BSE versus StarTrack: Implementations of new wind, remnant-formation, and natal-kick schemes in NBODY7 and their astrophysical consequences

Context. As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great interest in this era of gravitational-wave detection from binary black hole (BBH) and binary neutron star merger events. Aims. In this work, w...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 639; p. A41
Main Authors Banerjee, S., Belczynski, K., Fryer, C. L., Berczik, P., Hurley, J. R., Spurzem, R., Wang, L.
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.07.2020
Subjects
Online AccessGet full text
ISSN0004-6361
1432-0746
DOI10.1051/0004-6361/201935332

Cover

Abstract Context. As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great interest in this era of gravitational-wave detection from binary black hole (BBH) and binary neutron star merger events. Aims. In this work, we present new developments in the stellar-remnant formation and related schemes of the current N -body evolution program NBODY7 . We demonstrate that the newly implemented stellar-wind and remnant-formation schemes in the stellar-evolutionary sector or BSE of the NBODY7 code, such as the “rapid” and the “delayed” supernova (SN) schemes along with an implementation of pulsational-pair-instability and pair-instability supernova (PPSN/PSN), now produce neutron star (NS) and BH masses that agree nearly perfectly, over large ranges of zero-age-main-sequence (ZAMS) mass and metallicity, with those from the widely recognised StarTrack population-synthesis program. We also demonstrate the new, recipe-based implementations of various widely debated mechanisms of natal kicks on NSs and BHs, such as “convection-asymmetry-driven”, “collapse-asymmetry-driven”, and “neutrino-emission-driven” kicks, in addition to a fully consistent implementation of the standard, fallback-dependent, momentum-conserving natal kick. Methods. All the above newly implemented schemes are also shared with the standalone versions of SSE and BSE . All these demonstrations are performed with both the updated standalone BSE and the updated NBODY7 / BSE . Results. When convolved with stellar and primordial-binary populations as observed in young massive clusters, such remnant-formation and natal-kick mechanisms crucially determine the accumulated number, mass, and mass distribution of the BHs retained in young massive, open, and globular clusters (GCs); these BHs would eventually become available for long-term dynamical processing. Conclusions. Among other conclusions, we find that although the newer, delayed SN remnant formation model gives birth to the largest number (mass) of BHs, the older remnant-formation schemes cause the largest number (mass) of BHs to survive in clusters, when incorporating SN material fallback onto the BHs. The SN material fallback also causes the convection-asymmetry-driven SN kick to effectively retain similar numbers and masses of BHs in clusters as for the standard, momentum-conserving kick. The collapse-asymmetry-driven SN kick would cause nearly all BHs to be retained in clusters irrespective of their mass, remnant-formation model, and metallicity, whereas the inference of a large population of BHs in GCs would potentially rule out the neutrino-driven SN kick mechanism. Pre-SN mergers of massive primordial binaries would potentially cause BH masses to deviate from the theoretical, single-star ZAMS to mass-remnant mass relation unless a substantial of the total merging stellar mass of up to ≈40% is lost during a merger process. In particular, such mergers, at low metallicities, have the potential to produce low-spinning BHs within the PSN mass gap that can be retained in a stellar cluster and be available for subsequent dynamical interactions. As recent studies indicate, the new remnant-formation modelling reassures us that young massive and open clusters would potentially contribute to the dynamical BBH merger detection rate to a similar extent as their more massive GC counterparts.
AbstractList Context. As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great interest in this era of gravitational-wave detection from binary black hole (BBH) and binary neutron star merger events. Aims. In this work, we present new developments in the stellar-remnant formation and related schemes of the current N-body evolution program NBODY7. We demonstrate that the newly implemented stellar-wind and remnant-formation schemes in the stellar-evolutionary sector or BSE of the NBODY7 code, such as the “rapid” and the “delayed” supernova (SN) schemes along with an implementation of pulsational-pair-instability and pair-instability supernova (PPSN/PSN), now produce neutron star (NS) and BH masses that agree nearly perfectly, over large ranges of zero-age-main-sequence (ZAMS) mass and metallicity, with those from the widely recognised StarTrack population-synthesis program. We also demonstrate the new, recipe-based implementations of various widely debated mechanisms of natal kicks on NSs and BHs, such as “convection-asymmetry-driven”, “collapse-asymmetry-driven”, and “neutrino-emission-driven” kicks, in addition to a fully consistent implementation of the standard, fallback-dependent, momentum-conserving natal kick. Methods. All the above newly implemented schemes are also shared with the standalone versions of SSE and BSE. All these demonstrations are performed with both the updated standalone BSE and the updated NBODY7/BSE. Results. When convolved with stellar and primordial-binary populations as observed in young massive clusters, such remnant-formation and natal-kick mechanisms crucially determine the accumulated number, mass, and mass distribution of the BHs retained in young massive, open, and globular clusters (GCs); these BHs would eventually become available for long-term dynamical processing. Conclusions. Among other conclusions, we find that although the newer, delayed SN remnant formation model gives birth to the largest number (mass) of BHs, the older remnant-formation schemes cause the largest number (mass) of BHs to survive in clusters, when incorporating SN material fallback onto the BHs. The SN material fallback also causes the convection-asymmetry-driven SN kick to effectively retain similar numbers and masses of BHs in clusters as for the standard, momentum-conserving kick. The collapse-asymmetry-driven SN kick would cause nearly all BHs to be retained in clusters irrespective of their mass, remnant-formation model, and metallicity, whereas the inference of a large population of BHs in GCs would potentially rule out the neutrino-driven SN kick mechanism. Pre-SN mergers of massive primordial binaries would potentially cause BH masses to deviate from the theoretical, single-star ZAMS to mass-remnant mass relation unless a substantial of the total merging stellar mass of up to ≈40% is lost during a merger process. In particular, such mergers, at low metallicities, have the potential to produce low-spinning BHs within the PSN mass gap that can be retained in a stellar cluster and be available for subsequent dynamical interactions. As recent studies indicate, the new remnant-formation modelling reassures us that young massive and open clusters would potentially contribute to the dynamical BBH merger detection rate to a similar extent as their more massive GC counterparts.
As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great interest in this era of gravitational-wave detection from binary black hole (BBH) and binary neutron star merger events. In this work, we present new developments in the stellar-remnant formation and related schemes of the current N-body evolution program NBODY7. We demonstrate that the newly implemented stellar-wind and remnant-formation schemes in the stellar-evolutionary sector or BSE of the NBODY7 code, such as the “rapid” and the “delayed” supernova (SN) schemes along with an implementation of pulsational-pair-instability and pair-instability supernova (PPSN/PSN), now produce neutron star (NS) and BH masses that agree nearly perfectly, over large ranges of zero-age-main-sequence (ZAMS) mass and metallicity, with those from the widely recognised StarTrack population-synthesis program. We also demonstrate the new, recipe-based implementations of various widely debated mechanisms of natal kicks on NSs and BHs, such as “convection-asymmetry-driven”, “collapse-asymmetry-driven”, and “neutrino-emission-driven” kicks, in addition to a fully consistent implementation of the standard, fallback-dependent, momentum-conserving natal kick. All the above newly implemented schemes are also shared with the standalone versions of SSE and BSE. Furthermore, all these demonstrations are performed with both the updated standalone BSE and the updated NBODY7/BSE. When convolved with stellar and primordial-binary populations as observed in young massive clusters, such remnant-formation and natal-kick mechanisms crucially determine the accumulated number, mass, and mass distribution of the BHs retained in young massive, open, and globular clusters (GCs); these BHs would eventually become available for long-term dynamical processing. Among other conclusions, we find that although the newer, delayed SN remnant formation model gives birth to the largest number (mass) of BHs, the older remnant-formation schemes cause the largest number (mass) of BHs to survive in clusters, when incorporating SN material fallback onto the BHs. The SN material fallback also causes the convection-asymmetry-driven SN kick to effectively retain similar numbers and masses of BHs in clusters as for the standard, momentum-conserving kick. The collapse-asymmetry-driven SN kick would cause nearly all BHs to be retained in clusters irrespective of their mass, remnant-formation model, and metallicity, whereas the inference of a large population of BHs in GCs would potentially rule out the neutrino-driven SN kick mechanism. Pre-SN mergers of massive primordial binaries would potentially cause BH masses to deviate from the theoretical, single-star ZAMS to mass-remnant mass relation unless a substantial of the total merging stellar mass of up to ≈40% is lost during a merger process. In particular, such mergers, at low metallicities, have the potential to produce low-spinning BHs within the PSN mass gap that can be retained in a stellar cluster and be available for subsequent dynamical interactions. As recent studies indicate, the new remnant-formation modelling reassures us that young massive and open clusters would potentially contribute to the dynamical BBH merger detection rate to a similar extent as their more massive GC counterparts.
Context. As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great interest in this era of gravitational-wave detection from binary black hole (BBH) and binary neutron star merger events. Aims. In this work, we present new developments in the stellar-remnant formation and related schemes of the current N -body evolution program NBODY7 . We demonstrate that the newly implemented stellar-wind and remnant-formation schemes in the stellar-evolutionary sector or BSE of the NBODY7 code, such as the “rapid” and the “delayed” supernova (SN) schemes along with an implementation of pulsational-pair-instability and pair-instability supernova (PPSN/PSN), now produce neutron star (NS) and BH masses that agree nearly perfectly, over large ranges of zero-age-main-sequence (ZAMS) mass and metallicity, with those from the widely recognised StarTrack population-synthesis program. We also demonstrate the new, recipe-based implementations of various widely debated mechanisms of natal kicks on NSs and BHs, such as “convection-asymmetry-driven”, “collapse-asymmetry-driven”, and “neutrino-emission-driven” kicks, in addition to a fully consistent implementation of the standard, fallback-dependent, momentum-conserving natal kick. Methods. All the above newly implemented schemes are also shared with the standalone versions of SSE and BSE . All these demonstrations are performed with both the updated standalone BSE and the updated NBODY7 / BSE . Results. When convolved with stellar and primordial-binary populations as observed in young massive clusters, such remnant-formation and natal-kick mechanisms crucially determine the accumulated number, mass, and mass distribution of the BHs retained in young massive, open, and globular clusters (GCs); these BHs would eventually become available for long-term dynamical processing. Conclusions. Among other conclusions, we find that although the newer, delayed SN remnant formation model gives birth to the largest number (mass) of BHs, the older remnant-formation schemes cause the largest number (mass) of BHs to survive in clusters, when incorporating SN material fallback onto the BHs. The SN material fallback also causes the convection-asymmetry-driven SN kick to effectively retain similar numbers and masses of BHs in clusters as for the standard, momentum-conserving kick. The collapse-asymmetry-driven SN kick would cause nearly all BHs to be retained in clusters irrespective of their mass, remnant-formation model, and metallicity, whereas the inference of a large population of BHs in GCs would potentially rule out the neutrino-driven SN kick mechanism. Pre-SN mergers of massive primordial binaries would potentially cause BH masses to deviate from the theoretical, single-star ZAMS to mass-remnant mass relation unless a substantial of the total merging stellar mass of up to ≈40% is lost during a merger process. In particular, such mergers, at low metallicities, have the potential to produce low-spinning BHs within the PSN mass gap that can be retained in a stellar cluster and be available for subsequent dynamical interactions. As recent studies indicate, the new remnant-formation modelling reassures us that young massive and open clusters would potentially contribute to the dynamical BBH merger detection rate to a similar extent as their more massive GC counterparts.
Author Fryer, C. L.
Berczik, P.
Spurzem, R.
Banerjee, S.
Belczynski, K.
Hurley, J. R.
Wang, L.
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0002-1254-2603
  surname: Banerjee
  fullname: Banerjee, S.
– sequence: 2
  givenname: K.
  surname: Belczynski
  fullname: Belczynski, K.
– sequence: 3
  givenname: C. L.
  surname: Fryer
  fullname: Fryer, C. L.
– sequence: 4
  givenname: P.
  surname: Berczik
  fullname: Berczik, P.
– sequence: 5
  givenname: J. R.
  surname: Hurley
  fullname: Hurley, J. R.
– sequence: 6
  givenname: R.
  surname: Spurzem
  fullname: Spurzem, R.
– sequence: 7
  givenname: L.
  surname: Wang
  fullname: Wang, L.
BackLink https://www.osti.gov/servlets/purl/1830577$$D View this record in Osti.gov
BookMark eNp9kc1OHDEQhK2ISFkIT5CLFa5M8N-MZ7jxmyAhOAAHTpbH09aanbEX2wviGXhpvLsRhxxyarX6q1Kpehft-OABoR-U_KKkpkeEEFE1vKFHjNCO15yzL2hGBWcVkaLZQbNP4hvaTemprIy2fIbeT-8u8AvEtEr4Lut4H7VZHOOraTnCBD7r7IJPOFjs4RW_Oj8c4giT1z5XNsRpcz_E2g_Y66zHauHMAiczL-qEncc3p7fnj3ID5Dm4iHXKMSznb8kZPWJT3OF5Bd5A-o6-Wj0m2P8799DD5cX92Z_q-vb31dnJdWW46HJVgx1qQaVtWT9YNlhpemnIYPuWkV7Woq6HznS27UC0g-4bSkijQTeia0Xb9XwP_dz6hpSdSsZlMPMSxIPJqrRCaikLdLCFljGUfCmrp7CKvuRSTLSSioY1tFDdljIxpBTBquK26SRH7UZFiVo_SK3rV-v61eeDipb_o11GN-n49l_VB2XZlbg
CitedBy_id crossref_primary_10_1093_mnras_stab591
crossref_primary_10_1093_mnras_staf279
crossref_primary_10_1093_mnras_stae2644
crossref_primary_10_3847_1538_4357_ace4c1
crossref_primary_10_1051_0004_6361_201936688
crossref_primary_10_3847_2041_8213_ac00a7
crossref_primary_10_1093_mnras_stac2192
crossref_primary_10_1093_mnras_stad3657
crossref_primary_10_1093_mnras_stad1630
crossref_primary_10_1093_mnras_stab1589
crossref_primary_10_1051_0004_6361_202142331
crossref_primary_10_1093_mnras_stae470
crossref_primary_10_1088_1674_4527_acdc08
crossref_primary_10_3847_1538_4357_ac339f
crossref_primary_10_1093_mnras_staf303
crossref_primary_10_1103_PhysRevD_105_023004
crossref_primary_10_1093_mnras_stad1360
crossref_primary_10_3847_1538_4357_ad6306
crossref_primary_10_3847_1538_4357_ac9d95
crossref_primary_10_1093_mnras_stad2292
crossref_primary_10_3847_1538_4357_ac75d0
crossref_primary_10_1051_0004_6361_202452962
crossref_primary_10_1051_0004_6361_202348978
crossref_primary_10_1093_mnras_stad3306
crossref_primary_10_1093_mnras_stad1800
crossref_primary_10_1093_mnras_stad1925
crossref_primary_10_3847_1538_3881_ad3103
crossref_primary_10_1103_PhysRevD_102_103002
crossref_primary_10_3847_1538_4357_ad499c
crossref_primary_10_3847_1538_4357_acdd59
crossref_primary_10_3847_1538_4357_ac1419
crossref_primary_10_3847_1538_4357_acc24c
crossref_primary_10_1093_mnras_stab2136
crossref_primary_10_1103_PhysRevD_110_043023
crossref_primary_10_1093_mnras_stad1254
crossref_primary_10_1051_0004_6361_202347931
crossref_primary_10_3847_2041_8213_ac3bcd
crossref_primary_10_1093_mnras_staa2047
crossref_primary_10_1093_mnras_stad3951
crossref_primary_10_1093_mnras_stad3952
crossref_primary_10_1093_mnras_stae1174
crossref_primary_10_3847_1538_4357_ad4c66
crossref_primary_10_1093_mnras_stab3748
crossref_primary_10_3847_1538_4357_ac8167
crossref_primary_10_1051_0004_6361_202244225
crossref_primary_10_1093_mnras_staf321
crossref_primary_10_1093_mnras_stab1157
crossref_primary_10_1126_science_adi4211
crossref_primary_10_1093_mnras_stac2281
crossref_primary_10_1103_PhysRevD_103_063007
crossref_primary_10_1093_mnras_stad3600
crossref_primary_10_3847_2041_8213_ac225a
crossref_primary_10_1093_mnras_stac2563
crossref_primary_10_3847_1538_4357_acd9c9
crossref_primary_10_1051_0004_6361_202451728
crossref_primary_10_1103_PhysRevD_108_083012
crossref_primary_10_1093_mnras_stac2043
crossref_primary_10_1134_S1063773721120021
crossref_primary_10_3847_1538_4357_accae0
crossref_primary_10_1093_mnras_staa3634
crossref_primary_10_1093_mnras_stad3294
crossref_primary_10_1051_0004_6361_202141838
crossref_primary_10_3847_1538_4357_ac9b0f
crossref_primary_10_3847_1538_4357_ad701e
crossref_primary_10_3847_1538_4357_ac2838
crossref_primary_10_3847_1538_4357_ac674e
crossref_primary_10_3847_2041_8213_aba74e
crossref_primary_10_1093_mnras_stac231
crossref_primary_10_1007_s41114_022_00041_y
crossref_primary_10_1093_mnras_stad1287
crossref_primary_10_3847_1538_4357_ad7953
crossref_primary_10_1051_0004_6361_202449235
crossref_primary_10_3847_2041_8213_abbc0a
crossref_primary_10_1007_s41115_023_00018_w
crossref_primary_10_1093_mnras_staf076
crossref_primary_10_3847_1538_4357_ad6b16
crossref_primary_10_3847_1538_4357_ac5026
crossref_primary_10_1093_mnras_staa2392
crossref_primary_10_1093_mnras_stae1413
crossref_primary_10_1093_mnras_stac1567
crossref_primary_10_1051_0004_6361_202349115
crossref_primary_10_3847_1538_4357_ad77bc
crossref_primary_10_3847_2041_8213_abdf5b
crossref_primary_10_1088_1674_4527_ac7f0f
crossref_primary_10_1051_0004_6361_202450399
crossref_primary_10_1093_mnras_stad2548
crossref_primary_10_1093_mnras_stac1163
crossref_primary_10_1093_mnras_stab3255
crossref_primary_10_1038_s41550_021_01392_2
crossref_primary_10_1051_0004_6361_202452064
crossref_primary_10_3847_2041_8213_abb671
crossref_primary_10_3847_1538_4365_ac416c
crossref_primary_10_1093_mnras_stae2591
crossref_primary_10_1051_0004_6361_202449978
crossref_primary_10_1051_0004_6361_202141299
crossref_primary_10_1103_PhysRevD_105_124048
crossref_primary_10_1103_PhysRevD_102_123016
Cites_doi 10.1086/173033
10.1103/PhysRevLett.118.221101
10.1093/mnras/stx2933
10.3847/0004-637X/819/2/108
10.1515/9781400858736
10.1086/321359
10.1093/mnras/stv2733
10.1046/j.1365-8711.2003.06616.x
10.1093/mnras/sty2608
10.1088/0004-637X/714/2/1217
10.1093/mnras/277.4.1491
10.1086/513003
10.1038/nature23453
10.3847/2515-5172/ab66be
10.1051/0004-6361/200810425
10.1093/mnras/stu824
10.3847/2041-8213/ab3800
10.1103/PhysRevLett.120.151101
10.1103/PhysRevLett.116.061102
10.1038/547284a
10.1088/978-0-7503-1320-9
10.1086/500933
10.1111/j.1365-2966.2012.21549.x
10.1051/0004-6361/201628133
10.1103/PhysRevLett.92.011103
10.1086/382044
10.3847/2041-8213/ab77c9
10.1046/j.1365-8711.2002.05038.x
10.1111/j.1365-2966.2012.21227.x
10.1111/j.1745-3933.2007.00399.x
10.1103/PhysRevLett.119.141101
10.1093/mnrasl/slw177
10.1093/mnras/stz514
10.1093/mnrasl/slx203
10.1051/0004-6361:20010127
10.1088/0264-9381/27/17/173001
10.1086/429557
10.1088/0004-637X/725/1/816
10.3847/2041-8205/818/2/L22
10.1093/mnras/stt617
10.1103/PhysRevD.93.084029
10.1093/mnras/stv1753
10.1093/mnras/stz3033
10.3847/2041-8213/aab26c
10.1051/0004-6361/201219621
10.1093/mnras/sts673
10.1088/0004-637X/800/1/9
10.1051/0004-6361:20011465
10.1038/nature18322
10.1086/519372
10.1093/mnras/stv817
10.1093/mnras/stw869
10.1051/0004-6361:20077701
10.1088/0004-637X/749/1/91
10.1088/0004-637X/697/2/1057
10.1007/s00159-013-0059-2
10.1086/421713
10.1093/mnras/stz359
10.1093/mnras/stz1453
10.1093/mnras/stt1106
10.1051/0004-6361/201936528
10.1093/mnras/stx1015
10.1046/j.1365-8711.2001.04022.x
10.1093/mnras/sty2190
10.1111/j.1365-2966.2012.21672.x
10.1051/0004-6361:20066641
10.1093/mnras/sts415
10.3847/1538-4357/ab0214
10.1086/521026
10.1093/mnras/sty1859
10.1111/j.1365-2966.2004.08041.x
10.1093/mnras/71.5.460
10.3847/1538-4357/836/2/244
10.1017/CBO9780511535246
10.1093/mnras/sty1186
10.1103/PhysRevLett.76.352
10.1086/340304
10.3847/1538-4357/aadbae
10.3847/1538-4357/aaf646
10.1086/309350
10.1086/500544
10.1086/339060
10.1088/0004-637X/764/2/166
10.1051/0004-6361/201321576
10.1103/PhysRevD.100.104015
10.1086/167404
10.1086/307647
10.1051/0004-6361/201628980
10.1093/mnras/stt307
10.1038/ncomms14906
10.1051/0004-6361:20052862
10.1111/j.1365-2966.2012.20666.x
10.1093/mnras/stw274
10.3847/1538-4357/834/1/68
10.1046/j.1365-8711.2000.03426.x
10.1086/176778
10.1086/133478
10.1111/j.1365-2966.2005.09087.x
10.1093/mnras/stx2347
10.1093/mnras/stx2123
10.1103/PhysRevD.97.103014
10.1111/j.1365-2966.2009.15880.x
10.1103/PhysRevD.68.103002
ContentType Journal Article
Copyright Copyright EDP Sciences Jul 2020
Copyright_xml – notice: Copyright EDP Sciences Jul 2020
CorporateAuthor Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
DBID AAYXX
CITATION
8FD
H8D
L7M
OIOZB
OTOTI
DOI 10.1051/0004-6361/201935332
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 1830577
10_1051_0004_6361_201935332
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
8FD
H8D
L7M
ACBIF
ACZCS
OIOZB
OTOTI
RSV
SOJ
ID FETCH-LOGICAL-c349t-5efd5417f82bdf2df7cb7c0dfb820b75455d9c9f89e48dab61006aea6498489b3
ISSN 0004-6361
IngestDate Fri May 19 00:39:26 EDT 2023
Sun Jun 29 12:43:32 EDT 2025
Tue Jul 01 03:59:28 EDT 2025
Thu Apr 24 23:00:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://www.edpsciences.org/en/authors/copyright-and-licensing
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-5efd5417f82bdf2df7cb7c0dfb820b75455d9c9f89e48dab61006aea6498489b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
Polish Science Center (NCN)
LA-UR-20-22131
Chinese Academy of Sciences (CAS)
Volkswagen Foundation
German Research Foundation (DFG)
89233218CNA000001; BA 4281/6-1; 2018/30/A/ST9/00050; 90411; 97778; XDB2304010; 11673032
USDOE Laboratory Directed Research and Development (LDRD) Program
National Natural Science Foundation of China (NSFC)
ORCID 0000-0002-1254-2603
0000000212542603
0000000326240056
OpenAccessLink https://www.osti.gov/servlets/purl/1830577
PQID 2487146261
PQPubID 1796397
ParticipantIDs osti_scitechconnect_1830577
proquest_journals_2487146261
crossref_citationtrail_10_1051_0004_6361_201935332
crossref_primary_10_1051_0004_6361_201935332
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
– name: United States
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2020
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Farr (R34) 2017; 548
Claret (R29) 2007; 467
Meakin (R77) 2006; 637
Timmes (R100) 1996; 457
Arca Sedda (R10) 2018; 479
Fishbach (R35) 2020; 891
Meakin (R78) 2007; 665
Kremer (R64) 2019; 871
Lombardi (R71) 2002; 568
Morscher (R79) 2015; 800
Kudritzki (R68) 1978; 70
Chatziioannou (R28) 2019; 100
R1
Park (R82) 2017; 469
Kremer (R63) 2018; 855
Plummer (R83) 1911; 71
Hamann (R53) 1998; 335
Abbott (R6) 2017; 118
Geller (R47) 2019; 872
Rodriguez (R90) 2018; 120
Eldridge (R33) 2004; 353
Nitadori (R81) 2012; 424
Abbott (R9) 2019; 882
Fuller (R45) 2019; 485
Toonen (R101) 2014; 562
Abadie (R3) 2010; 27
Podsiadlowski (R84) 2004; 612
Gessner (R48) 2018; 865
Rodriguez (R89) 2016; 93
Belczynski (R25) 2020; 636
Lattimer (R69) 1989; 340
Vink (R103) 2005; 442
Belczynski (R18) 2002; 572
Fryer (R38) 2004; 601
Repetto (R88) 2017; 467
Banerjee (R16) 2010; 402
Nieuwenhuijzen (R80) 1990; 231
Sana (R92) 2011; 272
Wang (R108) 2020; 491
Fryer (R40) 2006; 163
Willems (R109) 2005; 625
Hypki (R58) 2013; 429
Scheck (R94) 2004; 92
Askar (R12) 2018; 478
Stevenson (R99) 2017; 8
Fryer (R41) 2007; 659
Duquennoy (R32) 1991; 248
Banerjee (R13) 2017; 467
Abbott (R8) 2019; 9
Repetto (R86) 2015; 453
Belczynski (R21) 2010; 725
Wang (R106) 2015; 450
Belczynski (R19) 2008; 174
Repetto (R87) 2012; 425
Burrows (R26) 1996; 76
Fryer (R42) 2012; 749
Fryer (R37) 1999; 522
Giacobbo (R49) 2018; 474
Kimball (R62) 2020; 4
Banerjee (R17) 2012; 426
Abbott (R7) 2017; 119
Mandel (R73) 2017; 547
Mapelli (R75) 2017; 472
Fragos (R36) 2009; 697
Samsing (R91) 2018; 97
Abbott (R4) 2016; 116
Aarseth (R2) 2012; 422
Gaburov (R46) 2008; 383
Belczynski (R24) 2016; 819
Vassiliadis (R102) 1993; 413
de Mink (R30) 2013; 764
Sana (R93) 2013; 550
Fryer (R39) 2001; 554
Abbott (R5) 2016; 818
Giersz (R50) 2013; 431
Scheck (R95) 2008; 477
Joshi (R61) 2000; 540
Belczynski (R20) 2010; 714
Banerjee (R15) 2018; 481
Janka (R60) 2013; 434
Chatterjee (R27) 2017; 834
Leigh (R70) 2013; 432
Kruckow (R67) 2018; 481
R85
Voss (R105) 2003; 342
Mandel (R72) 2016; 456
Fujii (R43) 2013; 430
Hurley (R57) 2002; 329
Humphreys (R55) 1994; 106
Belczynski (R22) 2016; 534
Wang (R107) 2016; 458
Di Carlo (R31) 2019; 487
Fuller (R44) 2003; 68
Kroupa (R66) 2001; 322
Belczynski (R23) 2016; 594
Woosley (R110) 2017; 836
Giesers (R51) 2018; 475
Kroupa (R65) 1995; 277
Banerjee (R14) 2018; 473
Spera (R96) 2019; 485
R97
Hurley (R56) 2000; 315
Marchant (R76) 2016; 588
Ziosi (R111) 2014; 441
Ivanova (R59) 2013; 21
Hobbs (R54) 2005; 360
Vink (R104) 2001; 369
Glebbeek (R52) 2009; 497
Mapelli (R74) 2016; 459
Askar (R11) 2017; 464
Spruit (R98) 2002; 381
References_xml – volume: 413
  start-page: 641
  year: 1993
  ident: R102
  publication-title: ApJ
  doi: 10.1086/173033
– volume: 118
  start-page: 221101
  year: 2017
  ident: R6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.221101
– volume: 474
  start-page: 2959
  year: 2018
  ident: R49
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2933
– volume: 819
  start-page: 108
  year: 2016
  ident: R24
  publication-title: ApJ
  doi: 10.3847/0004-637X/819/2/108
– ident: R97
  doi: 10.1515/9781400858736
– volume: 554
  start-page: 548
  year: 2001
  ident: R39
  publication-title: ApJ
  doi: 10.1086/321359
– volume: 456
  start-page: 578
  year: 2016
  ident: R72
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2733
– volume: 342
  start-page: 1169
  year: 2003
  ident: R105
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06616.x
– volume: 481
  start-page: 5123
  year: 2018
  ident: R15
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2608
– volume: 714
  start-page: 1217
  year: 2010
  ident: R20
  publication-title: ApJ
  doi: 10.1088/0004-637X/714/2/1217
– volume: 277
  start-page: 1491
  year: 1995
  ident: R65
  publication-title: MNRAS
  doi: 10.1093/mnras/277.4.1491
– volume: 467
  start-page: 524
  year: 2017
  ident: R13
  publication-title: MNRAS
– volume: 659
  start-page: 1438
  year: 2007
  ident: R41
  publication-title: ApJ
  doi: 10.1086/513003
– volume: 548
  start-page: 426
  year: 2017
  ident: R34
  publication-title: Nature
  doi: 10.1038/nature23453
– volume: 4
  start-page: 2
  year: 2020
  ident: R62
  publication-title: Res. Notes Am. Astron. Soc.
  doi: 10.3847/2515-5172/ab66be
– volume: 497
  start-page: 255
  year: 2009
  ident: R52
  publication-title: A&A
  doi: 10.1051/0004-6361/200810425
– volume: 441
  start-page: 3703
  year: 2014
  ident: R111
  publication-title: MNRAS
  doi: 10.1093/mnras/stu824
– volume: 467
  start-page: 298
  year: 2017
  ident: R88
  publication-title: MNRAS
– volume: 882
  start-page: L24
  year: 2019
  ident: R9
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab3800
– volume: 120
  start-page: 151101
  year: 2018
  ident: R90
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.151101
– volume: 116
  start-page: 061102
  year: 2016
  ident: R4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.061102
– volume: 547
  start-page: 284
  year: 2017
  ident: R73
  publication-title: Nature
  doi: 10.1038/547284a
– ident: R85
  doi: 10.1088/978-0-7503-1320-9
– volume: 163
  start-page: 335
  year: 2006
  ident: R40
  publication-title: ApJS
  doi: 10.1086/500933
– volume: 425
  start-page: 2799
  year: 2012
  ident: R87
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21549.x
– volume: 588
  start-page: A50
  year: 2016
  ident: R76
  publication-title: A&A
  doi: 10.1051/0004-6361/201628133
– volume: 92
  start-page: 011103
  year: 2004
  ident: R94
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.011103
– volume: 601
  start-page: L175
  year: 2004
  ident: R38
  publication-title: ApJ
  doi: 10.1086/382044
– volume: 891
  start-page: L31
  year: 2020
  ident: R35
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab77c9
– volume: 329
  start-page: 897
  year: 2002
  ident: R57
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.05038.x
– volume: 424
  start-page: 545
  year: 2012
  ident: R81
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21227.x
– volume: 383
  start-page: L5
  year: 2008
  ident: R46
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2007.00399.x
– volume: 119
  start-page: 141101
  year: 2017
  ident: R7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.141101
– volume: 464
  start-page: L36
  year: 2017
  ident: R11
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slw177
– volume: 485
  start-page: 3661
  year: 2019
  ident: R45
  publication-title: MNRAS
  doi: 10.1093/mnras/stz514
– volume: 475
  start-page: L15
  year: 2018
  ident: R51
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slx203
– volume: 369
  start-page: 574
  year: 2001
  ident: R104
  publication-title: A&A
  doi: 10.1051/0004-6361:20010127
– volume: 27
  start-page: 173001
  year: 2010
  ident: R3
  publication-title: Classical Quantum Gravity
  doi: 10.1088/0264-9381/27/17/173001
– volume: 625
  start-page: 324
  year: 2005
  ident: R109
  publication-title: ApJ
  doi: 10.1086/429557
– volume: 725
  start-page: 816
  year: 2010
  ident: R21
  publication-title: ApJ
  doi: 10.1088/0004-637X/725/1/816
– volume: 272
  start-page: 474
  year: 2011
  ident: R92
  publication-title: IAU Symp.
– volume: 818
  start-page: L22
  year: 2016
  ident: R5
  publication-title: ApJ
  doi: 10.3847/2041-8205/818/2/L22
– volume: 432
  start-page: 2474
  year: 2013
  ident: R70
  publication-title: MNRAS
  doi: 10.1093/mnras/stt617
– volume: 93
  start-page: 084029
  year: 2016
  ident: R89
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.084029
– volume: 231
  start-page: 134
  year: 1990
  ident: R80
  publication-title: A&A
– volume: 335
  start-page: 1003
  year: 1998
  ident: R53
  publication-title: A&A
– volume: 453
  start-page: 3341
  year: 2015
  ident: R86
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1753
– volume: 491
  start-page: 440
  year: 2020
  ident: R108
  publication-title: MNRAS
  doi: 10.1093/mnras/stz3033
– volume: 855
  start-page: L15
  year: 2018
  ident: R63
  publication-title: ApJ
  doi: 10.3847/2041-8213/aab26c
– volume: 550
  start-page: A107
  year: 2013
  ident: R93
  publication-title: A&A
  doi: 10.1051/0004-6361/201219621
– volume: 430
  start-page: 1018
  year: 2013
  ident: R43
  publication-title: MNRAS
  doi: 10.1093/mnras/sts673
– volume: 800
  start-page: 9
  year: 2015
  ident: R79
  publication-title: ApJ
  doi: 10.1088/0004-637X/800/1/9
– volume: 381
  start-page: 923
  year: 2002
  ident: R98
  publication-title: A&A
  doi: 10.1051/0004-6361:20011465
– volume: 534
  start-page: 512
  year: 2016
  ident: R22
  publication-title: Nature
  doi: 10.1038/nature18322
– volume: 665
  start-page: 690
  year: 2007
  ident: R78
  publication-title: ApJ
  doi: 10.1086/519372
– volume: 450
  start-page: 4070
  year: 2015
  ident: R106
  publication-title: MNRAS
  doi: 10.1093/mnras/stv817
– volume: 459
  start-page: 3432
  year: 2016
  ident: R74
  publication-title: MNRAS
  doi: 10.1093/mnras/stw869
– volume: 477
  start-page: 931
  year: 2008
  ident: R95
  publication-title: A&A
  doi: 10.1051/0004-6361:20077701
– volume: 749
  start-page: 91
  year: 2012
  ident: R42
  publication-title: ApJ
  doi: 10.1088/0004-637X/749/1/91
– volume: 697
  start-page: 1057
  year: 2009
  ident: R36
  publication-title: ApJ
  doi: 10.1088/0004-637X/697/2/1057
– volume: 21
  start-page: 59
  year: 2013
  ident: R59
  publication-title: A&ARv
  doi: 10.1007/s00159-013-0059-2
– volume: 612
  start-page: 1044
  year: 2004
  ident: R84
  publication-title: ApJ
  doi: 10.1086/421713
– volume: 485
  start-page: 889
  year: 2019
  ident: R96
  publication-title: MNRAS
  doi: 10.1093/mnras/stz359
– volume: 487
  start-page: 2947
  year: 2019
  ident: R31
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1453
– volume: 434
  start-page: 1355
  year: 2013
  ident: R60
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1106
– volume: 636
  start-page: A104
  year: 2020
  ident: R25
  publication-title: A&A
  doi: 10.1051/0004-6361/201936528
– volume: 469
  start-page: 4665
  year: 2017
  ident: R82
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1015
– volume: 322
  start-page: 231
  year: 2001
  ident: R66
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04022.x
– volume: 481
  start-page: 1908
  year: 2018
  ident: R67
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2190
– volume: 426
  start-page: 1416
  year: 2012
  ident: R17
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21672.x
– volume: 467
  start-page: 1389
  year: 2007
  ident: R29
  publication-title: A&A
  doi: 10.1051/0004-6361:20066641
– volume: 429
  start-page: 1221
  year: 2013
  ident: R58
  publication-title: MNRAS
  doi: 10.1093/mnras/sts415
– volume: 9
  start-page: 031040
  year: 2019
  ident: R8
  publication-title: Phys. Rev. X
– volume: 872
  start-page: 165
  year: 2019
  ident: R47
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab0214
– volume: 174
  start-page: 223
  year: 2008
  ident: R19
  publication-title: ApJS
  doi: 10.1086/521026
– volume: 479
  start-page: 4652
  year: 2018
  ident: R10
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1859
– volume: 353
  start-page: 87
  year: 2004
  ident: R33
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08041.x
– volume: 71
  start-page: 460
  year: 1911
  ident: R83
  publication-title: MNRAS
  doi: 10.1093/mnras/71.5.460
– volume: 836
  start-page: 244
  year: 2017
  ident: R110
  publication-title: ApJ
  doi: 10.3847/1538-4357/836/2/244
– ident: R1
  doi: 10.1017/CBO9780511535246
– volume: 478
  start-page: 1844
  year: 2018
  ident: R12
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1186
– volume: 76
  start-page: 352
  year: 1996
  ident: R26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.352
– volume: 572
  start-page: 407
  year: 2002
  ident: R18
  publication-title: ApJ
  doi: 10.1086/340304
– volume: 865
  start-page: 61
  year: 2018
  ident: R48
  publication-title: ApJ
  doi: 10.3847/1538-4357/aadbae
– volume: 871
  start-page: 38
  year: 2019
  ident: R64
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaf646
– volume: 248
  start-page: 485
  year: 1991
  ident: R32
  publication-title: A&A
– volume: 540
  start-page: 969
  year: 2000
  ident: R61
  publication-title: ApJ
  doi: 10.1086/309350
– volume: 637
  start-page: L53
  year: 2006
  ident: R77
  publication-title: ApJ
  doi: 10.1086/500544
– volume: 568
  start-page: 939
  year: 2002
  ident: R71
  publication-title: ApJ
  doi: 10.1086/339060
– volume: 764
  start-page: 166
  year: 2013
  ident: R30
  publication-title: ApJ
  doi: 10.1088/0004-637X/764/2/166
– volume: 562
  start-page: A14
  year: 2014
  ident: R101
  publication-title: A&A
  doi: 10.1051/0004-6361/201321576
– volume: 100
  start-page: 104015
  year: 2019
  ident: R28
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.104015
– volume: 340
  start-page: 426
  year: 1989
  ident: R69
  publication-title: ApJ
  doi: 10.1086/167404
– volume: 70
  start-page: 227
  year: 1978
  ident: R68
  publication-title: A&A
– volume: 522
  start-page: 413
  year: 1999
  ident: R37
  publication-title: ApJ
  doi: 10.1086/307647
– volume: 594
  start-page: A97
  year: 2016
  ident: R23
  publication-title: A&A
  doi: 10.1051/0004-6361/201628980
– volume: 431
  start-page: 2184
  year: 2013
  ident: R50
  publication-title: MNRAS
  doi: 10.1093/mnras/stt307
– volume: 8
  start-page: 14906
  year: 2017
  ident: R99
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14906
– volume: 442
  start-page: 587
  year: 2005
  ident: R103
  publication-title: A&A
  doi: 10.1051/0004-6361:20052862
– volume: 422
  start-page: 841
  year: 2012
  ident: R2
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.20666.x
– volume: 458
  start-page: 1450
  year: 2016
  ident: R107
  publication-title: MNRAS
  doi: 10.1093/mnras/stw274
– volume: 834
  start-page: 68
  year: 2017
  ident: R27
  publication-title: ApJ
  doi: 10.3847/1538-4357/834/1/68
– volume: 315
  start-page: 543
  year: 2000
  ident: R56
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03426.x
– volume: 457
  start-page: 834
  year: 1996
  ident: R100
  publication-title: ApJ
  doi: 10.1086/176778
– volume: 106
  start-page: 1025
  year: 1994
  ident: R55
  publication-title: PASP
  doi: 10.1086/133478
– volume: 360
  start-page: 974
  year: 2005
  ident: R54
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09087.x
– volume: 473
  start-page: 909
  year: 2018
  ident: R14
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2347
– volume: 472
  start-page: 2422
  year: 2017
  ident: R75
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2123
– volume: 97
  start-page: 103014
  year: 2018
  ident: R91
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.103014
– volume: 402
  start-page: 371
  year: 2010
  ident: R16
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15880.x
– volume: 68
  start-page: 103002
  year: 2003
  ident: R44
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.68.103002
SSID ssj0002183
Score 2.62222
Snippet Context. As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great...
Context. As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great...
As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great interest...
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage A41
SubjectTerms ASTRONOMY AND ASTROPHYSICS
Asymmetry
Binary stars
Black holes
Convection
Globular clusters
Gravitational waves
Mass distribution
Metallicity
methods: numerical
Momentum
Neutrinos
Neutron stars
Open clusters
Star clusters
stars: black holes
stars: kinematics and dynamics
stars: mass-loss
stars: massive
Stellar evolution
Stellar mass
supernovae: general
Title BSE versus StarTrack: Implementations of new wind, remnant-formation, and natal-kick schemes in NBODY7 and their astrophysical consequences
URI https://www.proquest.com/docview/2487146261
https://www.osti.gov/servlets/purl/1830577
Volume 639
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVKERIXBAtoyy7IB8QlzW4-nDjh1rKtFlS6K9FK5RTFjiOFbtNVmgrRA3-AKz-YcZyvUrQCLlHkOo7UeRm_mbyZIPTaNEUID1qkx5EDAYpjxbrPHYh5qG96hhMbpOjO_3HqXs7Jh4Wz6HR-tlRL25yd8d0f60r-x6owBnaVVbL_YNl6URiAc7AvHMHCcPwrGw8_jTQpq9huJGnMYN8B5wYhftHyd1VWFSmdG7Bn7WuissiZWEn5i14XLlYSzlTmcvRlwpcaBL1iVYi1tOnw6uIzraSWSaaFmzxb31YG5i09dpvqDuQsWTGh-sE21xR5XtVmq5WHGIapyL6UbfvrQXHDd9-qb2vXGdmxDBSKFK82aaZmfJcsm5K1MpUBcWsley3zaxfXlUfb7Plsoru2atl-JpSbJrbUzJbJy9KPu6or0sGeAG5HiSjVMrIEBnitDTzXajbB6sX_9CoYzyeTYDZazO6h-xYFRiZLyN9_r_d3SSpVUKUWrHpZOeZ5PXZe32KP73TX4LcPdv2Cysweo0dlDIIHClBPUEekR-i4thd-gwctax2hB9fq7Cn6AYjDCnG4Rtxb_Bve8DrGgDcs8dbHB2jrYwAEbrCGS6zhJMUKa8WEAmt4D2u4jbVnaD4ezd5d6uXnPHRuEz_XHQH-gJg09iwWxVYUU84oN6KYAQtlFKi8E_ncjz1fEC8KGRB7ww1F6BLfI57P7Oeom65TcYywyWwuX8kzgztEUMEIo0YcMQZLmJHwe8iq_vSAl73u5SdXboJCc-GYUnNBAmmpoLZUD_Xri25Vq5e7p59IawbAVGW7ZS51aTwPABwQAtEeOq2MHJQeYxNYxKPATCzXfHH3zyfoYfN8nKJunm3FSyC_OXtVYPEXIhGtDQ
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BSE+versus+StarTrack%3A+Implementations+of+new+wind%2C+remnant-formation%2C+and+natal-kick+schemes+in+NBODY7+and+their+astrophysical+consequences&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Banerjee%2C+S&rft.au=Belczynski%2C+K&rft.au=Fryer%2C+C+L&rft.au=Berczik%2C+P&rft.date=2020-07-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=639&rft_id=info:doi/10.1051%2F0004-6361%2F201935332&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon