Reconstruction of Continuous Brachial Arterial Pressure From Continuous Finger Arterial Pressure Using a Two-Level Optimization Strategy

Objective: We attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique without arm-cuff calibration. A novel method called two-level optimization (TOP) strategy is proposed as follows. Methods: We first derive a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 67; no. 11; pp. 3173 - 3184
Main Authors Zhang, Pandeng, Liu, Chang, Chen, Haibo, Liu, Jia
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2020.2979249

Cover

Abstract Objective: We attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique without arm-cuff calibration. A novel method called two-level optimization (TOP) strategy is proposed as follows. Methods: We first derive a simplified transfer function (TF) based on a tube-load model with only two parameters to be estimated, a coefficient <inline-formula><tex-math notation="LaTeX">B</tex-math></inline-formula> and a time delay <inline-formula><tex-math notation="LaTeX">\Delta t</tex-math></inline-formula>. Then, at level one, two minimization problems are formulated to estimate the optimal coefficient <inline-formula><tex-math notation="LaTeX">{B^{opt}}</tex-math></inline-formula> and time delay <inline-formula><tex-math notation="LaTeX">\Delta {t^{opt}}</tex-math></inline-formula>. Then, we can derive an optimal TF <inline-formula><tex-math notation="LaTeX">{h^{opt}}(t)</tex-math></inline-formula>. However, this derivation requires true (or reference) BAP waves. Therefore, at level two, we apply multiple linear regression (MLR) to further model the relationship between the derived optimal parameters and subjects' physiologic parameters. Hence, eventually, one can estimate coefficient <inline-formula><tex-math notation="LaTeX">{B^{MLR}}</tex-math></inline-formula> and time delay <inline-formula><tex-math notation="LaTeX">\Delta {t^{MLR}}</tex-math></inline-formula> from subject's physiologic parameters to derive the MLR-based TF <inline-formula><tex-math notation="LaTeX">{h^{MLR}}(t)</tex-math></inline-formula> for the BAP reconstruction. Results: Twenty-one volunteers were recruited for the data collection. The mean ± standard deviation of the root mean square errors between the reference BAP waves and the BAP waves reconstructed by <inline-formula><tex-math notation="LaTeX">{h^{opt}}(t)</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">{h^{MLR}}(t)</tex-math></inline-formula>, and a generalized transfer function (GTF) were 3.46 ± 1.42 mmHg, 3.61 ± 2.28 mmHg, and 6.80 ± 3.73 mmHg (significantly larger with p < 0.01), respectively. Conclusions: The proposed method can be considered as a semi-individualized TF which reconstructs significantly better BAP waves than a GTF. Significance: The proposed TOP strategy can potentially be useful in more general reconstruction of proximal BP waves.
AbstractList We attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique without arm-cuff calibration. A novel method called two-level optimization (TOP) strategy is proposed as follows.OBJECTIVEWe attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique without arm-cuff calibration. A novel method called two-level optimization (TOP) strategy is proposed as follows.We first derive a simplified transfer function (TF) based on a tube-load model with only two parameters to be estimated, a coefficient B and a time delay ∆t. Then, at level one, two minimization problems are formulated to estimate the optimal coefficient Bopt and time delay ∆topt. Then, we can derive an optimal TF hopt(t). However, this derivation requires true (or reference) BAP waves. Therefore, at level two, we apply multiple linear regression (MLR) to further model the relationship between the derived optimal parameters and subjects' physiologic parameters. Hence, eventually, one can estimate coefficient BMLR and time delay ∆tMLR from subject's physiologic parameters to derive the MLR-based TF hMLR(t) for the BAP reconstruction.METHODSWe first derive a simplified transfer function (TF) based on a tube-load model with only two parameters to be estimated, a coefficient B and a time delay ∆t. Then, at level one, two minimization problems are formulated to estimate the optimal coefficient Bopt and time delay ∆topt. Then, we can derive an optimal TF hopt(t). However, this derivation requires true (or reference) BAP waves. Therefore, at level two, we apply multiple linear regression (MLR) to further model the relationship between the derived optimal parameters and subjects' physiologic parameters. Hence, eventually, one can estimate coefficient BMLR and time delay ∆tMLR from subject's physiologic parameters to derive the MLR-based TF hMLR(t) for the BAP reconstruction.Twenty-one volunteers were recruited for the data collection. The mean ± standard deviation of the root mean square errors between the reference BAP waves and the BAP waves reconstructed by hopt(t), hMLR(t), and a generalized transfer function (GTF) were 3.46 ± 1.42 mmHg, 3.61 ± 2.28 mmHg, and 6.80 ± 3.73 mmHg (significantly larger with p < 0.01), respectively.RESULTSTwenty-one volunteers were recruited for the data collection. The mean ± standard deviation of the root mean square errors between the reference BAP waves and the BAP waves reconstructed by hopt(t), hMLR(t), and a generalized transfer function (GTF) were 3.46 ± 1.42 mmHg, 3.61 ± 2.28 mmHg, and 6.80 ± 3.73 mmHg (significantly larger with p < 0.01), respectively.The proposed method can be considered as a semi-individualized TF which reconstructs significantly better BAP waves than a GTF.CONCLUSIONSThe proposed method can be considered as a semi-individualized TF which reconstructs significantly better BAP waves than a GTF.The proposed TOP strategy can potentially be useful in more general reconstruction of proximal BP waves.SIGNIFICANCEThe proposed TOP strategy can potentially be useful in more general reconstruction of proximal BP waves.
Objective: We attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique without arm-cuff calibration. A novel method called two-level optimization (TOP) strategy is proposed as follows. Methods: We first derive a simplified transfer function (TF) based on a tube-load model with only two parameters to be estimated, a coefficient <inline-formula><tex-math notation="LaTeX">B</tex-math></inline-formula> and a time delay <inline-formula><tex-math notation="LaTeX">\Delta t</tex-math></inline-formula>. Then, at level one, two minimization problems are formulated to estimate the optimal coefficient <inline-formula><tex-math notation="LaTeX">{B^{opt}}</tex-math></inline-formula> and time delay <inline-formula><tex-math notation="LaTeX">\Delta {t^{opt}}</tex-math></inline-formula>. Then, we can derive an optimal TF <inline-formula><tex-math notation="LaTeX">{h^{opt}}(t)</tex-math></inline-formula>. However, this derivation requires true (or reference) BAP waves. Therefore, at level two, we apply multiple linear regression (MLR) to further model the relationship between the derived optimal parameters and subjects' physiologic parameters. Hence, eventually, one can estimate coefficient <inline-formula><tex-math notation="LaTeX">{B^{MLR}}</tex-math></inline-formula> and time delay <inline-formula><tex-math notation="LaTeX">\Delta {t^{MLR}}</tex-math></inline-formula> from subject's physiologic parameters to derive the MLR-based TF <inline-formula><tex-math notation="LaTeX">{h^{MLR}}(t)</tex-math></inline-formula> for the BAP reconstruction. Results: Twenty-one volunteers were recruited for the data collection. The mean ± standard deviation of the root mean square errors between the reference BAP waves and the BAP waves reconstructed by <inline-formula><tex-math notation="LaTeX">{h^{opt}}(t)</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">{h^{MLR}}(t)</tex-math></inline-formula>, and a generalized transfer function (GTF) were 3.46 ± 1.42 mmHg, 3.61 ± 2.28 mmHg, and 6.80 ± 3.73 mmHg (significantly larger with p < 0.01), respectively. Conclusions: The proposed method can be considered as a semi-individualized TF which reconstructs significantly better BAP waves than a GTF. Significance: The proposed TOP strategy can potentially be useful in more general reconstruction of proximal BP waves.
We attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique without arm-cuff calibration. A novel method called two-level optimization (TOP) strategy is proposed as follows. We first derive a simplified transfer function (TF) based on a tube-load model with only two parameters to be estimated, a coefficient B and a time delay ∆t. Then, at level one, two minimization problems are formulated to estimate the optimal coefficient B and time delay ∆t . Then, we can derive an optimal TF h (t). However, this derivation requires true (or reference) BAP waves. Therefore, at level two, we apply multiple linear regression (MLR) to further model the relationship between the derived optimal parameters and subjects' physiologic parameters. Hence, eventually, one can estimate coefficient B and time delay ∆t from subject's physiologic parameters to derive the MLR-based TF h (t) for the BAP reconstruction. Twenty-one volunteers were recruited for the data collection. The mean ± standard deviation of the root mean square errors between the reference BAP waves and the BAP waves reconstructed by h (t), h (t), and a generalized transfer function (GTF) were 3.46 ± 1.42 mmHg, 3.61 ± 2.28 mmHg, and 6.80 ± 3.73 mmHg (significantly larger with p < 0.01), respectively. The proposed method can be considered as a semi-individualized TF which reconstructs significantly better BAP waves than a GTF. The proposed TOP strategy can potentially be useful in more general reconstruction of proximal BP waves.
Objective: We attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique without arm-cuff calibration. A novel method called two-level optimization (TOP) strategy is proposed as follows. Methods: We first derive a simplified transfer function (TF) based on a tube-load model with only two parameters to be estimated, a coefficient [Formula Omitted] and a time delay [Formula Omitted]. Then, at level one, two minimization problems are formulated to estimate the optimal coefficient [Formula Omitted] and time delay [Formula Omitted]. Then, we can derive an optimal TF [Formula Omitted]. However, this derivation requires true (or reference) BAP waves. Therefore, at level two, we apply multiple linear regression (MLR) to further model the relationship between the derived optimal parameters and subjects’ physiologic parameters. Hence, eventually, one can estimate coefficient [Formula Omitted] and time delay [Formula Omitted] from subject's physiologic parameters to derive the MLR-based TF [Formula Omitted] for the BAP reconstruction. Results: Twenty-one volunteers were recruited for the data collection. The mean ± standard deviation of the root mean square errors between the reference BAP waves and the BAP waves reconstructed by [Formula Omitted], [Formula Omitted], and a generalized transfer function (GTF) were 3.46 ± 1.42 mmHg, 3.61 ± 2.28 mmHg, and 6.80 ± 3.73 mmHg (significantly larger with p < 0.01), respectively. Conclusions: The proposed method can be considered as a semi-individualized TF which reconstructs significantly better BAP waves than a GTF. Significance: The proposed TOP strategy can potentially be useful in more general reconstruction of proximal BP waves.
Author Chen, Haibo
Liu, Jia
Zhang, Pandeng
Liu, Chang
Author_xml – sequence: 1
  givenname: Pandeng
  orcidid: 0000-0002-4657-6430
  surname: Zhang
  fullname: Zhang, Pandeng
  organization: Laboratory for Engineering and Scientific ComputingShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences
– sequence: 2
  givenname: Chang
  orcidid: 0000-0003-0672-3202
  surname: Liu
  fullname: Liu, Chang
  email: chang.liu2@siat.ac.cn
  organization: Laboratory for Engineering and Scientific ComputingShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
– sequence: 3
  givenname: Haibo
  surname: Chen
  fullname: Chen, Haibo
  organization: Department of CardiologyFirst Affiliated Hospital of Shenzhen University
– sequence: 4
  givenname: Jia
  orcidid: 0000-0003-0672-3202
  surname: Liu
  fullname: Liu, Jia
  email: jia.liu@siat.ac.cn
  organization: Laboratory for Engineering and Scientific Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32149618$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1u1DAQhS1URLeFB0BIKFJvuMni_8SX7aoLSIuKYHttOc6kuErixXZA5Ql4bJzuUqEKcWVb8x3PzDkn6Gj0IyD0kuAlIVi93V58vFxSTPGSqkpRrp6gBRGiLqlg5AgtMCZ1qajix-gkxtv85DWXz9Axo4QrSeoF-vUZrB9jCpNNzo-F74qVH5MbJz_F4iIY-9WZvjgPCcJ8-RQgxilAsQ5--Btdu_EGwj_A65grhSm2P3y5ge_QF1e75Ab309w3_JKCSXBz9xw97Uwf4cXhPEXX68vt6n25uXr3YXW-KS3jKpXSNrKTqmpqLlTVtbLmilHLmWwbBi0XpOW2obgxDTFWSMBc4Yp2remINESyU_Rm_-8u-G8TxKQHFy30vRkh76Epq4TAQqo6o2eP0Fs_hTFPpykXrCYV5jP1-kBNzQCt3gU3mHCn_3icAbIHbPAxBugeEIL1nKOec9RzjvqQY9ZUjzTWpXvDsl2u_6_y1V7pAOChk8I0j0vZbxy3q_o
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_JBHI_2023_3265857
crossref_primary_10_3389_fphys_2023_1180631
Cites_doi 10.1109/TBME.2010.2073467
10.1109/TBME.2017.2710622
10.1016/S1569-9048(03)00090-9
10.1109/JBHI.2014.2307273
10.1055/s-0038-1636862
10.1186/s12871-019-0844-1
10.1213/ANE.0000000000000965
10.1016/j.csda.2011.04.012
10.1007/s11517-014-1185-3
10.1161/01.CIR.95.7.1827
10.1109/TBME.2017.2756018
10.1161/01.CIR.94.8.1870
10.1080/00207169408804325
10.1115/1.4035451
10.1115/1.3155011
10.1093/cvr/13.10.595
10.1038/s41598-017-14844-5
10.1183/09031936.00226711
10.1161/01.HYP.0000238330.08894.17
10.1093/europace/eul017
10.1111/1467-9868.00374
10.1016/S0008-6363(97)00003-5
10.1109/TBME.2015.2441951
10.3389/fphys.2011.00072
10.1016/j.conengprac.2009.06.006
10.1038/srep33230
10.1016/S0096-3003(02)00828-7
10.11613/BM.2015.015
10.2170/jjphysiol.51.217
10.1109/TITB.2011.2177668
10.1038/s41598-018-28604-6
10.1109/TAC.2016.2618367
10.1152/ajpheart.00155.2009
10.1097/00004872-199715120-00086
10.1109/10.764946
10.1111/j.1469-7793.1999.0001o.x
10.1093/cvr/6.6.648
10.1109/CIC.2003.1291140
10.1152/ajpheart.1998.274.4.H1386
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2020.2979249
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore (NTUSG)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 3184
ExternalDocumentID 32149618
10_1109_TBME_2020_2979249
9028172
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of Ministry of Science and Technology of China
  grantid: 2016YFC1301602
– fundername: Shenzhen Science and Technology Innovation Commission
  grantid: JCYJ20160608153506088/ZDSYS201703031711426
– fundername: National Natural Science Foundation of China
  grantid: 81661168015/61703017
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-6cb6f697b84597fd684932c436db3ed451d4cb20bab1ac56e049072fdaf16a163
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Sun Sep 28 02:03:42 EDT 2025
Mon Jun 30 08:41:06 EDT 2025
Thu Apr 03 07:08:22 EDT 2025
Thu Apr 24 22:56:51 EDT 2025
Wed Oct 01 04:08:49 EDT 2025
Wed Aug 27 02:31:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-6cb6f697b84597fd684932c436db3ed451d4cb20bab1ac56e049072fdaf16a163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0672-3202
0000-0002-4657-6430
PMID 32149618
PQID 2453817048
PQPubID 85474
PageCount 12
ParticipantIDs ieee_primary_9028172
pubmed_primary_32149618
crossref_citationtrail_10_1109_TBME_2020_2979249
proquest_miscellaneous_2375505698
crossref_primary_10_1109_TBME_2020_2979249
proquest_journals_2453817048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref10
ref2
ref1
ref39
james (ref37) 2013
ref17
ref16
ref19
neter (ref35) 1996
wetterer (ref22) 1956; 34
chen (ref32) 2005
ref24
ref23
paolo (ref18) 1997; 33
ref26
ref25
ref20
ref42
ref41
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
hsu (ref38) 2006
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref9
  doi: 10.1109/TBME.2010.2073467
– ident: ref19
  doi: 10.1109/TBME.2017.2710622
– ident: ref27
  doi: 10.1016/S1569-9048(03)00090-9
– ident: ref41
  doi: 10.1109/JBHI.2014.2307273
– start-page: 13
  year: 2006
  ident: ref38
  article-title: The Bonferroni inequality method
  publication-title: Multiple comparisons
– ident: ref28
  doi: 10.1055/s-0038-1636862
– ident: ref8
  doi: 10.1186/s12871-019-0844-1
– ident: ref1
  doi: 10.1213/ANE.0000000000000965
– ident: ref44
  doi: 10.1016/j.csda.2011.04.012
– ident: ref14
  doi: 10.1007/s11517-014-1185-3
– ident: ref7
  doi: 10.1161/01.CIR.95.7.1827
– ident: ref34
  doi: 10.1109/TBME.2017.2756018
– ident: ref17
  doi: 10.1161/01.CIR.94.8.1870
– ident: ref30
  doi: 10.1080/00207169408804325
– ident: ref15
  doi: 10.1115/1.4035451
– ident: ref16
  doi: 10.1115/1.3155011
– ident: ref29
  doi: 10.1093/cvr/13.10.595
– start-page: 176
  year: 2013
  ident: ref37
  article-title: Cross-validation
  publication-title: An Introduction to Statistical Learning
– ident: ref21
  doi: 10.1038/s41598-017-14844-5
– ident: ref5
  doi: 10.1183/09031936.00226711
– ident: ref23
  doi: 10.1161/01.HYP.0000238330.08894.17
– ident: ref2
  doi: 10.1093/europace/eul017
– ident: ref43
  doi: 10.1111/1467-9868.00374
– volume: 33
  start-page: 698
  year: 1997
  ident: ref18
  article-title: Models of brachial to finger pulse wave distortion and pressure decrement
  publication-title: Cardiovasc Res
  doi: 10.1016/S0008-6363(97)00003-5
– ident: ref42
  doi: 10.1109/TBME.2015.2441951
– ident: ref26
  doi: 10.3389/fphys.2011.00072
– ident: ref40
  doi: 10.1016/j.conengprac.2009.06.006
– ident: ref11
  doi: 10.1038/srep33230
– ident: ref33
  doi: 10.1016/S0096-3003(02)00828-7
– ident: ref39
  doi: 10.11613/BM.2015.015
– start-page: 285
  year: 2005
  ident: ref32
  article-title: The optimization methods using derivatives
  publication-title: The optimization theory and algorithm[M]
– ident: ref12
  doi: 10.2170/jjphysiol.51.217
– ident: ref10
  doi: 10.1109/TITB.2011.2177668
– ident: ref20
  doi: 10.1038/s41598-018-28604-6
– ident: ref31
  doi: 10.1109/TAC.2016.2618367
– ident: ref13
  doi: 10.1152/ajpheart.00155.2009
– ident: ref4
  doi: 10.1097/00004872-199715120-00086
– ident: ref6
  doi: 10.1109/10.764946
– ident: ref3
  doi: 10.1111/j.1469-7793.1999.0001o.x
– volume: 34
  start-page: 609
  year: 1956
  ident: ref22
  article-title: The effect of cardiac activity on the dynamics of the arterial system
  publication-title: Clinical Weekly
– ident: ref24
  doi: 10.1093/cvr/6.6.648
– ident: ref36
  doi: 10.1109/CIC.2003.1291140
– ident: ref25
  doi: 10.1152/ajpheart.1998.274.4.H1386
– start-page: 318
  year: 1996
  ident: ref35
  article-title: Multiple regression
  publication-title: Applied Linear Statistical Models
SSID ssj0014846
Score 2.3614964
Snippet Objective: We attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique...
We attempt to reconstruct brachial arterial pressure (BAP) waves from finger arterial pressure waves measured using the vascular unloading technique without...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3173
SubjectTerms Arteries
Blood pressure
Blood pressure measurement
Brachytherapy
Coefficients
continuous non-invasive blood pressure
Data collection
Delay effects
Elastic waves
Fingers
Impedance
Integrated circuit modeling
Optimization
Parameter estimation
proximal pressure reconstruction
Reconstruction
Regression models
Strategy
Time lag
Transfer functions
tube-load model
Unloading
vascular unloading technique
Title Reconstruction of Continuous Brachial Arterial Pressure From Continuous Finger Arterial Pressure Using a Two-Level Optimization Strategy
URI https://ieeexplore.ieee.org/document/9028172
https://www.ncbi.nlm.nih.gov/pubmed/32149618
https://www.proquest.com/docview/2453817048
https://www.proquest.com/docview/2375505698
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PVRwoC8eS0tlJE6IbGPHceJjW3VVVSxctlJvkV-REDRB210h-AX8bDy2Ny2oVL1FyiRxMuP4G8_MNwDvykJ5FJDLrOacZdwqmilpWMaErTV1sowb-tNP4vySX1yVV2vwYaiFcc6F5DM3xsMQy7e9WeJW2REyjfgFdx3Wq1rEWq0hYsDrWJSTUz-BmeQpgklzeTQ7mZ55T5DlYyYr9Df-WoNCU5X_48uwzky2YLoaYUwv-TpeLvTY_PqHvPGxr7ANzxLgJMfRQnZgzXW78PQODeEubE5TgH0PfqM7eksqS_qWIH_Vl27ZL2_IyRxTL-PdguWSWF04d2Qy76_vik7CduE9giFHgSgy-9FnHzFjiXz2f63rVA5KElvuz-dwOTmbnZ5nqVlDZgouF5kwWrRCVrrm3kdprai5h4aGF8LqwlleUsuNZrlWmipTCochx4q1VrVUKI8KX8BG13fuFZDKW0irqPd0qOZVqaSVLjfMVtrjRcvqEeQr9TUmMZljQ41vTfBoctmgxhvUeJM0PoL3wyXfI43HQ8J7qLhBMOlsBAcrG2nSRL9pGC8DxyH3o3o7nPZTFOMuqnP-izesqNAPFNLLvIy2Ndwb-0Rh053X9z9zH57gyGLx4wFsePW7Nx4FLfRhMP8_1xMDPg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkE5FGgpLBQwEidEtrFjO_GxRV0tsCmXrdRb5Fck1DZB210h-AX8bPzaUFBB3CJl4tiZmXjGM_MNwGtWSGcF5CKrKCUZNRJnUmiSEW4qha1g8UC_PuHTU_rhjJ1twNuhFsZaG5LP7Nhfhli-6fXKH5UdeKQRt-HegtuMUspitdYQM6BVLMvJsVNhImiKYeJcHMyP6mPnC5J8TETpPY7fdqHQVuXvFmbYaSb3oV7PMSaYnI9XSzXW3_-Ab_zfRTyA7WRyosMoIw9hw3Y7cO8aEOEO3KlTiH0XfniH9BesLOpb5BGsPnerfnWFjhY--TKOFmQXxfrChUWTRX95nXQSDgxvIAxZCkii-dc-m_mcJfTJ_bcuU0EoSni53x7B6eR4_m6apXYNmS6oWGZcK95yUaqKOi-lNbyizjjUtOBGFdZQhg3ViuRKKiw149YHHUvSGtliLp1duAebXd_ZJ4BKJyOtxM7XwYqWTAojbK6JKZWzGA2pRpCv2dfohGXuW2pcNMGnyUXjOd54jjeJ4yN4MzzyJQJ5_It41zNuIEw8G8H-WkaapOpXDaEsoBxSN6tXw22npD7yIjvrvnhDitJ7glw4msdRtoaxfaco33bn6c3vfAl3p_N61szen3x8Blt-lrEUch82nSjY584mWqoXQRV-AocXBos
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+Continuous+Brachial+Arterial+Pressure+From+Continuous+Finger+Arterial+Pressure+Using+a+Two-Level+Optimization+Strategy&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Zhang%2C+Pandeng&rft.au=Liu%2C+Chang&rft.au=Chen%2C+Haibo&rft.au=Liu%2C+Jia&rft.date=2020-11-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=67&rft.issue=11&rft.spage=3173&rft_id=info:doi/10.1109%2FTBME.2020.2979249&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon