Phononic thermal resistance due to a finite periodic array of nano-scatterers

The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incide...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 120; no. 4
Main Authors Trang Nghiêm, T. T., Chapuis, Pierre-Olivier
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 28.07.2016
Subjects
Online AccessGet full text
ISSN0021-8979
1089-7550
DOI10.1063/1.4959803

Cover

Abstract The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetric objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5–100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.
AbstractList The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetric objects. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the [5-100 K] temperature range. It is observed that the associated thermal conductance has the same temperature dependence than that without phononic filtering.
The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetric objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5–100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.
Author Trang Nghiêm, T. T.
Chapuis, Pierre-Olivier
Author_xml – sequence: 1
  givenname: T. T.
  surname: Trang Nghiêm
  fullname: Trang Nghiêm, T. T.
  organization: Univ. Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, F-69621 Villeurbanne, France
– sequence: 2
  givenname: Pierre-Olivier
  surname: Chapuis
  fullname: Chapuis, Pierre-Olivier
  organization: Univ. Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, F-69621 Villeurbanne, France
BackLink https://hal.science/hal-01247068$$DView record in HAL
https://www.osti.gov/biblio/22597725$$D View this record in Osti.gov
BookMark eNqdkEFrGzEQhUVJoI7TQ_-BoKcG1pmRdlerYzBpU3BJDslZqNoRVnAkV5ID-fdZYxPfcxp4fHy8eRfsLKZIjH1HWCD08hoXre70APILmyEMulFdB2dsBiCwGbTSX9lFKc8AiIPUM_b3YZ0mRXC8rim_2A3PVEKpNjri4454TdxyH2KoxLeUQxon1uZs33jyPNqYmuJsrZQpl0t27u2m0LfjnbOnX7ePy7tmdf_7z_Jm1TjZ6tp0Xkhs_3mpJHqBJFrpQYICAocjDJ563SrhRxRe46jHFryWnaR-ELp3Ss7Zj4M3lRpMcVM5t3YpRnLVCNFppUQ3UT8P1NpuzDaHF5vfTLLB3N2szD4DFK2CfnjFk3Gb0_8dlWqe0y7H6QkjUKCCTip9MrqcSsnkP7QIZr-_QXPcf2KvDuy-nq0hxc_BrymfQLMdvXwH-UuSaQ
CODEN JAPIAU
Cites_doi 10.1063/1.1602151
10.1063/1.3116715
10.1155/2013/682586
10.1103/PhysRevB.48.16373
10.1016/j.ijthermalsci.2011.10.014
10.1038/nmat3303
10.1103/PhysRevB.80.165304
10.1063/1.3662930
10.1103/PhysRevLett.103.104301
10.1063/1.4866590
10.1080/10407790601144755
10.1121/1.400530
10.1103/PhysRevLett.112.055505
10.1103/PhysRevB.89.180301
10.1115/1.2995623
10.1103/PhysRevB.73.144301
10.1103/PhysRevB.87.094303
10.1103/PhysRevB.64.172301
10.1016/j.ijheatmasstransfer.2005.09.039
10.1063/1.1524305
10.1038/ncomms4435
10.1063/1.1722545
10.1103/PhysRevLett.110.025902
10.1103/PhysRevB.84.035438
10.1021/nl102918q
10.1038/nnano.2010.149
10.1103/PhysRevB.86.094303
10.1103/PhysRevLett.96.045901
10.1103/PhysRevB.89.054309
10.1103/PhysRev.133.A253
10.1038/nature12608
10.1126/science.1225549
10.1139/p59-037
10.1103/PhysRevB.40.3685
10.1038/nmat3460
10.1103/PhysRevLett.97.055502
10.1103/PhysRevB.66.195304
10.1063/1.1835565
10.1006/jcph.1994.1159
10.1016/j.ijheatmasstransfer.2007.01.040
10.1038/nmat3826
10.1016/j.wavemoti.2013.02.006
10.1063/1.3695058
10.1121/1.417118
10.1103/PhysRevB.90.075411
ContentType Journal Article
Copyright Author(s)
2016 Author(s). Published by AIP Publishing.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Author(s)
– notice: 2016 Author(s). Published by AIP Publishing.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FD
H8D
L7M
1XC
VOOES
OTOTI
DOI 10.1063/1.4959803
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList

CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 22597725
oai:HAL:hal-01247068v1
10_1063_1_4959803
jap
GrantInformation_xml – fundername: INSA BQR
  grantid: MaNaTherm
– fundername: Agence Nationale de la Recherche (ANR)
  grantid: ANR-11-PDOC-002
  funderid: http://dx.doi.org/10.13039/501100001665
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
.GJ
0ZJ
186
1XC
2WC
3O-
41~
6TJ
AAYJJ
ABDPE
ACKIV
ADXHL
AETEA
AFFNX
AI.
FA8
MVM
NEJ
NEUPN
NHB
OHT
P0-
RDFOP
ROL
UKR
VH1
VOH
VOOES
XJT
XOL
XXG
YYP
ZCG
ZY4
ABPTK
AGIHO
OTOTI
TAF
UE8
ID FETCH-LOGICAL-c349t-5f2314bf3731f21e243f03070e0c1d08fe69472fd12f91d9d40f9353e68296c73
ISSN 0021-8979
IngestDate Thu May 18 22:29:58 EDT 2023
Tue Oct 14 20:14:33 EDT 2025
Sun Oct 05 00:14:27 EDT 2025
Wed Oct 01 04:29:27 EDT 2025
Fri Jun 21 00:17:35 EDT 2024
Sun Jul 14 10:05:21 EDT 2019
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords phononics
thermal resistance
finite array
phononic crystal
acoustic phonons
thermal phonons
Kapitza resistance
Language English
License Published by AIP Publishing.
0021-8979/2016/120(4)/044305/11/$30.00
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-5f2314bf3731f21e243f03070e0c1d08fe69472fd12f91d9d40f9353e68296c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6264-2530
OpenAccessLink https://hal.science/hal-01247068
PQID 2121705379
PQPubID 2050677
PageCount 11
ParticipantIDs scitation_primary_10_1063_1_4959803
hal_primary_oai_HAL_hal_01247068v1
crossref_primary_10_1063_1_4959803
osti_scitechconnect_22597725
proquest_journals_2121705379
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-28
PublicationDateYYYYMMDD 2016-07-28
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-28
  day: 28
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Journal of applied physics
PublicationYear 2016
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Profunser, Wright, Matsuda (c43) 2006
Yu (c24) 2010
Maldovan (c29) 2013
Stoner, Maris (c17) 1993
Morelli, Heremans, Slack (c48) 2002
Merabia, Termentzidis (c39) 2012
Alleyne, Cawley (c41) 1991
Lyeo, Cahill (c18) 2006
Hastings, Schneider, Broschat (c34) 1996
Zhang, Fisher, Mingo (c13) 2007
Davis, Hussein (c28) 2014
Liang, Yuan, Cheng (c49) 2009
Zhao, Freund (c12) 2005
Shukla (c5) 2009
Zen (c25) 2014
Xu, Fisher (c3) 2006
Kim (c26) 2006
Little (c51) 1959
Hopkins (c8) 2011
Hopkins (c22) 2014
Berenger (c33) 1994
Ying, Truell (c46) 1956
Maldovan (c27) 2013
Zanjani (c45) 2014
Stevens, Zhigilei, Norris (c14) 2007
Sugawara, Wright, Matsuda (c42) 2003
McNamara, Joshi, Zhang (c4) 2012
Young, Maris (c11) 1989
Hopkins, Norris (c31) 2009
Maznev, Every, Wright (c32) 2013
Cahill (c1) 2003
Liang, Keblinski (c40) 2014
Danworaphong (c44) 2011
Gotsmann, Lantz (c20) 2013
Chen (c50) 2014
Slack, Galginaitis (c47) 1964
Losego (c6) 2012
Hopkins (c23) 2010
Zhou (c19) 2013
Merabia, Termentzidis (c10) 2014
Cleland, Schmidt, Yung (c30) 2001
Hopkins (c2) 2013
Duda, Hopkins (c7) 2012
Luckyanova (c21) 2012
Landry, McGaughey (c15) 2009
Han (c16) 2014
(2023070418445725500_c50) 2014; 5
(2023070418445725500_c7) 2012; 100
(2023070418445725500_c23) 2010; 11
(2023070418445725500_c33) 1994; 114
(2023070418445725500_c40) 2014; 90
(2023070418445725500_c5) 2009; 94
(2023070418445725500_c51) 1959; 37
(2023070418445725500_c41) 1991; 89
(2023070418445725500_c15) 2009; 80
(2023070418445725500_c35) 2008
(2023070418445725500_c29) 2013; 503
(2023070418445725500_c4) 2012; 62
(2023070418445725500_c13) 2007; 51
(2023070418445725500_c16) 2014; 89
(2023070418445725500_c25) 2014; 5
(2023070418445725500_c11) 1989; 40
(2023070418445725500_c31) 2009; 131
(2023070418445725500_c18) 2006; 73
(2023070418445725500_c39) 2012; 86
2023070418445725500_c9
(2023070418445725500_c21) 2012; 338
(2023070418445725500_c36) 1990
2023070418445725500_c38
(2023070418445725500_c2) 2013; 2013
(2023070418445725500_c19) 2013; 87
2023070418445725500_c37
(2023070418445725500_c44) 2011; 99
(2023070418445725500_c17) 1993; 48
(2023070418445725500_c30) 2001; 64
(2023070418445725500_c45) 2014; 104
(2023070418445725500_c24) 2010; 5
(2023070418445725500_c48) 2002; 66
(2023070418445725500_c27) 2013; 110
(2023070418445725500_c8) 2011; 84
(2023070418445725500_c42) 2003; 83
(2023070418445725500_c12) 2005; 97
(2023070418445725500_c20) 2013; 12
(2023070418445725500_c3) 2006; 49
(2023070418445725500_c26) 2006; 96
(2023070418445725500_c1) 2003; 93
(2023070418445725500_c46) 1956; 27
(2023070418445725500_c14) 2007; 50
(2023070418445725500_c43) 2006; 97
(2023070418445725500_c10) 2014; 89
(2023070418445725500_c47) 1964; 133
(2023070418445725500_c49) 2009; 103
(2023070418445725500_c34) 1996; 100
(2023070418445725500_c28) 2014; 112
(2023070418445725500_c32) 2013; 50
(2023070418445725500_c6) 2012; 11
(2023070418445725500_c22) 2014; 13
References_xml – start-page: 793
  year: 2003
  ident: c1
  article-title: Nanoscale thermal transport
  publication-title: J. Appl. Phys.
– start-page: 024903
  year: 2005
  ident: c12
  article-title: Lattice-dynamical calculation of phonon scattering at ideal Si–Ge interfaces
  publication-title: J. Appl. Phys.
– start-page: 104301
  year: 2009
  ident: c49
  article-title: Acoustic diode: Rectification of acoustic energy flux in one-dimensional systems
  publication-title: Phys. Rev. Lett.
– start-page: 1
  year: 2014
  ident: c25
  article-title: Engineering thermal conductance using a two-dimensional phononic crystal
  publication-title: Nat. Commun.
– start-page: 185
  year: 1994
  ident: c33
  article-title: A perfectly matched layer for the absorption of electromagnetic waves
  publication-title: J. Comput. Phys.
– start-page: 094303
  year: 2013
  ident: c19
  article-title: Relationship of thermal boundary conductance to structure from an analytical model plus molecular dynamics simulations
  publication-title: Phys. Rev. B
– start-page: 502
  year: 2012
  ident: c6
  article-title: Effects of chemical bonding on heat transport across interfaces
  publication-title: Nat. Mater.
– start-page: 334
  year: 1959
  ident: c51
  article-title: The transport of heat between dissimilar solids at low temperatures
  publication-title: Can. J. Phys.
– start-page: 3685
  year: 1989
  ident: c11
  article-title: Lattice-dynamical calculation of the Kapitza resistance between FCC lattices
  publication-title: Phys. Rev. B
– start-page: 1340
  year: 2003
  ident: c42
  article-title: Direct access to the dispersion relations of multiple anisotropic surface acoustic modes by Fourier image analysis
  publication-title: Appl. Phys. Lett.
– start-page: 209
  year: 2013
  ident: c29
  article-title: Sound and heat revolutions in phononics
  publication-title: Nature
– start-page: 195304
  year: 2002
  ident: c48
  article-title: Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors
  publication-title: Phys. Rev. B
– start-page: 3061
  year: 1996
  ident: c34
  article-title: Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation
  publication-title: J. Acoust. Soc. Am.
– start-page: 144301
  year: 2006
  ident: c18
  article-title: Thermal conductance of interfaces between highly dissimilar materials
  publication-title: Phys. Rev. B
– start-page: 776
  year: 2013
  ident: c32
  article-title: Reciprocity in reflection and transmission: What is a ‘phonon diode’?
  publication-title: Wave Motion
– start-page: 3977
  year: 2007
  ident: c14
  article-title: Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: Nonequilibrium molecular dynamics simulations
  publication-title: Int. J. Heat Mass Transfer
– start-page: 1
  year: 2014
  ident: c50
  article-title: A photon thermal diode
  publication-title: Nat. Commun.
– start-page: 168
  year: 2014
  ident: c22
  article-title: Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
  publication-title: Nature Mat.
– start-page: 094303
  year: 2012
  ident: c39
  article-title: Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics
  publication-title: Phys. Rev. B
– start-page: 055502
  year: 2006
  ident: c43
  article-title: Imaging ripples on phononic crystals reveals acoustic band structure and Bloch harmonics
  publication-title: Phys. Rev. Lett.
– start-page: 1086
  year: 1956
  ident: c46
  article-title: Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid
  publication-title: J. Appl. Phys.
– start-page: 054309
  year: 2014
  ident: c10
  article-title: Thermal boundary conductance across rough interfaces probed by molecular dynamics
  publication-title: Phys. Rev. B
– start-page: A253
  year: 1964
  ident: c47
  article-title: Thermal conductivity and phonon scattering by magnetic impurities in CdTe
  publication-title: Phys. Rev.
– start-page: 022402
  year: 2009
  ident: c31
  article-title: Relative contributions of inelastic and elastic diffuse phonon scattering to thermal boundary conductance across solid interfaces
  publication-title: J. Heat Transfer
– start-page: 180301
  year: 2014
  ident: c16
  article-title: Phonon interference and thermal conductance reduction in atomic-scale metamaterials
  publication-title: Phys. Rev. B
– start-page: 172301
  year: 2001
  ident: c30
  article-title: Thermal conductance of nanostructured phononic crystals
  publication-title: Phys. Rev. B
– start-page: 718
  year: 2010
  ident: c24
  article-title: Reduction of thermal conductivity in phononic nanomesh structures
  publication-title: Nat. Nanotechnol.
– start-page: 151913
  year: 2009
  ident: c5
  article-title: Thermal transport in composites of self-assembled nickel nanoparticles embedded in yttria stabilized zirconia
  publication-title: Appl. Phys. Lett.
– start-page: 111602
  year: 2012
  ident: c7
  article-title: Systematically controlling Kapitza conductance via chemical etching
  publication-title: Appl. Phys. Lett.
– start-page: 075411
  year: 2014
  ident: c40
  article-title: Finite-size effects on molecular dynamics interfacial thermal-resistance predictions
  publication-title: Phys. Rev. B
– start-page: 055505
  year: 2014
  ident: c28
  article-title: Nanophononic metamaterial: Thermal conductivity reduction by local resonance
  publication-title: Phys. Rev. Lett.
– start-page: 107
  year: 2010
  ident: c23
  article-title: Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning
  publication-title: Nano Lett.
– start-page: 1658
  year: 2006
  ident: c3
  article-title: Enhancement of thermal interface materials with carbon nanotube arrays
  publication-title: Int. J. Heat Mass Transfer
– start-page: 035438
  year: 2011
  ident: c8
  article-title: Controlling thermal conductance through quantum dot roughening at interfaces
  publication-title: Phys. Rev. B
– start-page: 2
  year: 2012
  ident: c4
  article-title: Characterization of nanostructured thermal interface materials—A review
  publication-title: Int. J. Therm. Sci.
– start-page: 045901
  year: 2006
  ident: c26
  article-title: Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors
  publication-title: Phys. Rev. Lett.
– start-page: 16373
  year: 1993
  ident: c17
  article-title: Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K
  publication-title: Phys. Rev. B
– start-page: 081905
  year: 2014
  ident: c45
  article-title: One-way phonon isolation in acoustic waveguides
  publication-title: Appl. Phys. Lett.
– start-page: 165304
  year: 2009
  ident: c15
  article-title: Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations
  publication-title: Phys. Rev. B
– start-page: 682586
  year: 2013
  ident: c2
  article-title: Thermal transport across solid interfaces with nanoscale imperfections: Effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance
  publication-title: ISRN Mechanical Engineering
– start-page: 936
  year: 2012
  ident: c21
  article-title: Coherent phonon heat conduction in superlattices
  publication-title: Science
– start-page: 333
  year: 2007
  ident: c13
  article-title: The atomistic Green's function method: An efficient simulation approach for nanoscale phonon transport
  publication-title: Numer. Heat Transfer, Part B
– start-page: 59
  year: 2013
  ident: c20
  article-title: Quantized thermal transport across contacts of rough surfaces
  publication-title: Nat. Mater.
– start-page: 025902
  year: 2013
  ident: c27
  article-title: Narrow low-frequency spectrum and heat management by thermocrystals
  publication-title: Phys. Rev. Lett.
– start-page: 201910
  year: 2011
  ident: c44
  article-title: Real-time imaging of acoustic rectification
  publication-title: Appl. Phys. Lett.
– start-page: 1159
  year: 1991
  ident: c41
  article-title: A two-dimensional Fourier transform method for the measurement of propagating multimode signals
  publication-title: J. Acoust. Soc. Am.
– ident: 2023070418445725500_c9
  article-title: Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces
– volume: 83
  start-page: 1340
  issue: 7
  year: 2003
  ident: 2023070418445725500_c42
  article-title: Direct access to the dispersion relations of multiple anisotropic surface acoustic modes by Fourier image analysis
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1602151
– volume: 94
  start-page: 151913
  issue: 15
  year: 2009
  ident: 2023070418445725500_c5
  article-title: Thermal transport in composites of self-assembled nickel nanoparticles embedded in yttria stabilized zirconia
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3116715
– volume: 2013
  start-page: 682586
  year: 2013
  ident: 2023070418445725500_c2
  article-title: Thermal transport across solid interfaces with nanoscale imperfections: Effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance
  publication-title: ISRN Mechanical Engineering
  doi: 10.1155/2013/682586
– volume: 48
  start-page: 16373
  issue: 22
  year: 1993
  ident: 2023070418445725500_c17
  article-title: Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.16373
– volume: 62
  start-page: 2
  year: 2012
  ident: 2023070418445725500_c4
  article-title: Characterization of nanostructured thermal interface materials—A review
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.10.014
– volume: 11
  start-page: 502
  issue: 6
  year: 2012
  ident: 2023070418445725500_c6
  article-title: Effects of chemical bonding on heat transport across interfaces
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3303
– volume: 80
  start-page: 165304
  issue: 16
  year: 2009
  ident: 2023070418445725500_c15
  article-title: Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.165304
– volume: 99
  start-page: 201910
  issue: 20
  year: 2011
  ident: 2023070418445725500_c44
  article-title: Real-time imaging of acoustic rectification
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3662930
– volume: 103
  start-page: 104301
  issue: 10
  year: 2009
  ident: 2023070418445725500_c49
  article-title: Acoustic diode: Rectification of acoustic energy flux in one-dimensional systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.104301
– volume: 104
  start-page: 081905
  issue: 8
  year: 2014
  ident: 2023070418445725500_c45
  article-title: One-way phonon isolation in acoustic waveguides
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4866590
– volume: 51
  start-page: 333
  issue: 4
  year: 2007
  ident: 2023070418445725500_c13
  article-title: The atomistic Green's function method: An efficient simulation approach for nanoscale phonon transport
  publication-title: Numer. Heat Transfer, Part B
  doi: 10.1080/10407790601144755
– volume-title: Acoustic Fields and Waves in Solids
  year: 1990
  ident: 2023070418445725500_c36
– volume: 5
  start-page: 1
  year: 2014
  ident: 2023070418445725500_c50
  article-title: A photon thermal diode
  publication-title: Nat. Commun.
– volume: 89
  start-page: 1159
  issue: 3
  year: 1991
  ident: 2023070418445725500_c41
  article-title: A two-dimensional Fourier transform method for the measurement of propagating multimode signals
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.400530
– volume: 112
  start-page: 055505
  issue: 5
  year: 2014
  ident: 2023070418445725500_c28
  article-title: Nanophononic metamaterial: Thermal conductivity reduction by local resonance
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.055505
– volume: 89
  start-page: 180301
  issue: 18
  year: 2014
  ident: 2023070418445725500_c16
  article-title: Phonon interference and thermal conductance reduction in atomic-scale metamaterials
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.180301
– volume: 131
  start-page: 022402
  issue: 2
  year: 2009
  ident: 2023070418445725500_c31
  article-title: Relative contributions of inelastic and elastic diffuse phonon scattering to thermal boundary conductance across solid interfaces
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2995623
– volume: 73
  start-page: 144301
  issue: 14
  year: 2006
  ident: 2023070418445725500_c18
  article-title: Thermal conductance of interfaces between highly dissimilar materials
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.144301
– volume: 87
  start-page: 094303
  issue: 9
  year: 2013
  ident: 2023070418445725500_c19
  article-title: Relationship of thermal boundary conductance to structure from an analytical model plus molecular dynamics simulations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.094303
– volume: 64
  start-page: 172301
  issue: 17
  year: 2001
  ident: 2023070418445725500_c30
  article-title: Thermal conductance of nanostructured phononic crystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.172301
– volume: 49
  start-page: 1658
  issue: 9
  year: 2006
  ident: 2023070418445725500_c3
  article-title: Enhancement of thermal interface materials with carbon nanotube arrays
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.09.039
– volume: 93
  start-page: 793
  issue: 2
  year: 2003
  ident: 2023070418445725500_c1
  article-title: Nanoscale thermal transport
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1524305
– volume: 5
  start-page: 1
  year: 2014
  ident: 2023070418445725500_c25
  article-title: Engineering thermal conductance using a two-dimensional phononic crystal
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4435
– volume: 27
  start-page: 1086
  issue: 9
  year: 1956
  ident: 2023070418445725500_c46
  article-title: Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1722545
– volume: 110
  start-page: 025902
  issue: 2
  year: 2013
  ident: 2023070418445725500_c27
  article-title: Narrow low-frequency spectrum and heat management by thermocrystals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.025902
– volume: 84
  start-page: 035438
  issue: 3
  year: 2011
  ident: 2023070418445725500_c8
  article-title: Controlling thermal conductance through quantum dot roughening at interfaces
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.035438
– volume: 11
  start-page: 107
  issue: 1
  year: 2010
  ident: 2023070418445725500_c23
  article-title: Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning
  publication-title: Nano Lett.
  doi: 10.1021/nl102918q
– volume: 5
  start-page: 718
  issue: 10
  year: 2010
  ident: 2023070418445725500_c24
  article-title: Reduction of thermal conductivity in phononic nanomesh structures
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.149
– volume: 86
  start-page: 094303
  issue: 9
  year: 2012
  ident: 2023070418445725500_c39
  article-title: Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.094303
– volume: 96
  start-page: 045901
  issue: 4
  year: 2006
  ident: 2023070418445725500_c26
  article-title: Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.045901
– volume: 89
  start-page: 054309
  issue: 5
  year: 2014
  ident: 2023070418445725500_c10
  article-title: Thermal boundary conductance across rough interfaces probed by molecular dynamics
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.054309
– volume: 133
  start-page: A253
  issue: 1A
  year: 1964
  ident: 2023070418445725500_c47
  article-title: Thermal conductivity and phonon scattering by magnetic impurities in CdTe
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.133.A253
– ident: 2023070418445725500_c38
– volume: 503
  start-page: 209
  issue: 7475
  year: 2013
  ident: 2023070418445725500_c29
  article-title: Sound and heat revolutions in phononics
  publication-title: Nature
  doi: 10.1038/nature12608
– volume: 338
  start-page: 936
  issue: 6109
  year: 2012
  ident: 2023070418445725500_c21
  article-title: Coherent phonon heat conduction in superlattices
  publication-title: Science
  doi: 10.1126/science.1225549
– volume: 37
  start-page: 334
  issue: 3
  year: 1959
  ident: 2023070418445725500_c51
  article-title: The transport of heat between dissimilar solids at low temperatures
  publication-title: Can. J. Phys.
  doi: 10.1139/p59-037
– volume: 40
  start-page: 3685
  issue: 6
  year: 1989
  ident: 2023070418445725500_c11
  article-title: Lattice-dynamical calculation of the Kapitza resistance between FCC lattices
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.40.3685
– volume: 12
  start-page: 59
  issue: 1
  year: 2013
  ident: 2023070418445725500_c20
  article-title: Quantized thermal transport across contacts of rough surfaces
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3460
– volume: 97
  start-page: 055502
  issue: 5
  year: 2006
  ident: 2023070418445725500_c43
  article-title: Imaging ripples on phononic crystals reveals acoustic band structure and Bloch harmonics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.055502
– volume: 66
  start-page: 195304
  issue: 19
  year: 2002
  ident: 2023070418445725500_c48
  article-title: Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.195304
– volume: 97
  start-page: 024903
  issue: 2
  year: 2005
  ident: 2023070418445725500_c12
  article-title: Lattice-dynamical calculation of phonon scattering at ideal Si–Ge interfaces
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1835565
– volume: 114
  start-page: 185
  issue: 2
  year: 1994
  ident: 2023070418445725500_c33
  article-title: A perfectly matched layer for the absorption of electromagnetic waves
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1159
– volume: 50
  start-page: 3977
  issue: 19
  year: 2007
  ident: 2023070418445725500_c14
  article-title: Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: Nonequilibrium molecular dynamics simulations
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2007.01.040
– volume: 13
  start-page: 168
  year: 2014
  ident: 2023070418445725500_c22
  article-title: Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
  publication-title: Nature Mat.
  doi: 10.1038/nmat3826
– volume: 50
  start-page: 776
  issue: 4
  year: 2013
  ident: 2023070418445725500_c32
  article-title: Reciprocity in reflection and transmission: What is a ‘phonon diode’?
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2013.02.006
– volume-title: Notes on Perfectly Matched Layers (PMLs)
  year: 2008
  ident: 2023070418445725500_c35
– volume: 100
  start-page: 111602
  issue: 11
  year: 2012
  ident: 2023070418445725500_c7
  article-title: Systematically controlling Kapitza conductance via chemical etching
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3695058
– ident: 2023070418445725500_c37
– volume: 100
  start-page: 3061
  issue: 5
  year: 1996
  ident: 2023070418445725500_c34
  article-title: Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.417118
– volume: 90
  start-page: 075411
  issue: 7
  year: 2014
  ident: 2023070418445725500_c40
  article-title: Finite-size effects on molecular dynamics interfacial thermal-resistance predictions
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.075411
SSID ssj0011839
Score 2.1917722
Snippet The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular...
SourceID osti
hal
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Acoustics
Applied physics
APPROXIMATIONS
Arrays
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DIFFRACTION
Energy transmission
Engineering Sciences
Filtration
FOURIER TRANSFORMATION
Fourier transforms
FREQUENCY DEPENDENCE
HOLES
KAPITZA RESISTANCE
Mechanics
Periodic variations
PHONONS
Physics
POLARIZATION
Reciprocity
ROUGHNESS
SILICON
TEMPERATURE DEPENDENCE
TEMPERATURE RANGE 0013-0065 K
TEMPERATURE RANGE 0065-0273 K
Thermal conductivity
Thermal resistance
Thermics
TIME DEPENDENCE
TWO-DIMENSIONAL CALCULATIONS
Vibrations
Title Phononic thermal resistance due to a finite periodic array of nano-scatterers
URI http://dx.doi.org/10.1063/1.4959803
https://www.proquest.com/docview/2121705379
https://hal.science/hal-01247068
https://www.osti.gov/biblio/22597725
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011839
  issn: 0021-8979
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagEwIOCAYThYEs4IZcYjtxkmPFmAq0pdI2aTcrcey10tZUbboDfz3PcX4VKjS4WFFstdZ7z_Zn53ufEfpgAiqC0MBAilJG_EBxEgGOJRnzUi1o5gljs5EnUzG68L9dBpctlbfMLinSgfq5N6_kf7wK78CvNkv2Hzzb_Ci8gGfwL5TgYSjv5OPZPF-WN9hYFHdTSvRvLB60gzXblpdiJB_NwsJKq0-8yDOrzrpeJ05GOlnmZKNKgc2KB78HpiYVTHVHIA0Cn17NF_rGXvvpaEbbUib9qsMWWG2dfMFsQH5cL-zy2z1hoMIeXVYZ2y2pP1nu0hdmnX-t8wIoiWJ3NcxAu-nUi2ISBk5atplvy-y3P-duAEv2GGEAW7Y48ni7QNUf5UfDMzk7OZXjr9Pvu7UdUuFoOIZynlwTWHr90BPRLWyODxhM-l4PHQxPJuOz5jOThYeOA-S6XktPCf6p6ccOYLk_t3TZXg6G2NmSPAS84qgTHXRy_hQ9qfyFhy5GnqF7enmIHnfEJg_Rg8qWz9GkjhtcxQ1u4wZD3OAixwl2cYPruMFl3ODc4N_i5gW6OP1y_nlEqms1iOJ-XJDAAKb3U8NDTg2jmvnclFO_9hQMzshoEfshMxllJqZZnPmeiXnAtYhYLFTIj1APOqlfIkyNCZmmmmap9nlmUtguKFgRdGISFijdR-9q28mVU0-RJetBcEllZWBoBFZt6q3eOThR2netC_vo2BpdWjtrNVeWBaYKCasRbGBYANW1M2Q1QDcSUJkVi-Jh3EfvGwf9rSN7Wt3m67aFXGXm1V26-xo9akfSMeoV661-A-i1SN9WMfgLwteZLQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phononic+thermal+resistance+due+to+a+finite+periodic+array+of+nano-scatterers&rft.jtitle=Journal+of+applied+physics&rft.au=Nghiem+Thi%2C+Thu+Trang&rft.au=Chapuis%2C+P.-Olivier&rft.date=2016-07-28&rft.pub=American+Institute+of+Physics&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=120&rft_id=info:doi/10.1063%2F1.4959803&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01247068v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon