Reconstruction of Continuous Brachial Arterial Pressure From Continuous Finger Arterial Pressure Using a Two-Level Optimization Strategy
Objective: We attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique without arm-cuff calibration. A novel method called two-level optimization (TOP) strategy is proposed as follows. Methods: We first derive a...
        Saved in:
      
    
          | Published in | IEEE transactions on biomedical engineering Vol. 67; no. 11; pp. 3173 - 3184 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.11.2020
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9294 1558-2531 1558-2531  | 
| DOI | 10.1109/TBME.2020.2979249 | 
Cover
| Abstract | Objective: We attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique without arm-cuff calibration. A novel method called two-level optimization (TOP) strategy is proposed as follows. Methods: We first derive a simplified transfer function (TF) based on a tube-load model with only two parameters to be estimated, a coefficient <inline-formula><tex-math notation="LaTeX">B</tex-math></inline-formula> and a time delay <inline-formula><tex-math notation="LaTeX">\Delta t</tex-math></inline-formula>. Then, at level one, two minimization problems are formulated to estimate the optimal coefficient <inline-formula><tex-math notation="LaTeX">{B^{opt}}</tex-math></inline-formula> and time delay <inline-formula><tex-math notation="LaTeX">\Delta {t^{opt}}</tex-math></inline-formula>. Then, we can derive an optimal TF <inline-formula><tex-math notation="LaTeX">{h^{opt}}(t)</tex-math></inline-formula>. However, this derivation requires true (or reference) BAP waves. Therefore, at level two, we apply multiple linear regression (MLR) to further model the relationship between the derived optimal parameters and subjects' physiologic parameters. Hence, eventually, one can estimate coefficient <inline-formula><tex-math notation="LaTeX">{B^{MLR}}</tex-math></inline-formula> and time delay <inline-formula><tex-math notation="LaTeX">\Delta {t^{MLR}}</tex-math></inline-formula> from subject's physiologic parameters to derive the MLR-based TF <inline-formula><tex-math notation="LaTeX">{h^{MLR}}(t)</tex-math></inline-formula> for the BAP reconstruction. Results: Twenty-one volunteers were recruited for the data collection. The mean ± standard deviation of the root mean square errors between the reference BAP waves and the BAP waves reconstructed by <inline-formula><tex-math notation="LaTeX">{h^{opt}}(t)</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">{h^{MLR}}(t)</tex-math></inline-formula>, and a generalized transfer function (GTF) were 3.46 ± 1.42 mmHg, 3.61 ± 2.28 mmHg, and 6.80 ± 3.73 mmHg (significantly larger with p < 0.01), respectively. Conclusions: The proposed method can be considered as a semi-individualized TF which reconstructs significantly better BAP waves than a GTF. Significance: The proposed TOP strategy can potentially be useful in more general reconstruction of proximal BP waves. | 
    
|---|---|
| AbstractList | We attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique without arm-cuff calibration. A novel method called two-level optimization (TOP) strategy is proposed as follows.OBJECTIVEWe attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique without arm-cuff calibration. A novel method called two-level optimization (TOP) strategy is proposed as follows.We first derive a simplified transfer function (TF) based on a tube-load model with only two parameters to be estimated, a coefficient B and a time delay ∆t. Then, at level one, two minimization problems are formulated to estimate the optimal coefficient Bopt and time delay ∆topt. Then, we can derive an optimal TF hopt(t). However, this derivation requires true (or reference) BAP waves. Therefore, at level two, we apply multiple linear regression (MLR) to further model the relationship between the derived optimal parameters and subjects' physiologic parameters. Hence, eventually, one can estimate coefficient BMLR and time delay ∆tMLR from subject's physiologic parameters to derive the MLR-based TF hMLR(t) for the BAP reconstruction.METHODSWe first derive a simplified transfer function (TF) based on a tube-load model with only two parameters to be estimated, a coefficient B and a time delay ∆t. Then, at level one, two minimization problems are formulated to estimate the optimal coefficient Bopt and time delay ∆topt. Then, we can derive an optimal TF hopt(t). However, this derivation requires true (or reference) BAP waves. Therefore, at level two, we apply multiple linear regression (MLR) to further model the relationship between the derived optimal parameters and subjects' physiologic parameters. Hence, eventually, one can estimate coefficient BMLR and time delay ∆tMLR from subject's physiologic parameters to derive the MLR-based TF hMLR(t) for the BAP reconstruction.Twenty-one volunteers were recruited for the data collection. The mean ± standard deviation of the root mean square errors between the reference BAP waves and the BAP waves reconstructed by hopt(t), hMLR(t), and a generalized transfer function (GTF) were 3.46 ± 1.42 mmHg, 3.61 ± 2.28 mmHg, and 6.80 ± 3.73 mmHg (significantly larger with p < 0.01), respectively.RESULTSTwenty-one volunteers were recruited for the data collection. The mean ± standard deviation of the root mean square errors between the reference BAP waves and the BAP waves reconstructed by hopt(t), hMLR(t), and a generalized transfer function (GTF) were 3.46 ± 1.42 mmHg, 3.61 ± 2.28 mmHg, and 6.80 ± 3.73 mmHg (significantly larger with p < 0.01), respectively.The proposed method can be considered as a semi-individualized TF which reconstructs significantly better BAP waves than a GTF.CONCLUSIONSThe proposed method can be considered as a semi-individualized TF which reconstructs significantly better BAP waves than a GTF.The proposed TOP strategy can potentially be useful in more general reconstruction of proximal BP waves.SIGNIFICANCEThe proposed TOP strategy can potentially be useful in more general reconstruction of proximal BP waves. Objective: We attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique without arm-cuff calibration. A novel method called two-level optimization (TOP) strategy is proposed as follows. Methods: We first derive a simplified transfer function (TF) based on a tube-load model with only two parameters to be estimated, a coefficient <inline-formula><tex-math notation="LaTeX">B</tex-math></inline-formula> and a time delay <inline-formula><tex-math notation="LaTeX">\Delta t</tex-math></inline-formula>. Then, at level one, two minimization problems are formulated to estimate the optimal coefficient <inline-formula><tex-math notation="LaTeX">{B^{opt}}</tex-math></inline-formula> and time delay <inline-formula><tex-math notation="LaTeX">\Delta {t^{opt}}</tex-math></inline-formula>. Then, we can derive an optimal TF <inline-formula><tex-math notation="LaTeX">{h^{opt}}(t)</tex-math></inline-formula>. However, this derivation requires true (or reference) BAP waves. Therefore, at level two, we apply multiple linear regression (MLR) to further model the relationship between the derived optimal parameters and subjects' physiologic parameters. Hence, eventually, one can estimate coefficient <inline-formula><tex-math notation="LaTeX">{B^{MLR}}</tex-math></inline-formula> and time delay <inline-formula><tex-math notation="LaTeX">\Delta {t^{MLR}}</tex-math></inline-formula> from subject's physiologic parameters to derive the MLR-based TF <inline-formula><tex-math notation="LaTeX">{h^{MLR}}(t)</tex-math></inline-formula> for the BAP reconstruction. Results: Twenty-one volunteers were recruited for the data collection. The mean ± standard deviation of the root mean square errors between the reference BAP waves and the BAP waves reconstructed by <inline-formula><tex-math notation="LaTeX">{h^{opt}}(t)</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">{h^{MLR}}(t)</tex-math></inline-formula>, and a generalized transfer function (GTF) were 3.46 ± 1.42 mmHg, 3.61 ± 2.28 mmHg, and 6.80 ± 3.73 mmHg (significantly larger with p < 0.01), respectively. Conclusions: The proposed method can be considered as a semi-individualized TF which reconstructs significantly better BAP waves than a GTF. Significance: The proposed TOP strategy can potentially be useful in more general reconstruction of proximal BP waves. We attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique without arm-cuff calibration. A novel method called two-level optimization (TOP) strategy is proposed as follows. We first derive a simplified transfer function (TF) based on a tube-load model with only two parameters to be estimated, a coefficient B and a time delay ∆t. Then, at level one, two minimization problems are formulated to estimate the optimal coefficient B and time delay ∆t . Then, we can derive an optimal TF h (t). However, this derivation requires true (or reference) BAP waves. Therefore, at level two, we apply multiple linear regression (MLR) to further model the relationship between the derived optimal parameters and subjects' physiologic parameters. Hence, eventually, one can estimate coefficient B and time delay ∆t from subject's physiologic parameters to derive the MLR-based TF h (t) for the BAP reconstruction. Twenty-one volunteers were recruited for the data collection. The mean ± standard deviation of the root mean square errors between the reference BAP waves and the BAP waves reconstructed by h (t), h (t), and a generalized transfer function (GTF) were 3.46 ± 1.42 mmHg, 3.61 ± 2.28 mmHg, and 6.80 ± 3.73 mmHg (significantly larger with p < 0.01), respectively. The proposed method can be considered as a semi-individualized TF which reconstructs significantly better BAP waves than a GTF. The proposed TOP strategy can potentially be useful in more general reconstruction of proximal BP waves. Objective: We attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique without arm-cuff calibration. A novel method called two-level optimization (TOP) strategy is proposed as follows. Methods: We first derive a simplified transfer function (TF) based on a tube-load model with only two parameters to be estimated, a coefficient [Formula Omitted] and a time delay [Formula Omitted]. Then, at level one, two minimization problems are formulated to estimate the optimal coefficient [Formula Omitted] and time delay [Formula Omitted]. Then, we can derive an optimal TF [Formula Omitted]. However, this derivation requires true (or reference) BAP waves. Therefore, at level two, we apply multiple linear regression (MLR) to further model the relationship between the derived optimal parameters and subjects’ physiologic parameters. Hence, eventually, one can estimate coefficient [Formula Omitted] and time delay [Formula Omitted] from subject's physiologic parameters to derive the MLR-based TF [Formula Omitted] for the BAP reconstruction. Results: Twenty-one volunteers were recruited for the data collection. The mean ± standard deviation of the root mean square errors between the reference BAP waves and the BAP waves reconstructed by [Formula Omitted], [Formula Omitted], and a generalized transfer function (GTF) were 3.46 ± 1.42 mmHg, 3.61 ± 2.28 mmHg, and 6.80 ± 3.73 mmHg (significantly larger with p < 0.01), respectively. Conclusions: The proposed method can be considered as a semi-individualized TF which reconstructs significantly better BAP waves than a GTF. Significance: The proposed TOP strategy can potentially be useful in more general reconstruction of proximal BP waves.  | 
    
| Author | Chen, Haibo Liu, Jia Zhang, Pandeng Liu, Chang  | 
    
| Author_xml | – sequence: 1 givenname: Pandeng orcidid: 0000-0002-4657-6430 surname: Zhang fullname: Zhang, Pandeng organization: Laboratory for Engineering and Scientific ComputingShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences – sequence: 2 givenname: Chang orcidid: 0000-0003-0672-3202 surname: Liu fullname: Liu, Chang email: chang.liu2@siat.ac.cn organization: Laboratory for Engineering and Scientific ComputingShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences – sequence: 3 givenname: Haibo surname: Chen fullname: Chen, Haibo organization: Department of CardiologyFirst Affiliated Hospital of Shenzhen University – sequence: 4 givenname: Jia orcidid: 0000-0003-0672-3202 surname: Liu fullname: Liu, Jia email: jia.liu@siat.ac.cn organization: Laboratory for Engineering and Scientific Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32149618$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kd1u1DAQhS1URLeFB0BIKFJvuMni_8SX7aoLSIuKYHttOc6kuErixXZA5Ql4bJzuUqEKcWVb8x3PzDkn6Gj0IyD0kuAlIVi93V58vFxSTPGSqkpRrp6gBRGiLqlg5AgtMCZ1qajix-gkxtv85DWXz9Axo4QrSeoF-vUZrB9jCpNNzo-F74qVH5MbJz_F4iIY-9WZvjgPCcJ8-RQgxilAsQ5--Btdu_EGwj_A65grhSm2P3y5ge_QF1e75Ab309w3_JKCSXBz9xw97Uwf4cXhPEXX68vt6n25uXr3YXW-KS3jKpXSNrKTqmpqLlTVtbLmilHLmWwbBi0XpOW2obgxDTFWSMBc4Yp2remINESyU_Rm_-8u-G8TxKQHFy30vRkh76Epq4TAQqo6o2eP0Fs_hTFPpykXrCYV5jP1-kBNzQCt3gU3mHCn_3icAbIHbPAxBugeEIL1nKOec9RzjvqQY9ZUjzTWpXvDsl2u_6_y1V7pAOChk8I0j0vZbxy3q_o | 
    
| CODEN | IEBEAX | 
    
| CitedBy_id | crossref_primary_10_1109_JBHI_2023_3265857 crossref_primary_10_3389_fphys_2023_1180631  | 
    
| Cites_doi | 10.1109/TBME.2010.2073467 10.1109/TBME.2017.2710622 10.1016/S1569-9048(03)00090-9 10.1109/JBHI.2014.2307273 10.1055/s-0038-1636862 10.1186/s12871-019-0844-1 10.1213/ANE.0000000000000965 10.1016/j.csda.2011.04.012 10.1007/s11517-014-1185-3 10.1161/01.CIR.95.7.1827 10.1109/TBME.2017.2756018 10.1161/01.CIR.94.8.1870 10.1080/00207169408804325 10.1115/1.4035451 10.1115/1.3155011 10.1093/cvr/13.10.595 10.1038/s41598-017-14844-5 10.1183/09031936.00226711 10.1161/01.HYP.0000238330.08894.17 10.1093/europace/eul017 10.1111/1467-9868.00374 10.1016/S0008-6363(97)00003-5 10.1109/TBME.2015.2441951 10.3389/fphys.2011.00072 10.1016/j.conengprac.2009.06.006 10.1038/srep33230 10.1016/S0096-3003(02)00828-7 10.11613/BM.2015.015 10.2170/jjphysiol.51.217 10.1109/TITB.2011.2177668 10.1038/s41598-018-28604-6 10.1109/TAC.2016.2618367 10.1152/ajpheart.00155.2009 10.1097/00004872-199715120-00086 10.1109/10.764946 10.1111/j.1469-7793.1999.0001o.x 10.1093/cvr/6.6.648 10.1109/CIC.2003.1291140 10.1152/ajpheart.1998.274.4.H1386  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 | 
    
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8  | 
    
| DOI | 10.1109/TBME.2020.2979249 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore (NTUSG) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Engineering  | 
    
| EISSN | 1558-2531 | 
    
| EndPage | 3184 | 
    
| ExternalDocumentID | 32149618 10_1109_TBME_2020_2979249 9028172  | 
    
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: National Key R&D Program of Ministry of Science and Technology of China grantid: 2016YFC1301602 – fundername: Shenzhen Science and Technology Innovation Commission grantid: JCYJ20160608153506088/ZDSYS201703031711426 – fundername: National Natural Science Foundation of China grantid: 81661168015/61703017 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8  | 
    
| ID | FETCH-LOGICAL-c349t-6cb6f697b84597fd684932c436db3ed451d4cb20bab1ac56e049072fdaf16a163 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0018-9294 1558-2531  | 
    
| IngestDate | Sun Sep 28 02:03:42 EDT 2025 Mon Jun 30 08:41:06 EDT 2025 Thu Apr 03 07:08:22 EDT 2025 Thu Apr 24 22:56:51 EDT 2025 Wed Oct 01 04:08:49 EDT 2025 Wed Aug 27 02:31:11 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c349t-6cb6f697b84597fd684932c436db3ed451d4cb20bab1ac56e049072fdaf16a163 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-0672-3202 0000-0002-4657-6430  | 
    
| PMID | 32149618 | 
    
| PQID | 2453817048 | 
    
| PQPubID | 85474 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | ieee_primary_9028172 pubmed_primary_32149618 crossref_citationtrail_10_1109_TBME_2020_2979249 proquest_miscellaneous_2375505698 crossref_primary_10_1109_TBME_2020_2979249 proquest_journals_2453817048  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-11-01 | 
    
| PublicationDateYYYYMMDD | 2020-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on biomedical engineering | 
    
| PublicationTitleAbbrev | TBME | 
    
| PublicationTitleAlternate | IEEE Trans Biomed Eng | 
    
| PublicationYear | 2020 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref34 ref12 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref10 ref2 ref1 ref39 james (ref37) 2013 ref17 ref16 ref19 neter (ref35) 1996 wetterer (ref22) 1956; 34 chen (ref32) 2005 ref24 ref23 paolo (ref18) 1997; 33 ref26 ref25 ref20 ref42 ref41 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 hsu (ref38) 2006 ref9 ref4 ref3 ref6 ref5 ref40  | 
    
| References_xml | – ident: ref9 doi: 10.1109/TBME.2010.2073467 – ident: ref19 doi: 10.1109/TBME.2017.2710622 – ident: ref27 doi: 10.1016/S1569-9048(03)00090-9 – ident: ref41 doi: 10.1109/JBHI.2014.2307273 – start-page: 13 year: 2006 ident: ref38 article-title: The Bonferroni inequality method publication-title: Multiple comparisons – ident: ref28 doi: 10.1055/s-0038-1636862 – ident: ref8 doi: 10.1186/s12871-019-0844-1 – ident: ref1 doi: 10.1213/ANE.0000000000000965 – ident: ref44 doi: 10.1016/j.csda.2011.04.012 – ident: ref14 doi: 10.1007/s11517-014-1185-3 – ident: ref7 doi: 10.1161/01.CIR.95.7.1827 – ident: ref34 doi: 10.1109/TBME.2017.2756018 – ident: ref17 doi: 10.1161/01.CIR.94.8.1870 – ident: ref30 doi: 10.1080/00207169408804325 – ident: ref15 doi: 10.1115/1.4035451 – ident: ref16 doi: 10.1115/1.3155011 – ident: ref29 doi: 10.1093/cvr/13.10.595 – start-page: 176 year: 2013 ident: ref37 article-title: Cross-validation publication-title: An Introduction to Statistical Learning – ident: ref21 doi: 10.1038/s41598-017-14844-5 – ident: ref5 doi: 10.1183/09031936.00226711 – ident: ref23 doi: 10.1161/01.HYP.0000238330.08894.17 – ident: ref2 doi: 10.1093/europace/eul017 – ident: ref43 doi: 10.1111/1467-9868.00374 – volume: 33 start-page: 698 year: 1997 ident: ref18 article-title: Models of brachial to finger pulse wave distortion and pressure decrement publication-title: Cardiovasc Res doi: 10.1016/S0008-6363(97)00003-5 – ident: ref42 doi: 10.1109/TBME.2015.2441951 – ident: ref26 doi: 10.3389/fphys.2011.00072 – ident: ref40 doi: 10.1016/j.conengprac.2009.06.006 – ident: ref11 doi: 10.1038/srep33230 – ident: ref33 doi: 10.1016/S0096-3003(02)00828-7 – ident: ref39 doi: 10.11613/BM.2015.015 – start-page: 285 year: 2005 ident: ref32 article-title: The optimization methods using derivatives publication-title: The optimization theory and algorithm[M] – ident: ref12 doi: 10.2170/jjphysiol.51.217 – ident: ref10 doi: 10.1109/TITB.2011.2177668 – ident: ref20 doi: 10.1038/s41598-018-28604-6 – ident: ref31 doi: 10.1109/TAC.2016.2618367 – ident: ref13 doi: 10.1152/ajpheart.00155.2009 – ident: ref4 doi: 10.1097/00004872-199715120-00086 – ident: ref6 doi: 10.1109/10.764946 – ident: ref3 doi: 10.1111/j.1469-7793.1999.0001o.x – volume: 34 start-page: 609 year: 1956 ident: ref22 article-title: The effect of cardiac activity on the dynamics of the arterial system publication-title: Clinical Weekly – ident: ref24 doi: 10.1093/cvr/6.6.648 – ident: ref36 doi: 10.1109/CIC.2003.1291140 – ident: ref25 doi: 10.1152/ajpheart.1998.274.4.H1386 – start-page: 318 year: 1996 ident: ref35 article-title: Multiple regression publication-title: Applied Linear Statistical Models  | 
    
| SSID | ssj0014846 | 
    
| Score | 2.3614964 | 
    
| Snippet | Objective: We attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique... We attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique without...  | 
    
| SourceID | proquest pubmed crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 3173 | 
    
| SubjectTerms | Arteries Blood pressure Blood pressure measurement Brachytherapy Coefficients continuous non-invasive blood pressure Data collection Delay effects Elastic waves Fingers Impedance Integrated circuit modeling Optimization Parameter estimation proximal pressure reconstruction Reconstruction Regression models Strategy Time lag Transfer functions tube-load model Unloading vascular unloading technique  | 
    
| Title | Reconstruction of Continuous Brachial Arterial Pressure From Continuous Finger Arterial Pressure Using a Two-Level Optimization Strategy | 
    
| URI | https://ieeexplore.ieee.org/document/9028172 https://www.ncbi.nlm.nih.gov/pubmed/32149618 https://www.proquest.com/docview/2453817048 https://www.proquest.com/docview/2375505698  | 
    
| Volume | 67 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PVRwoC8eS0tlJE6IbGPHceJjW3VVVSxctlJvkV-REDRB210h-AX8bDy2Ny2oVL1FyiRxMuP4G8_MNwDvykJ5FJDLrOacZdwqmilpWMaErTV1sowb-tNP4vySX1yVV2vwYaiFcc6F5DM3xsMQy7e9WeJW2REyjfgFdx3Wq1rEWq0hYsDrWJSTUz-BmeQpgklzeTQ7mZ55T5DlYyYr9Df-WoNCU5X_48uwzky2YLoaYUwv-TpeLvTY_PqHvPGxr7ANzxLgJMfRQnZgzXW78PQODeEubE5TgH0PfqM7eksqS_qWIH_Vl27ZL2_IyRxTL-PdguWSWF04d2Qy76_vik7CduE9giFHgSgy-9FnHzFjiXz2f63rVA5KElvuz-dwOTmbnZ5nqVlDZgouF5kwWrRCVrrm3kdprai5h4aGF8LqwlleUsuNZrlWmipTCochx4q1VrVUKI8KX8BG13fuFZDKW0irqPd0qOZVqaSVLjfMVtrjRcvqEeQr9TUmMZljQ41vTfBoctmgxhvUeJM0PoL3wyXfI43HQ8J7qLhBMOlsBAcrG2nSRL9pGC8DxyH3o3o7nPZTFOMuqnP-izesqNAPFNLLvIy2Ndwb-0Rh053X9z9zH57gyGLx4wFsePW7Nx4FLfRhMP8_1xMDPg | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkE5FGgpLBQwEidEtrFjO_GxRV0tsCmXrdRb5Fck1DZB210h-AX8bPzaUFBB3CJl4tiZmXjGM_MNwGtWSGcF5CKrKCUZNRJnUmiSEW4qha1g8UC_PuHTU_rhjJ1twNuhFsZaG5LP7Nhfhli-6fXKH5UdeKQRt-HegtuMUspitdYQM6BVLMvJsVNhImiKYeJcHMyP6mPnC5J8TETpPY7fdqHQVuXvFmbYaSb3oV7PMSaYnI9XSzXW3_-Ab_zfRTyA7WRyosMoIw9hw3Y7cO8aEOEO3KlTiH0XfniH9BesLOpb5BGsPnerfnWFjhY--TKOFmQXxfrChUWTRX95nXQSDgxvIAxZCkii-dc-m_mcJfTJ_bcuU0EoSni53x7B6eR4_m6apXYNmS6oWGZcK95yUaqKOi-lNbyizjjUtOBGFdZQhg3ViuRKKiw149YHHUvSGtliLp1duAebXd_ZJ4BKJyOtxM7XwYqWTAojbK6JKZWzGA2pRpCv2dfohGXuW2pcNMGnyUXjOd54jjeJ4yN4MzzyJQJ5_It41zNuIEw8G8H-WkaapOpXDaEsoBxSN6tXw22npD7yIjvrvnhDitJ7glw4msdRtoaxfaco33bn6c3vfAl3p_N61szen3x8Blt-lrEUch82nSjY584mWqoXQRV-AocXBos | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+Continuous+Brachial+Arterial+Pressure+From+Continuous+Finger+Arterial+Pressure+Using+a+Two-Level+Optimization+Strategy&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Zhang%2C+Pandeng&rft.au=Liu%2C+Chang&rft.au=Chen%2C+Haibo&rft.au=Liu%2C+Jia&rft.date=2020-11-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=67&rft.issue=11&rft.spage=3173&rft_id=info:doi/10.1109%2FTBME.2020.2979249&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |