriptionJ. Food. Eng.201098440841410.1016/j.jfoodeng.2010.01.018
XieLHettiarachchyNSJuZYMeullenetJWangHSlavikMFJanesMEEdible film coating to minimize eggshell breakage and reduce post-wash bacterial contamination measured by dye penetration in eggsJ. Food. Sci.200267128028410.1111/j.1365-2621.2002.tb11398.x1:CAS:528:DC%2BD38XhsVSltbY%3D
AttarMZFathiMMNon-destructive acoustic resonance method for evaluating eggshell strength and thicknessInt. J. Biophys.201441915
BhaleSNoHKPrinyawiwatkulWFarrAJNadarajahKMeyersSPChitosan coating improves shelf life of eggsJ. Food. Sci.20036872378238310.1111/j.1365-2621.2003.tb05776.x1:CAS:528:DC%2BD3sXnslGhsbs%3D
Abdanan MehdizadehSNadiFExperimental and numerical analysis for prediction of mechanical properties of eggshellInt. J. Food. Eng.201612328729310.1515/ijfe-2015-0220
SilversidesFGScottTAEffect of storage and layer age on quality of eggs from two lines of hensPoult. Sci.20018081240124510.1093/ps/80.8.12401:STN:280:DC%2BD3MvkvFCruw%3D%3D11495479
JonesDRMusgroveMTEffects of extended storage on egg quality factorsPoult. Sci.200584111774177710.1093/ps/84.11.17741:STN:280:DC%2BD28%2FnvVWqug%3D%3D16463976
OliveiraGEFigueiredoTCSouzaMROliveiraALCancadoSVGloriaMBABioactive amines and quality of egg from Dekalb hens under different storage conditionsPoult. Sci.200988112428243410.3382/ps.2009-000281:CAS:528:DC%2BD1MXhsVertL%2FN19834096
YongweiWWangJZhouBLuQMonitoring storage time and quality attribute of egg based on electronic noseAnal. Chim. Acta2009650218318810.1016/j.aca.2009.07.0491:CAS:528:DC%2BD1MXhtVOmt7rE
Abdel-NourNNgadiMPrasherSKarimiYPrediction of egg freshness and albumen quality using visible/near infrared spectroscopyFood. Bioprocess. Technol.20114573173610.1007/s11947-009-0265-0
M. Rossi, A. Hidalgo, C. Pompei, F. Giuffrida, A new approach to the identification of incubator reject eggs in pasteurized whole egg products obtained from fresh eggs. In European Symposium on the Quality of Eggs and Egg Products, WPSA Italian Branch, Bergamo (1999) pp. 451–456
DehrouyehMHOmidMAhmadiHMohtasebiSSJamzadMGrading and quality inspection of defected eggs using machine visionIJAST20101742330
RyuKNNoHKEffects of storage temperature on quality of eggs coated with chitosanJ. Chitin Chitosan2009143143148
DoganADemirpenceHCobanerMPrediction of groundwater levels from lake levels and climate data using ANN approachWater Sa2008342199208
SchwageleFPoserRKrockelLApplication of low-resolution NMR spectroscopy of intact eggs—measurement of quality determining physical characteristicsFleischwirtschaft20018110103106
MehdizadehSAMinaeiSTorshiziMKMohajeraniEEffect of UV irradiation, sample thickness and storage temperature on storability, bacterial activity and functional properties of liquid eggJ. Food. Sci. Technol.20155274414442210.1007/s13197-014-1509-11:CAS:528:DC%2BC2cXhsV2qu7vJ
USDAUS standards, grades, and weight classes for shell eggs2008Washington, DCUSDA Agricultural Marketing Service
KeenerKMMcAvoyKCFoegedingJBCurtisPAAndersonKEOsborneJAEffect of testing temperature on internal egg quality measurementsPoult. Sci.200685355055510.1093/ps/85.3.5501:STN:280:DC%2BD287msVCgtg%3D%3D16553288
RajiAOAliyuJIgwebuikeJUChiromaSEffect of storage methods and time on egg quality traits of laying hens in a hot dry climateJ. Agric. Biol. Sci.20094417
AboonajmiMSaberiAAbbasian NajafabadiTKondoNQuality assessment of poultry egg based on visible–near infrared spectroscopy and radial basis function networksInt. J. Food. Prop.20161951163117210.1080/10942912.2015.10752151:CAS:528:DC%2BC28XisFGktLc%3D
HornikKStinchcombeMWhiteHMultilayer feedforward networks are universal approximatorsNeural Netw.19892535936610.1016/0893-6080(89)90020-8
SamliHEAgmaASenkoyluNEffects of storage time and temperature on egg quality in old laying hensJ. Appl. Poult. Res.200514354855310.1093/japr/14.3.548
ÇakmakYSBoyacıİHQuality evaluation of chickpeas using an artificial neural network integrated computer vision systemInt. J. Food. Sci. Technol.201146119420010.1111/j.1365-2621.2010.02482.x1:CAS:528:DC%2BC3MXotlyltg%3D%3D
SeregélyZTubolyJFarkas,EDalmadiIInvestigating the properties of egg white pasteurised by ultra-high hydrostatic pressure and gamma irradiation by evaluating their NIR spectra and chemosensor array sensor signal responses using different methods of qualitative analysisChemom. Intell. Lab. Syst.200682111512110.1016/j.chemolab.2005.04.0121:CAS:528:DC%2BD28XjvVWmurk%3D
BerardinelliAGiunchiAGuarnieriAPezziFRagniLShell egg albumen height assessment by FT-NIR spectroscopyTrans. ASAE2005484142310.13031/2013.191671:CAS:528:DC%2BD2MXhtVKlt7nN
KempsBJBamelisFRDe KetelaereBMertensKTonaKDecuypereEMDe BaerdemaekerJGVisible transmission spectroscopy for the assessment of egg freshnessJ. Sci. Food. Agric.20068691399140610.1002/jsfa.25281:CAS:528:DC%2BD28XntVeqsbY%3D
StadelmanWJCotterilledOWEgg Science and Technology1995WestportAVI Publ. Co. Inc.
N Abdel-Nour (9760_CR15) 2011; 4
WJ Stadelman (9760_CR10) 1995
DR Jones (9760_CR12) 2005; 84
J Zhao (9760_CR16) 2010; 98
A Berardinelli (9760_CR17) 2005; 48
YS Çakmak (9760_CR28) 2011; 46
FG Silversides (9760_CR11) 2001; 80
R Karoui (9760_CR24) 2006; 223
HE Samli (9760_CR30) 2005; 14
SH Kim (9760_CR35) 2006; 71
KN Ryu (9760_CR7) 2009; 14
9760_CR8
USDA (9760_CR1) 2008
S Bhale (9760_CR13) 2003; 68
W Yongwei (9760_CR37) 2009; 650
J Lin (9760_CR21) 2001; 44
TA Scott (9760_CR9) 2000; 79
KM Keener (9760_CR31) 2006; 85
A Dogan (9760_CR26) 2008; 34
Z Seregély (9760_CR4) 2006; 82
VG Narushin (9760_CR2) 2002; 83
S Abdanan Mehdizadeh (9760_CR25) 2016; 12
GE Oliveira (9760_CR34) 2009; 88
A Giunchi (9760_CR14) 2008; 89
K Mertens (9760_CR18) 2005; 84
MZ Attar (9760_CR19) 2014; 4
M Aboonajmi (9760_CR22) 2016; 19
FG Silversides (9760_CR33) 2004; 83
BJ Kemps (9760_CR38) 2006; 86
S Abdanan Mehdizadeh (9760_CR3) 2014; 1
AO Raji (9760_CR32) 2009; 4
A Şekeroglu (9760_CR5) 2009; 89
F Schwagele (9760_CR23) 2001; 81
SA Mehdizadeh (9760_CR29) 2015; 52
L Xie (9760_CR6) 2002; 67
K Hornik (9760_CR27) 1989; 2
MH Dehrouyeh (9760_CR20) 2010; 17
M Craninx (9760_CR36) 2008; 60
References_xml – reference: M. Rossi, A. Hidalgo, C. Pompei, F. Giuffrida, A new approach to the identification of incubator reject eggs in pasteurized whole egg products obtained from fresh eggs. In European Symposium on the Quality of Eggs and Egg Products, WPSA Italian Branch, Bergamo (1999) pp. 451–456
– reference: Abdel-NourNNgadiMPrasherSKarimiYPrediction of egg freshness and albumen quality using visible/near infrared spectroscopyFood. Bioprocess. Technol.20114573173610.1007/s11947-009-0265-0
– reference: SamliHEAgmaASenkoyluNEffects of storage time and temperature on egg quality in old laying hensJ. Appl. Poult. Res.200514354855310.1093/japr/14.3.548
– reference: CraninxMFievezVVlaeminckBDe BaetsBArtificial neural network models of the rumen fermentation pattern in dairy cattleComput. Electron. Agric.200860222623810.1016/j.compag.2007.08.005
– reference: ScottTASilversidesFGThe effect of storage and strain of hen on egg qualityPoult. Sci.200079121725172910.1093/ps/79.12.17251:STN:280:DC%2BD3M7ks1Grtg%3D%3D11194033
– reference: SilversidesFGBudgellKThe relationships among measures of egg albumen height, pH, and whipping volumePoult. Sci.200483101619162310.1093/ps/83.10.16191:STN:280:DC%2BD2crjvFCrtg%3D%3D15510543
– reference: USDAUS standards, grades, and weight classes for shell eggs2008Washington, DCUSDA Agricultural Marketing Service
– reference: KempsBJBamelisFRDe KetelaereBMertensKTonaKDecuypereEMDe BaerdemaekerJGVisible transmission spectroscopy for the assessment of egg freshnessJ. Sci. Food. Agric.20068691399140610.1002/jsfa.25281:CAS:528:DC%2BD28XntVeqsbY%3D
– reference: StadelmanWJCotterilledOWEgg Science and Technology1995WestportAVI Publ. Co. Inc.
– reference: YongweiWWangJZhouBLuQMonitoring storage time and quality attribute of egg based on electronic noseAnal. Chim. Acta2009650218318810.1016/j.aca.2009.07.0491:CAS:528:DC%2BD1MXhtVOmt7rE
– reference: SeregélyZTubolyJFarkas,EDalmadiIInvestigating the properties of egg white pasteurised by ultra-high hydrostatic pressure and gamma irradiation by evaluating their NIR spectra and chemosensor array sensor signal responses using different methods of qualitative analysisChemom. Intell. Lab. Syst.200682111512110.1016/j.chemolab.2005.04.0121:CAS:528:DC%2BD28XjvVWmurk%3D
– reference: RajiAOAliyuJIgwebuikeJUChiromaSEffect of storage methods and time on egg quality traits of laying hens in a hot dry climateJ. Agric. Biol. Sci.20094417
– reference: BhaleSNoHKPrinyawiwatkulWFarrAJNadarajahKMeyersSPChitosan coating improves shelf life of eggsJ. Food. Sci.20036872378238310.1111/j.1365-2621.2003.tb05776.x1:CAS:528:DC%2BD3sXnslGhsbs%3D
– reference: AttarMZFathiMMNon-destructive acoustic resonance method for evaluating eggshell strength and thicknessInt. J. Biophys.201441915
– reference: JonesDRMusgroveMTEffects of extended storage on egg quality factorsPoult. Sci.200584111774177710.1093/ps/84.11.17741:STN:280:DC%2BD28%2FnvVWqug%3D%3D16463976
– reference: KeenerKMMcAvoyKCFoegedingJBCurtisPAAndersonKEOsborneJAEffect of testing temperature on internal egg quality measurementsPoult. Sci.200685355055510.1093/ps/85.3.5501:STN:280:DC%2BD287msVCgtg%3D%3D16553288
– reference: MertensKDe KetelaereBKamersBBamelisFRKempsBJVerhoelstEMDe BaerdemaekerJGDecuypereEMDirt detection on brown eggs by means of color computer visionPoult. Sci.200584101653165910.1093/ps/84.10.16531:STN:280:DC%2BD2MnlsVansg%3D%3D16335136
– reference: RyuKNNoHKEffects of storage temperature on quality of eggs coated with chitosanJ. Chitin Chitosan2009143143148
– reference: Abdanan MehdizadehSMinaeiSHancockNHKarimi TorshiziMAAn intelligent system for egg quality classification based on visible-infrared transmittance spectroscopyInf. Process. Agric.201412105114
– reference: GiunchiABerardinelliARagniLFabbriASilaghiFANon-destructive freshness assessment of shell eggs using FT-NIR spectroscopyJ. Food. Eng.200889214214810.1016/j.jfoodeng.2008.04.0131:CAS:528:DC%2BD1cXhtVWnsb3M
– reference: NarushinVGRomanovMNBogatyrVPAP–animal production technology: relationship between pre-incubation egg parameters and chick weight after hatching in layer breedsBiosyst. Eng.200283337338110.1006/bioe.2002.0122
– reference: Abdanan MehdizadehSNadiFExperimental and numerical analysis for prediction of mechanical properties of eggshellInt. J. Food. Eng.201612328729310.1515/ijfe-2015-0220
– reference: KarouiRKempsBBamelisFDe KetelaereBMertenKSchoonheydtRDecuypereEDe BaerdemaekerJDevelopment of a rapid method based on front-face fluorescence spectroscopy for the monitoring of egg freshness: 2—evolution of egg yolkEur. Food. Res. Technol.2006223218018810.1007/s00217-005-0179-71:CAS:528:DC%2BD28Xks1Churw%3D
– reference: ÇakmakYSBoyacıİHQuality evaluation of chickpeas using an artificial neural network integrated computer vision systemInt. J. Food. Sci. Technol.201146119420010.1111/j.1365-2621.2010.02482.x1:CAS:528:DC%2BC3MXotlyltg%3D%3D
– reference: KimSHNoHKKimSDPrinyawiwatkulWEffect of plasticizer concentration and solvent types on shelf-life of eggs coated with chitosanJ. Food. Sci.2006714S349S35310.1111/j.1750-3841.2006.00008.x1:CAS:528:DC%2BD28Xms1Wksrg%3D
– reference: SilversidesFGScottTAEffect of storage and layer age on quality of eggs from two lines of hensPoult. Sci.20018081240124510.1093/ps/80.8.12401:STN:280:DC%2BD3MvkvFCruw%3D%3D11495479
– reference: LinJLinYHsiehMYangCAn automatic system for eggshell quality monitoringTrans. ASAE200144313231328
– reference: MehdizadehSAMinaeiSTorshiziMKMohajeraniEEffect of UV irradiation, sample thickness and storage temperature on storability, bacterial activity and functional properties of liquid eggJ. Food. Sci. Technol.20155274414442210.1007/s13197-014-1509-11:CAS:528:DC%2BC2cXhsV2qu7vJ
– reference: BerardinelliAGiunchiAGuarnieriAPezziFRagniLShell egg albumen height assessment by FT-NIR spectroscopyTrans. ASAE2005484142310.13031/2013.191671:CAS:528:DC%2BD2MXhtVKlt7nN
– reference: AboonajmiMSaberiAAbbasian NajafabadiTKondoNQuality assessment of poultry egg based on visible–near infrared spectroscopy and radial basis function networksInt. J. Food. Prop.20161951163117210.1080/10942912.2015.10752151:CAS:528:DC%2BC28XisFGktLc%3D
– reference: ZhaoJLinHChenQHuangXSunZZhouFIdentification of egg’s freshness using NIR and support vector data descriptionJ. Food. Eng.201098440841410.1016/j.jfoodeng.2010.01.018
– reference: OliveiraGEFigueiredoTCSouzaMROliveiraALCancadoSVGloriaMBABioactive amines and quality of egg from Dekalb hens under different storage conditionsPoult. Sci.200988112428243410.3382/ps.2009-000281:CAS:528:DC%2BD1MXhsVertL%2FN19834096
– reference: HornikKStinchcombeMWhiteHMultilayer feedforward networks are universal approximatorsNeural Netw.19892535936610.1016/0893-6080(89)90020-8
– reference: DehrouyehMHOmidMAhmadiHMohtasebiSSJamzadMGrading and quality inspection of defected eggs using machine visionIJAST20101742330
– reference: DoganADemirpenceHCobanerMPrediction of groundwater levels from lake levels and climate data using ANN approachWater Sa2008342199208
– reference: ŞekerogluAAltuntaşEEffects of egg weight on egg quality characteristicsJ. Sci. Food. Agric.200989337938310.1002/jsfa.34541:CAS:528:DC%2BD1MXhs1Kkur4%3D
– reference: XieLHettiarachchyNSJuZYMeullenetJWangHSlavikMFJanesMEEdible film coating to minimize eggshell breakage and reduce post-wash bacterial contamination measured by dye penetration in eggsJ. Food. Sci.200267128028410.1111/j.1365-2621.2002.tb11398.x1:CAS:528:DC%2BD38XhsVSltbY%3D
– reference: SchwageleFPoserRKrockelLApplication of low-resolution NMR spectroscopy of intact eggs—measurement of quality determining physical characteristicsFleischwirtschaft20018110103106
– volume: 4
  start-page: 9
  issue: 1
  year: 2014
  ident: 9760_CR19
  publication-title: Int. J. Biophys.
– volume: 79
  start-page: 1725
  issue: 12
  year: 2000
  ident: 9760_CR9
  publication-title: Poult. Sci.
  doi: 10.1093/ps/79.12.1725
– volume: 48
  start-page: 1423
  issue: 4
  year: 2005
  ident: 9760_CR17
  publication-title: Trans. ASAE
  doi: 10.13031/2013.19167
– volume: 68
  start-page: 2378
  issue: 7
  year: 2003
  ident: 9760_CR13
  publication-title: J. Food. Sci.
  doi: 10.1111/j.1365-2621.2003.tb05776.x
– volume: 83
  start-page: 373
  issue: 3
  year: 2002
  ident: 9760_CR2
  publication-title: Biosyst. Eng.
  doi: 10.1006/bioe.2002.0122
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 9760_CR27
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 19
  start-page: 1163
  issue: 5
  year: 2016
  ident: 9760_CR22
  publication-title: Int. J. Food. Prop.
  doi: 10.1080/10942912.2015.1075215
– volume: 46
  start-page: 194
  issue: 1
  year: 2011
  ident: 9760_CR28
  publication-title: Int. J. Food. Sci. Technol.
  doi: 10.1111/j.1365-2621.2010.02482.x
– volume: 52
  start-page: 4414
  issue: 7
  year: 2015
  ident: 9760_CR29
  publication-title: J. Food. Sci. Technol.
  doi: 10.1007/s13197-014-1509-1
– volume: 81
  start-page: 103
  issue: 10
  year: 2001
  ident: 9760_CR23
  publication-title: Fleischwirtschaft
– volume: 84
  start-page: 1774
  issue: 11
  year: 2005
  ident: 9760_CR12
  publication-title: Poult. Sci.
  doi: 10.1093/ps/84.11.1774
– volume: 71
  start-page: S349S353
  issue: 4
  year: 2006
  ident: 9760_CR35
  publication-title: J. Food. Sci.
  doi: 10.1111/j.1750-3841.2006.00008.x
– volume: 89
  start-page: 379
  issue: 3
  year: 2009
  ident: 9760_CR5
  publication-title: J. Sci. Food. Agric.
  doi: 10.1002/jsfa.3454
– volume: 223
  start-page: 180
  issue: 2
  year: 2006
  ident: 9760_CR24
  publication-title: Eur. Food. Res. Technol.
  doi: 10.1007/s00217-005-0179-7
– volume: 88
  start-page: 2428
  issue: 11
  year: 2009
  ident: 9760_CR34
  publication-title: Poult. Sci.
  doi: 10.3382/ps.2009-00028
– volume: 1
  start-page: 105
  issue: 2
  year: 2014
  ident: 9760_CR3
  publication-title: Inf. Process. Agric.
– volume: 14
  start-page: 143
  issue: 3
  year: 2009
  ident: 9760_CR7
  publication-title: J. Chitin Chitosan
– volume: 83
  start-page: 1619
  issue: 10
  year: 2004
  ident: 9760_CR33
  publication-title: Poult. Sci.
  doi: 10.1093/ps/83.10.1619
– volume-title: Egg Science and Technology
  year: 1995
  ident: 9760_CR10
– volume: 650
  start-page: 183
  issue: 2
  year: 2009
  ident: 9760_CR37
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2009.07.049
– volume-title: US standards, grades, and weight classes for shell eggs
  year: 2008
  ident: 9760_CR1
– volume: 60
  start-page: 226
  issue: 2
  year: 2008
  ident: 9760_CR36
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2007.08.005
– volume: 4
  start-page: 1
  issue: 4
  year: 2009
  ident: 9760_CR32
  publication-title: J. Agric. Biol. Sci.
– volume: 34
  start-page: 199
  issue: 2
  year: 2008
  ident: 9760_CR26
  publication-title: Water Sa
  doi: 10.4314/wsa.v34i2.183640
– volume: 44
  start-page: 1323
  issue: 3
  year: 2001
  ident: 9760_CR21
  publication-title: Trans. ASAE
– volume: 85
  start-page: 550
  issue: 3
  year: 2006
  ident: 9760_CR31
  publication-title: Poult. Sci.
  doi: 10.1093/ps/85.3.550
– volume: 14
  start-page: 548
  issue: 3
  year: 2005
  ident: 9760_CR30
  publication-title: J. Appl. Poult. Res.
  doi: 10.1093/japr/14.3.548
– ident: 9760_CR8
– volume: 84
  start-page: 1653
  issue: 10
  year: 2005
  ident: 9760_CR18
  publication-title: Poult. Sci.
  doi: 10.1093/ps/84.10.1653
– volume: 80
  start-page: 1240
  issue: 8
  year: 2001
  ident: 9760_CR11
  publication-title: Poult. Sci.
  doi: 10.1093/ps/80.8.1240
– volume: 86
  start-page: 1399
  issue: 9
  year: 2006
  ident: 9760_CR38
  publication-title: J. Sci. Food. Agric.
  doi: 10.1002/jsfa.2528
– volume: 89
  start-page: 142
  issue: 2
  year: 2008
  ident: 9760_CR14
  publication-title: J. Food. Eng.
  doi: 10.1016/j.jfoodeng.2008.04.013
– volume: 17
  start-page: 23
  issue: 4
  year: 2010
  ident: 9760_CR20
  publication-title: IJAST
– volume: 82
  start-page: 115
  issue: 1
  year: 2006
  ident: 9760_CR4
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2005.04.012
– volume: 67
  start-page: 280
  issue: 1
  year: 2002
  ident: 9760_CR6
  publication-title: J. Food. Sci.
  doi: 10.1111/j.1365-2621.2002.tb11398.x
– volume: 4
  start-page: 731
  issue: 5
  year: 2011
  ident: 9760_CR15
  publication-title: Food. Bioprocess. Technol.
  doi: 10.1007/s11947-009-0265-0
– volume: 98
  start-page: 408
  issue: 4
  year: 2010
  ident: 9760_CR16
  publication-title: J. Food. Eng.
  doi: 10.1016/j.jfoodeng.2010.01.018
– volume: 12
  start-page: 287
  issue: 3
  year: 2016
  ident: 9760_CR25
  publication-title: Int. J. Food. Eng.
  doi: 10.1515/ijfe-2015-0220
SSID ssj0001174463
Score 2.294265
Snippet Eggs are a good source of high quality protein and knowing their quality (physical and chemical properties) during storage is of great importance. Thus, the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1449
SubjectTerms Albumen
Algorithms
Artificial neural networks
Bayesian analysis
Chemical properties
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Computer vision
Correlation coefficient
Correlation coefficients
egg weight
Eggs
Engineering
Food Science
Freshness
image analysis
Neural networks
Original Paper
Parameters
pH effects
prediction
Protein sources
storage time
Vision systems
Yolk
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6h7QF64LG0IqUgIyEOVKniR534uCqUFYieWqmcIr-yraiyq25yoL-esTfeLRUg9RQltvOwZ8afM-NvAN5zq1VpSpmbo8bnwnCLdtAyPNW6EQ0rXCT1-X4qp-fi68XRxbCPe5mi3ZNLMlrqzWY3KgONLUUFLWWR45JnK9JtjWBr8uXHtzu_VhBli5hDDdWR54IymfyZf7vPnzPSBmbe84zGCefkGZylV13Fmfw87DtzaG_vsTg-8Fuew9MBgJLJSmJewCPfjuHxccr7Nobs05XvyAcyMIZek9NE2D-G7Tv0hS_harKm9STzhvjZjDS4er8M1pOYX2RxE7xAoWUonup-dkl6NCFEt47EuGjfksWUhNj7GV4kQYxXjBYk8GzGQ4xS34Hzk89nx9N8SN2QWy5Ul0trSicsVZUrtXBVUxiHSA2xiWjQriGGkpXwXBaeOiGlVkxTbktf0cCP5xXfhVE7b_0rIBwRZmMY01Yh_HRacc6NVM4hUimFYxkUafhqO_Cah_Qa1_WGkTn0do29XYfermkGH9dNFitSj_9V3k8yUQ_6vaw5w1q41ipVBu_WxThQwd2iWz_vlzWjaC8rhRAyg4MkBptb_POBew-q_RqesCBHMextH0bdTe_fIE7qzNtBL34D4QkHHg
  priority: 102
  providerName: Springer Nature
Title Assessment of egg freshness by prediction of Haugh unit and albumen pH using an artificial neural network
URI https://link.springer.com/article/10.1007/s11694-018-9760-1
https://www.proquest.com/docview/3216967579
https://www.proquest.com/docview/2131889612
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2193-4134
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001174463
  issn: 2193-4126
  databaseCode: AFBBN
  dateStart: 20070301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2193-4134
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001174463
  issn: 2193-4126
  databaseCode: BENPR
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2193-4134
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001174463
  issn: 2193-4126
  databaseCode: AGYKE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH_a2gscEAwQ2UZlJMQBFJHYnhMfECrQrgJRIcSkcYr8lW7SlJatPey_5z03aQCJnaLEcSzlffhnv-ffA3gpnNGFLVRqT-qQSisc-kHH8daYWtY885HU5-tczc7k5_OT8z2Yd2dhKK2y84nRUfuloz3yt4LnSiO6LfT71a-UqkZRdLUroWHa0gr-XaQY24chJ2asAQw_TObfvve7LgjAZSyvhpYqUplz1YU643k6HIOSMtAHFCpL878nqx6B_hM0jXPR9CE8aEEkG2-l_gj2QnMAyafLsGavWMv0ecXmHdH-Adz_g3bwMVyOd3ScbFmzsFiwGlfdF-T1mL1lq2uK3lBPap6ZzeKCbdD0mWk8i_nMoWGrGaOc-QU-ZKR-WyYKRvyY8RKzy5_A2XTy4-MsbUsupE5IvU6Vs4WXLtelL4z0ZZ1ZjwgLMYWs0R8h9lGlDEJlIfdSKaO5yYUrQpkTr13Q4ikMmmUTngETiAxry7lxGmGjN1oIYZX2HhFGIT1PIOv-beVaPnIqi3FV9UzKJI4KxVGROKo8gde7LqstGcddLx93Aqtau7ypei1K4MWuGS2KwiSmCcvNTcVz9HOlRuiXwJtO0P0n_jvg4d0DHsE9TpoV89OOYbC-3oTnCGjWdgT75fR0BMPx6c8vk1Grs78BkQby5A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9RAEJ4QeFAfjKLGIuqaqA-axnZ32d4-EIMCKQIXYyDhre6vHiSkd3J3Mfxz_m3O7LVXNZE3npprr23amf3m287sNwCvhTO6sIVK7VYdUmmFQxx0HH8aU8uaZz6K-hwPVXkqv5xtna3Ar24tDJVVdpgYgdqPHX0j_yB4rjSy20J_nPxIqWsUZVe7Fhqmba3gt6PEWLuw4zBc_8Qp3HT7YBft_Ybz_b2Tz2XadhlInZB6lipnCy8dTr59YaQf1Jn1SCowjMoahyCGezWQQags5F4qZTQ3uXBFGOQk5RZIjAlDwJrEi-Hkb-3T3vDrt_4rDxJ-Gdu5ITKIVOZcdanVuH4Pn4mKQBBzCpWl-d_BsWe8_yRpY-zbfwD3W9LKdhZe9hBWQrMOye5FmLG3rFUWvWTDTth_He79IXP4CC52lvKfbFyzMBqxGmf554SyzF6zyRVli-hMOlya-eiczRFqmGk8i_XToWGTklGN_gh3MnL3hfIFIz3OuInV7I_h9FZe_hNYbcZNeApMIBOtLefGaaSp3mghhFXae2Q0hfQ8gax7t5Vr9c-pDcdl1Ss3kzkqNEdF5qjyBN4tT5ksxD9u-vNmZ7CqxYFp1XttAq-Wh3EEU1rGNGE8n1Y8R1wdaKSaCbzvDN1f4r833Lj5hi_hTnlyfFQdHQwPn8FdTl4Wa-M2YXV2NQ_PkUzN7IvWYxl8v-1B8hs9KSuN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hVuJxKGWhItAWIyEOoLTxo058XLVdFgorDlQqp-BXthVVdtVNDuXXM85jt1SAhDhFie087PH4m8z4G4BX3GqVmlTG5qDwsTDcoh60DE-1LkTBEteQ-nyayPGp-HB2cNblOV300e69S7Ld0xBYmspqf-6K_dXGNyoDpS3FyZrKJEbzZx0tkxQFfX347uvJjd8siLhFk08NpyaPBWWy923-7j6_rk4ryHnLS9osPqOH8K1_7Tbm5PteXZk9--MWo-N_fNcmbHTAlAxbSXoEd3w5gHuHfT64AURHF74ir0nHJHpJJj2R_wAe3KA1fAwXwyXdJ5kVxE-npECr_jxoVWKuyfwqeIdCy1A81vX0nNSoWoguHWnipX1J5mMSYvKneJEE8W6ZLkjg32wOTfT6EzgdHX85HMddSofYcqGqWFqTOmGpylyqhcuKxDhEcIhZRIH6DrGVzITnMvHUCSm1Yppym_qMBt48r_gWrJWz0j8FwhF5FoYxbRXCUqcV59xI5RwimFQ4FkHSD2VuO77zkHbjMl8xNYfezrG389DbOY3gzbLJvCX7-Fvl7V4-8m7eL3LOsBbaYKmK4OWyGAcquGF06Wf1ImcU9WimEFpG8LYXidUt_vjAZ_9U-wXc_Xw0yj--n5w8h_ssiFQTGbcNa9VV7XcQSlVmt5suPwEEKBLh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+egg+freshness+by+prediction+of+Haugh+unit+and+albumen+pH+using+an+artificial+neural+network&rft.jtitle=Journal+of+food+measurement+%26+characterization&rft.date=2018-09-01&rft.pub=Springer+Nature+B.V&rft.issn=2193-4126&rft.eissn=2193-4134&rft.volume=12&rft.issue=3&rft.spage=1449&rft.epage=1459&rft_id=info:doi/10.1007%2Fs11694-018-9760-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-4126&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-4126&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-4126&client=summon