Spark plasma sintered ZrC-Mo cermets: Influence of temperature and compaction pressure
The microstructure analysis and mechanical characterisation were performed on a ZrC-20wt%Mo cermet that was spark plasma sintered at various temperatures ranging between 1600 and 2100°C under either 50 or 100MPa of compaction pressure. The composite reached ~98% relative density for all experiments...
Saved in:
Published in | Ceramics international Vol. 42; no. 11; pp. 12907 - 12913 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.08.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0272-8842 1873-3956 |
DOI | 10.1016/j.ceramint.2016.05.059 |
Cover
Abstract | The microstructure analysis and mechanical characterisation were performed on a ZrC-20wt%Mo cermet that was spark plasma sintered at various temperatures ranging between 1600 and 2100°C under either 50 or 100MPa of compaction pressure. The composite reached ~98% relative density for all experiments with an average grain size between 1 and 3.5µm after densification. The nature of SPS technology caused a faster densification rate when higher compaction pressures were applied. The difference in compaction pressures produced different behaviors in densification and grain structure: 1900°C, 100MPa produced excessive grain growth in ZrC; 1600°C, 50MPa revealed a very clear ZrC grain structure and Mo diffusion between carbide grains; and 2100°C, 50MPa exhibited the highest overall mechanical properties due to small clusters of Mo phases across the microstructure. In fact, this particular sintering regime gave the most optimal mechanical values: 2231 HV10 and 5.4MPa*m1/2, and 396GPa Young's modulus. The compaction pressure of SPS played a pivotal role in the composites’ properties. A moderate 50MPa pressure caused all three mechanical properties to increase with increasing sintering temperature. Conversely, a higher 100MPa pressure caused fracture toughness and Young modulus to decrease with increasing sintering temperature. |
---|---|
AbstractList | The microstructure analysis and mechanical characterisation were performed on a ZrC-20wt%Mo cermet that was spark plasma sintered at various temperatures ranging between 1600 and 2100°C under either 50 or 100MPa of compaction pressure. The composite reached ~98% relative density for all experiments with an average grain size between 1 and 3.5µm after densification. The nature of SPS technology caused a faster densification rate when higher compaction pressures were applied. The difference in compaction pressures produced different behaviors in densification and grain structure: 1900°C, 100MPa produced excessive grain growth in ZrC; 1600°C, 50MPa revealed a very clear ZrC grain structure and Mo diffusion between carbide grains; and 2100°C, 50MPa exhibited the highest overall mechanical properties due to small clusters of Mo phases across the microstructure. In fact, this particular sintering regime gave the most optimal mechanical values: 2231 HV10 and 5.4MPa*m1/2, and 396GPa Young's modulus. The compaction pressure of SPS played a pivotal role in the composites’ properties. A moderate 50MPa pressure caused all three mechanical properties to increase with increasing sintering temperature. Conversely, a higher 100MPa pressure caused fracture toughness and Young modulus to decrease with increasing sintering temperature. |
Author | Antonov, Maksim Hussainova, Irina Yung, Der-Liang |
Author_xml | – sequence: 1 givenname: Der-Liang surname: Yung fullname: Yung, Der-Liang email: der-liang.yung@ttu.ee – sequence: 2 givenname: Maksim surname: Antonov fullname: Antonov, Maksim – sequence: 3 givenname: Irina surname: Hussainova fullname: Hussainova, Irina |
BookMark | eNqFkE1LAzEQhoNUsFb_guQPbE02m92NeFCKH4WKB4sHLyGbTCB1v0hSwX9vlurFS2FgmGHeZ2beczTrhx4QuqJkSQktr3dLDV51ro_LPNVLwlOIEzSndcUyJng5Q3OSV3lW10V-hs5D2JE0KAoyR-9vo_KfeGxV6BQOCQIeDP7wq-xlwAncQQw3eN3bdg-9BjxYHKEb08a494BVb7AeulHp6IYejx5CSP0LdGpVG-DyNy_Q9vFhu3rONq9P69X9JtOsEDEr64bqnOmmakRhitzUjNmmoYwZmzNbCVKXQqui4sA4obwpC6E5M7yyNSWWLdDtAav9EIIHK7WLarokeuVaSYmcLJI7-WeRnCyShKcQSV7-k4_edcp_HxfeHYSQfvty4GXQbrLHOA86SjO4Y4gfeDiIew |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2017_02_033 crossref_primary_10_1002_adem_201700224 crossref_primary_10_1016_j_ceramint_2022_04_057 crossref_primary_10_1016_j_ijrmhm_2021_105622 crossref_primary_10_1016_j_jallcom_2017_11_215 crossref_primary_10_7121_msi_eureka_10_10172_1_4 crossref_primary_10_1016_j_jeurceramsoc_2022_07_012 crossref_primary_10_1016_j_ceramint_2022_05_378 crossref_primary_10_1088_1757_899X_1140_1_012004 crossref_primary_10_1016_j_ijrmhm_2016_09_014 crossref_primary_10_1111_ijac_14862 crossref_primary_10_1016_j_ceramint_2025_02_409 crossref_primary_10_1016_j_jallcom_2025_178630 crossref_primary_10_3390_ma14226786 crossref_primary_10_1016_j_jallcom_2022_163982 crossref_primary_10_1016_j_jmrt_2023_11_140 crossref_primary_10_1016_j_ceramint_2022_06_218 crossref_primary_10_1016_j_matchemphys_2018_01_033 crossref_primary_10_1063_5_0146726 crossref_primary_10_1016_j_ijrmhm_2017_03_019 crossref_primary_10_1016_j_ceramint_2021_05_209 crossref_primary_10_1002_mawe_201600718 crossref_primary_10_1088_1742_6596_1527_1_012028 crossref_primary_10_1016_j_ceramint_2018_10_063 crossref_primary_10_1016_j_ceramint_2021_01_141 |
Cites_doi | 10.4028/www.scientific.net/KEM.527.20 10.1016/j.matchemphys.2009.02.012 10.1016/j.nimb.2013.11.046 10.1016/j.msea.2013.12.058 10.1016/S1468-6996(02)00009-8 10.1016/j.ijrmhm.2011.10.002 10.1557/JMR.1992.1564 10.1016/j.ijrmhm.2006.03.008 10.1016/j.jnucmat.2008.12.047 10.1179/mst.1992.8.10.922 10.1016/j.ceramint.2014.03.024 10.1016/j.jnucmat.2008.01.033 10.1016/j.matchemphys.2015.01.017 10.2298/PAC0903161K 10.1016/S0043-1648(01)00866-3 10.4028/www.scientific.net/KEM.674.94 10.1016/j.msea.2012.11.003 10.1016/j.ijrmhm.2010.03.003 10.1016/S0022-3115(02)01191-1 10.1111/j.1551-2916.2007.01667.x 10.1016/j.ijrmhm.2009.07.017 10.1016/j.msea.2005.11.030 10.1016/j.msea.2008.07.017 10.1007/BF01114305 10.1016/S0921-5093(99)00481-5 10.1016/j.msea.2012.05.065 10.1016/j.ijrmhm.2005.10.014 10.1016/j.msea.2005.06.066 10.1111/j.1551-2916.2007.02231.x 10.1016/j.ceramint.2015.02.019 10.1016/j.ceramint.2015.11.048 10.1016/S0966-9795(02)00166-8 10.1016/0025-5416(78)90163-5 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd and Techna Group S.r.l. |
Copyright_xml | – notice: 2016 Elsevier Ltd and Techna Group S.r.l. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ceramint.2016.05.059 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3956 |
EndPage | 12913 |
ExternalDocumentID | 10_1016_j_ceramint_2016_05_059 S0272884216306666 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SMS SPC SPCBC SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- RNS SEW WUQ XPP ~HD |
ID | FETCH-LOGICAL-c349t-68b1c23cb7b94d42d833fbb133df23f790869ca475e35015b649c53d57f810f3 |
IEDL.DBID | .~1 |
ISSN | 0272-8842 |
IngestDate | Wed Oct 01 05:05:06 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Fri Feb 23 02:27:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Spark plasma sintering Mechanical Properties Cermets ZrC-Mo |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-68b1c23cb7b94d42d833fbb133df23f790869ca475e35015b649c53d57f810f3 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ceramint_2016_05_059 crossref_primary_10_1016_j_ceramint_2016_05_059 elsevier_sciencedirect_doi_10_1016_j_ceramint_2016_05_059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-15 |
PublicationDateYYYYMMDD | 2016-08-15 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Ceramics international |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Katsui, Goto (bib7) 2016 Anselmi-Tamburini, Garay, Munir (bib33) 2005; 407 Li, Katsui, Goto (bib18) 2015; 41 Fan, Tsakiropoulos, Miodownik (bib37) 1992; 8 Pierson (bib1) 1996 Sergejev, Antonov (bib27) 2006; 12 Cédat, Rey, Clavel, Schmitt, Le Flem, Allemand (bib2) 2009; 385 Yung, Hussainova, Rodriguez, Traksmaa (bib16) 2016; 674 D. Yung, N. Voltsihhin, I. Hussainova, L. Kollo and R. Traksmaa. Sintering of Zirconium carbide-based composites. in Euro PM2012. Basal, Switzerland: EUROPM, 2012. Landwehr, Hilmas, Fahrenholtz, Talmy, DiPietro (bib14) 2008; 497 Le Flem, Allemand, Urvoy, Cédat, Rey (bib5) 2008; 380 Hussainova, Voltšihhin, Cura, Hannula (bib9) 2014; 597 Nomura, Suzuki, Nakatani, Yoshimi, Hanada (bib21) 2003; 11 Filacchioni, Casagrande, De Angelis, De Santis, Ferrara (bib3) 2002; 307 Garg, Park, German (bib32) 2007; 25 Suzuki, Matsumoto, Nomura, Hanada (bib22) 2002; 3 Landwehr, Hilmas, Fahrenholtz, Talmy (bib10) 2007; 90 Pellegrino, Thomé, Debelle, Miro, Trocellier (bib8) 2014; 327 Kapylou, Urbanovich, Andrievski, Kuznetsov, Nohrin, Klimczyk (bib30) 2009; 3 Engqvist, Jacobson, Axén (bib35) 2002; 252 Zhang, Liu (bib17) 2013; 561 Teber, Schoenstein, Têtard, Abdellaoui, Jouini (bib20) 2012; 31 Barnier, Brodhag, Thevenot (bib11) 1986; 21 Zhao, Song, Wei, Zhang, Liu, Zhang (bib25) 2009; 27 Yung, Kollo, Hussainova, Žikin (bib12) 2012; 527 Takida, Mabuchi, Nakamura, Igarashi, Doi, Nagae (bib15) 2000; 276 Barick, Chakravarty, Saha, Mitra, Joshi (bib31) 2016; 42 Lee, Gurland (bib34) 1978; 33 Cockeram (bib36) 2006; 418 Wei, Song, Fu, Liu, Gao, Wang, Zhao (bib24) 2012; 552 Landwehr, Hilmas, Fahrenholtz, Talmy, Wang (bib4) 2009; 115 Oliver, Pharr (bib28) 1992; 7 Ohser-Wiedemann, Martin, Seifert, Müller (bib29) 2010; 28 Liu, Hu, Xiang, Wen, Xu, Yu, He, Tian, Liu (bib19) 2014; 40 Landwehr, Hilmas, Fahrenholtz, Talmy (bib13) 2008; 91 Sivaprahasam, Chandrasekar, Sundaresan (bib23) 2007; 25 Umalas, Hussainova, Reedo, Young, Cura, Hannula, Lõhmus, Lõhmus (bib6) 2015; 153 Nomura (10.1016/j.ceramint.2016.05.059_bib21) 2003; 11 Zhao (10.1016/j.ceramint.2016.05.059_bib25) 2009; 27 Takida (10.1016/j.ceramint.2016.05.059_bib15) 2000; 276 Liu (10.1016/j.ceramint.2016.05.059_bib19) 2014; 40 Pierson (10.1016/j.ceramint.2016.05.059_bib1) 1996 Kapylou (10.1016/j.ceramint.2016.05.059_bib30) 2009; 3 Fan (10.1016/j.ceramint.2016.05.059_bib37) 1992; 8 Yung (10.1016/j.ceramint.2016.05.059_bib16) 2016; 674 Anselmi-Tamburini (10.1016/j.ceramint.2016.05.059_bib33) 2005; 407 Pellegrino (10.1016/j.ceramint.2016.05.059_bib8) 2014; 327 Wei (10.1016/j.ceramint.2016.05.059_bib24) 2012; 552 Sergejev (10.1016/j.ceramint.2016.05.059_bib27) 2006; 12 Garg (10.1016/j.ceramint.2016.05.059_bib32) 2007; 25 Le Flem (10.1016/j.ceramint.2016.05.059_bib5) 2008; 380 10.1016/j.ceramint.2016.05.059_bib26 Zhang (10.1016/j.ceramint.2016.05.059_bib17) 2013; 561 Filacchioni (10.1016/j.ceramint.2016.05.059_bib3) 2002; 307 Oliver (10.1016/j.ceramint.2016.05.059_bib28) 1992; 7 Sivaprahasam (10.1016/j.ceramint.2016.05.059_bib23) 2007; 25 Li (10.1016/j.ceramint.2016.05.059_bib7) 2016 Barnier (10.1016/j.ceramint.2016.05.059_bib11) 1986; 21 Landwehr (10.1016/j.ceramint.2016.05.059_bib10) 2007; 90 Cédat (10.1016/j.ceramint.2016.05.059_bib2) 2009; 385 Lee (10.1016/j.ceramint.2016.05.059_bib34) 1978; 33 Teber (10.1016/j.ceramint.2016.05.059_bib20) 2012; 31 Umalas (10.1016/j.ceramint.2016.05.059_bib6) 2015; 153 Landwehr (10.1016/j.ceramint.2016.05.059_bib13) 2008; 91 Ohser-Wiedemann (10.1016/j.ceramint.2016.05.059_bib29) 2010; 28 Landwehr (10.1016/j.ceramint.2016.05.059_bib4) 2009; 115 Barick (10.1016/j.ceramint.2016.05.059_bib31) 2016; 42 Li (10.1016/j.ceramint.2016.05.059_bib18) 2015; 41 Cockeram (10.1016/j.ceramint.2016.05.059_bib36) 2006; 418 Landwehr (10.1016/j.ceramint.2016.05.059_bib14) 2008; 497 Suzuki (10.1016/j.ceramint.2016.05.059_bib22) 2002; 3 Yung (10.1016/j.ceramint.2016.05.059_bib12) 2012; 527 Hussainova (10.1016/j.ceramint.2016.05.059_bib9) 2014; 597 Engqvist (10.1016/j.ceramint.2016.05.059_bib35) 2002; 252 |
References_xml | – volume: 385 start-page: 533 year: 2009 end-page: 537 ident: bib2 article-title: Microstructural characterization of a composite Mo reinforced by 25 publication-title: J. Nucl. Mater. – volume: 12 start-page: 388 year: 2006 end-page: 398 ident: bib27 article-title: Comparative study on indentation fracture toughness measurements of cemented carbides publication-title: Proc. Est. Acad. – volume: 41 start-page: 7103 year: 2015 end-page: 7108 ident: bib18 article-title: Spark plasma sintering of TiC–ZrC composites publication-title: Ceram. Int. – volume: 497 start-page: 79 year: 2008 end-page: 86 ident: bib14 article-title: Microstructure and mechanical characterization of ZrC–Mo cermets produced by hot isostatic pressing publication-title: Mater. Sci. Eng.: A – volume: 3 start-page: 137 year: 2002 end-page: 143 ident: bib22 article-title: Microstructures and fracture toughness of directionally solidified Mo-ZrC eutectic composites publication-title: Sci. Technol. Adv. Mater. – volume: 327 start-page: 103 year: 2014 end-page: 107 ident: bib8 article-title: Radiation effects in carbides: TiC and ZrC versus SiC publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. – volume: 91 start-page: 873 year: 2008 end-page: 878 ident: bib13 article-title: Processing of ZrC–Mo Cermets for High Temperature Applications, Part II: Pressureless Sintering and Mechanical Properties publication-title: J. Am. Ceram. Soc. – volume: 28 start-page: 550 year: 2010 end-page: 557 ident: bib29 article-title: Densification behaviour of pure molybdenum powder by spark plasma sintering publication-title: Int. J. Refract. Met. Hard Mater. – volume: 527 start-page: 20 year: 2012 end-page: 25 ident: bib12 article-title: Reactive Sintering of ZrC-TiC Composites publication-title: Key Eng. Mater. – volume: 25 start-page: 144 year: 2007 end-page: 152 ident: bib23 article-title: Microstructure and mechanical properties of nanocrystalline WC–12Co consolidated by spark plasma sintering publication-title: Int. J. Refract. Met. Hard Mater. – volume: 25 start-page: 16 year: 2007 end-page: 24 ident: bib32 article-title: Effect of die compaction pressure on densification behavior of molybdenum powders publication-title: Int. J. Refract. Met. Hard Mater. – year: 2016 ident: bib7 article-title: Effect of heat treatment on the decomposition of TiC–ZrC solid solutions by spark plasma sintering publication-title: J. Eur. Ceram. Soc. – volume: 418 start-page: 120 year: 2006 end-page: 136 ident: bib36 article-title: The mechanical properties and fracture mechanisms of wrought low carbon arc cast (LCAC), molybdenum–0.5pct titanium–0.1pct zirconium (TZM), and oxide dispersion strengthened (ODS) molybdenum flat products publication-title: Mater. Sci. Eng.: A – volume: 31 start-page: 132 year: 2012 end-page: 137 ident: bib20 article-title: The effect of Ti substitution by Zr on the microstructure and mechanical properties of the cermet Ti1-xZrxC sintered by SPS publication-title: Int. J. Refract. Met. Hard Mater. – volume: 21 start-page: 2547 year: 1986 end-page: 2552 ident: bib11 article-title: Hot-pressing kinetics of zirconium carbide publication-title: J. Mater. Sci. – volume: 7 start-page: 1564 year: 1992 end-page: 1583 ident: bib28 article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments publication-title: J. Mater. Res. – volume: 90 start-page: 1998 year: 2007 end-page: 2002 ident: bib10 article-title: Processing of ZrC-Mo cermets for high-temperature applications, part i: chemical interactions in the ZrC-Mo system publication-title: J. Am. Ceram. Soc. – volume: 552 start-page: 427 year: 2012 end-page: 433 ident: bib24 article-title: Microstructure and properties of ultrafine cemented carbides—differences in spark plasma sintering and sinter-HIP publication-title: Mater. Sci. Eng.: A. – volume: 674 start-page: 94 year: 2016 end-page: 99 ident: bib16 article-title: Processing of ZrC-TiC composites by SPS publication-title: Key Eng. Mater. – volume: 252 start-page: 384 year: 2002 end-page: 393 ident: bib35 article-title: A model for the hardness of cemented carbides publication-title: Wear – year: 1996 ident: bib1 publication-title: Handbook of Refractory Carbides and Nitrides – volume: 380 start-page: 85 year: 2008 end-page: 92 ident: bib5 article-title: Microstructure and thermal conductivity of Mo–TiC cermets processed by hot isostatic pressing publication-title: J. Nucl. Mater. – volume: 27 start-page: 1014 year: 2009 end-page: 1018 ident: bib25 article-title: Effects of WC particle size on densification and properties of spark plasma sintered WC–Co cermet publication-title: Int. J. Refract. Met. Hard Mater. – volume: 3 start-page: 161 year: 2009 end-page: 166 ident: bib30 article-title: Effect of compacting pressure, powder degassing and thermobaric treatment on densification and properties of nanocrystalline titanium nitride publication-title: Process. Appl. Ceram. – volume: 276 start-page: 269 year: 2000 end-page: 272 ident: bib15 article-title: Mechanical properties of a ZrC-dispersed Mo alloy processed by mechanical alloying and spark plasma sintering publication-title: Mater. Sci. Eng.: A – volume: 42 start-page: 3836 year: 2016 end-page: 3848 ident: bib31 article-title: Effect of pressure and temperature on densification, microstructure and mechanical properties of spark plasma sintered silicon carbide processed with β-silicon carbide nanopowder and sintering additives publication-title: Ceram. Int. – volume: 33 start-page: 125 year: 1978 end-page: 133 ident: bib34 article-title: Hardness and deformation of cemented tungsten carbide publication-title: Mater. Sci. Eng. – volume: 115 start-page: 690 year: 2009 end-page: 695 ident: bib4 article-title: Thermal properties and thermal shock resistance of liquid phase sintered ZrC–Mo cermets publication-title: Mater. Chem. Phys. – volume: 8 start-page: 922 year: 1992 end-page: 929 ident: bib37 article-title: Prediction of Young’s modulus of particulate two phase composites publication-title: Mater. Sci. Technol. – reference: D. Yung, N. Voltsihhin, I. Hussainova, L. Kollo and R. Traksmaa. Sintering of Zirconium carbide-based composites. in Euro PM2012. Basal, Switzerland: EUROPM, 2012. – volume: 597 start-page: 75 year: 2014 end-page: 81 ident: bib9 article-title: Densification and characterization of spark plasma sintered ZrC–ZrO publication-title: Mater. Sci. Eng.: A – volume: 407 start-page: 24 year: 2005 end-page: 30 ident: bib33 article-title: Fundamental investigations on the spark plasma sintering/synthesis process publication-title: Mater. Sci. Eng.: A – volume: 153 start-page: 301 year: 2015 end-page: 306 ident: bib6 article-title: Combined sol–gel and carbothermal synthesis of ZrC–TiC powders for composites publication-title: Mater. Chem. Phys. – volume: 561 start-page: 270 year: 2013 end-page: 276 ident: bib17 article-title: Effects of ZrC on microstructure, mechanical properties and thermal shock resistance of TiC–ZrC–CO–Ni cermets publication-title: Mater. Sci. Eng.: A. – volume: 40 start-page: 10517 year: 2014 end-page: 10522 ident: bib19 article-title: Mechanical properties of nanocrystalline TiC–ZrC solid solutions fabricated by spark plasma sintering publication-title: Ceram. Int. – volume: 307 start-page: 705 year: 2002 end-page: 709 ident: bib3 article-title: Effect of strain rate on tensile properties of TZM and Mo-5%Re publication-title: J. Nucl. Mater. – volume: 11 start-page: 51 year: 2003 end-page: 56 ident: bib21 article-title: Joining of oxidation-resistant Mo-Si-B multiphase alloy to heat-resistant Mo-ZrC in-situ composite publication-title: Intermetallic – volume: 527 start-page: 20 year: 2012 ident: 10.1016/j.ceramint.2016.05.059_bib12 article-title: Reactive Sintering of ZrC-TiC Composites publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.527.20 – volume: 115 start-page: 690 issue: 2–3 year: 2009 ident: 10.1016/j.ceramint.2016.05.059_bib4 article-title: Thermal properties and thermal shock resistance of liquid phase sintered ZrC–Mo cermets publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2009.02.012 – volume: 327 start-page: 103 year: 2014 ident: 10.1016/j.ceramint.2016.05.059_bib8 article-title: Radiation effects in carbides: TiC and ZrC versus SiC publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. doi: 10.1016/j.nimb.2013.11.046 – volume: 597 start-page: 75 year: 2014 ident: 10.1016/j.ceramint.2016.05.059_bib9 article-title: Densification and characterization of spark plasma sintered ZrC–ZrO2 composites publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2013.12.058 – volume: 3 start-page: 137 year: 2002 ident: 10.1016/j.ceramint.2016.05.059_bib22 article-title: Microstructures and fracture toughness of directionally solidified Mo-ZrC eutectic composites publication-title: Sci. Technol. Adv. Mater. doi: 10.1016/S1468-6996(02)00009-8 – volume: 31 start-page: 132 year: 2012 ident: 10.1016/j.ceramint.2016.05.059_bib20 article-title: The effect of Ti substitution by Zr on the microstructure and mechanical properties of the cermet Ti1-xZrxC sintered by SPS publication-title: Int. J. Refract. Met. Hard Mater. doi: 10.1016/j.ijrmhm.2011.10.002 – volume: 7 start-page: 1564 issue: 6 year: 1992 ident: 10.1016/j.ceramint.2016.05.059_bib28 article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments publication-title: J. Mater. Res. doi: 10.1557/JMR.1992.1564 – volume: 25 start-page: 144 issue: 2 year: 2007 ident: 10.1016/j.ceramint.2016.05.059_bib23 article-title: Microstructure and mechanical properties of nanocrystalline WC–12Co consolidated by spark plasma sintering publication-title: Int. J. Refract. Met. Hard Mater. doi: 10.1016/j.ijrmhm.2006.03.008 – volume: 385 start-page: 533 issue: 3 year: 2009 ident: 10.1016/j.ceramint.2016.05.059_bib2 article-title: Microstructural characterization of a composite Mo reinforced by 25at% TiC publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2008.12.047 – volume: 8 start-page: 922 issue: 10 year: 1992 ident: 10.1016/j.ceramint.2016.05.059_bib37 article-title: Prediction of Young’s modulus of particulate two phase composites publication-title: Mater. Sci. Technol. doi: 10.1179/mst.1992.8.10.922 – volume: 40 start-page: 10517 issue: 7 year: 2014 ident: 10.1016/j.ceramint.2016.05.059_bib19 article-title: Mechanical properties of nanocrystalline TiC–ZrC solid solutions fabricated by spark plasma sintering publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.03.024 – volume: 380 start-page: 85 issue: 1–3 year: 2008 ident: 10.1016/j.ceramint.2016.05.059_bib5 article-title: Microstructure and thermal conductivity of Mo–TiC cermets processed by hot isostatic pressing publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2008.01.033 – volume: 153 start-page: 301 year: 2015 ident: 10.1016/j.ceramint.2016.05.059_bib6 article-title: Combined sol–gel and carbothermal synthesis of ZrC–TiC powders for composites publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2015.01.017 – year: 1996 ident: 10.1016/j.ceramint.2016.05.059_bib1 – volume: 3 start-page: 161 issue: 3 year: 2009 ident: 10.1016/j.ceramint.2016.05.059_bib30 article-title: Effect of compacting pressure, powder degassing and thermobaric treatment on densification and properties of nanocrystalline titanium nitride publication-title: Process. Appl. Ceram. doi: 10.2298/PAC0903161K – volume: 252 start-page: 384 year: 2002 ident: 10.1016/j.ceramint.2016.05.059_bib35 article-title: A model for the hardness of cemented carbides publication-title: Wear doi: 10.1016/S0043-1648(01)00866-3 – volume: 674 start-page: 94 year: 2016 ident: 10.1016/j.ceramint.2016.05.059_bib16 article-title: Processing of ZrC-TiC composites by SPS publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.674.94 – volume: 561 start-page: 270 year: 2013 ident: 10.1016/j.ceramint.2016.05.059_bib17 article-title: Effects of ZrC on microstructure, mechanical properties and thermal shock resistance of TiC–ZrC–CO–Ni cermets publication-title: Mater. Sci. Eng.: A. doi: 10.1016/j.msea.2012.11.003 – volume: 28 start-page: 550 issue: 4 year: 2010 ident: 10.1016/j.ceramint.2016.05.059_bib29 article-title: Densification behaviour of pure molybdenum powder by spark plasma sintering publication-title: Int. J. Refract. Met. Hard Mater. doi: 10.1016/j.ijrmhm.2010.03.003 – volume: 307 start-page: 705 issue: 311 year: 2002 ident: 10.1016/j.ceramint.2016.05.059_bib3 article-title: Effect of strain rate on tensile properties of TZM and Mo-5%Re publication-title: J. Nucl. Mater. doi: 10.1016/S0022-3115(02)01191-1 – volume: 90 start-page: 1998 issue: 7 year: 2007 ident: 10.1016/j.ceramint.2016.05.059_bib10 article-title: Processing of ZrC-Mo cermets for high-temperature applications, part i: chemical interactions in the ZrC-Mo system publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2007.01667.x – volume: 27 start-page: 1014 issue: 6 year: 2009 ident: 10.1016/j.ceramint.2016.05.059_bib25 article-title: Effects of WC particle size on densification and properties of spark plasma sintered WC–Co cermet publication-title: Int. J. Refract. Met. Hard Mater. doi: 10.1016/j.ijrmhm.2009.07.017 – ident: 10.1016/j.ceramint.2016.05.059_bib26 – volume: 418 start-page: 120 issue: 1–2 year: 2006 ident: 10.1016/j.ceramint.2016.05.059_bib36 article-title: The mechanical properties and fracture mechanisms of wrought low carbon arc cast (LCAC), molybdenum–0.5pct titanium–0.1pct zirconium (TZM), and oxide dispersion strengthened (ODS) molybdenum flat products publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2005.11.030 – volume: 497 start-page: 79 issue: 1–2 year: 2008 ident: 10.1016/j.ceramint.2016.05.059_bib14 article-title: Microstructure and mechanical characterization of ZrC–Mo cermets produced by hot isostatic pressing publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2008.07.017 – year: 2016 ident: 10.1016/j.ceramint.2016.05.059_bib7 article-title: Effect of heat treatment on the decomposition of TiC–ZrC solid solutions by spark plasma sintering publication-title: J. Eur. Ceram. Soc. – volume: 21 start-page: 2547 year: 1986 ident: 10.1016/j.ceramint.2016.05.059_bib11 article-title: Hot-pressing kinetics of zirconium carbide publication-title: J. Mater. Sci. doi: 10.1007/BF01114305 – volume: 276 start-page: 269 year: 2000 ident: 10.1016/j.ceramint.2016.05.059_bib15 article-title: Mechanical properties of a ZrC-dispersed Mo alloy processed by mechanical alloying and spark plasma sintering publication-title: Mater. Sci. Eng.: A doi: 10.1016/S0921-5093(99)00481-5 – volume: 552 start-page: 427 year: 2012 ident: 10.1016/j.ceramint.2016.05.059_bib24 article-title: Microstructure and properties of ultrafine cemented carbides—differences in spark plasma sintering and sinter-HIP publication-title: Mater. Sci. Eng.: A. doi: 10.1016/j.msea.2012.05.065 – volume: 25 start-page: 16 issue: 1 year: 2007 ident: 10.1016/j.ceramint.2016.05.059_bib32 article-title: Effect of die compaction pressure on densification behavior of molybdenum powders publication-title: Int. J. Refract. Met. Hard Mater. doi: 10.1016/j.ijrmhm.2005.10.014 – volume: 407 start-page: 24 issue: 1–2 year: 2005 ident: 10.1016/j.ceramint.2016.05.059_bib33 article-title: Fundamental investigations on the spark plasma sintering/synthesis process publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2005.06.066 – volume: 91 start-page: 873 issue: 3 year: 2008 ident: 10.1016/j.ceramint.2016.05.059_bib13 article-title: Processing of ZrC–Mo Cermets for High Temperature Applications, Part II: Pressureless Sintering and Mechanical Properties publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2007.02231.x – volume: 41 start-page: 7103 issue: 5 year: 2015 ident: 10.1016/j.ceramint.2016.05.059_bib18 article-title: Spark plasma sintering of TiC–ZrC composites publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.02.019 – volume: 42 start-page: 3836 issue: 3 year: 2016 ident: 10.1016/j.ceramint.2016.05.059_bib31 article-title: Effect of pressure and temperature on densification, microstructure and mechanical properties of spark plasma sintered silicon carbide processed with β-silicon carbide nanopowder and sintering additives publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.11.048 – volume: 11 start-page: 51 year: 2003 ident: 10.1016/j.ceramint.2016.05.059_bib21 article-title: Joining of oxidation-resistant Mo-Si-B multiphase alloy to heat-resistant Mo-ZrC in-situ composite publication-title: Intermetallic doi: 10.1016/S0966-9795(02)00166-8 – volume: 12 start-page: 388 issue: 4 year: 2006 ident: 10.1016/j.ceramint.2016.05.059_bib27 article-title: Comparative study on indentation fracture toughness measurements of cemented carbides publication-title: Proc. Est. Acad. – volume: 33 start-page: 125 issue: 1 year: 1978 ident: 10.1016/j.ceramint.2016.05.059_bib34 article-title: Hardness and deformation of cemented tungsten carbide publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(78)90163-5 |
SSID | ssj0016940 |
Score | 2.2787259 |
Snippet | The microstructure analysis and mechanical characterisation were performed on a ZrC-20wt%Mo cermet that was spark plasma sintered at various temperatures... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 12907 |
SubjectTerms | Cermets Mechanical Properties Spark plasma sintering ZrC-Mo |
Title | Spark plasma sintered ZrC-Mo cermets: Influence of temperature and compaction pressure |
URI | https://dx.doi.org/10.1016/j.ceramint.2016.05.059 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3956 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016940 issn: 0272-8842 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Journals customDbUrl: eissn: 1873-3956 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016940 issn: 0272-8842 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-3956 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016940 issn: 0272-8842 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-3956 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016940 issn: 0272-8842 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3956 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016940 issn: 0272-8842 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPrE-yh68pnnsbpL1VoqlVdpLqxQvIdkHtNo0pPHqb3c2j1JB6EHIJUuGhGEy883uzDcIPTAJUVpJbSmlqWnJkVYYSscKiZQiCQRxHNONPJ74w1f6PGfzFuo3vTCmrLL2_ZVPL711vWLX2rSzxcKeQkLlhSH1AFEYEG5otw37F9h093tb5uH6nFb7LAH8-fD0TpfwsitUHq8WqampdP2SwdNwlv4VoHaCzuAUndRoEfeqDzpDLZWeo-MdDsEL9DbN4vwDZ4CCVzHeGPqHXEn8nvet8RrDq1eq2DziUTOMBK81NnxUNZkyjlOJy0L0ssEBl3WxsH6JZoOnWX9o1cMSLEEoLyw_TFzhEdBvwqmkngwJ0UkCKajUHtEBh9yFi5gGTJmzRJb4lAtGJAt06DqaXKGDdJ2qa4Slm0Da4rsasBl1pORKaMAtsdBcGbqvNmKNgiJRE4mbeRafUVMxtowaxUZGsZHD4OJtZG_lsopKY68Eb_Qf_TKKCPz9Htmbf8jeoiNzZ7aOXXaHDor8S90D9iiSTmlcHXTYG70MJz9xfdru |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qPagH8Yn1uQevsUl2N8l6k2Jp7ePSKsVLSPYBrTYtsf5_Z9NEKggehJw2DAkfu7Pf7M58A3DLFe7SWhlHa8NsSY5yoki5TkSVkmkoqevaauTBMOg8s6cJn9SgVdXC2LTK0vevfXrhrcuRZolmczmdNkcYUPlRxHxkFJaEB1uwzTj65DpsP3R7neH3ZUIg2PqoJcTFjwYbhcKzO6nzZD7NbFqlFxQinla29Lc9amPfaR_AfkkYycP6nw6hprMj2NuQETyGl9Eyyd_IEonwPCEfVgEi14q85i1nsCD46blefdyTbtWPhCwMsZJUpZ4ySTJFilz0osaBFKmxOH4C4_bjuNVxyn4JjqRMrJwgSj3pU4Q4FUwxX0WUmjTFKFQZn5pQYPgiZMJCru11Ik8DJiSniocm8lxDT6GeLTJ9BkR5KUYugWeQnjFXKaGlQeqSSCO0VfxqAK8AimWpJW5bWrzHVdLYLK6AjS2wscvxEQ1oftst12oaf1qICv_4x7yI0eX_YXv-D9sb2OmMB_243x32LmDXvrEnyR6_hPoq_9RXSEVW6XU51b4A67zdmQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spark+plasma+sintered+ZrC-Mo+cermets%3A+Influence+of+temperature+and+compaction+pressure&rft.jtitle=Ceramics+international&rft.au=Yung%2C+Der-Liang&rft.au=Antonov%2C+Maksim&rft.au=Hussainova%2C+Irina&rft.date=2016-08-15&rft.issn=0272-8842&rft.volume=42&rft.issue=11&rft.spage=12907&rft.epage=12913&rft_id=info:doi/10.1016%2Fj.ceramint.2016.05.059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ceramint_2016_05_059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon |