BSE versus StarTrack: Implementations of new wind, remnant-formation, and natal-kick schemes in NBODY7 and their astrophysical consequences
Context. As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great interest in this era of gravitational-wave detection from binary black hole (BBH) and binary neutron star merger events. Aims. In this work, w...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 639; p. A41 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
EDP Sciences
01.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0004-6361 1432-0746 |
DOI | 10.1051/0004-6361/201935332 |
Cover
Abstract | Context.
As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great interest in this era of gravitational-wave detection from binary black hole (BBH) and binary neutron star merger events.
Aims.
In this work, we present new developments in the stellar-remnant formation and related schemes of the current
N
-body evolution program
NBODY7
. We demonstrate that the newly implemented stellar-wind and remnant-formation schemes in the stellar-evolutionary sector or
BSE
of the
NBODY7
code, such as the “rapid” and the “delayed” supernova (SN) schemes along with an implementation of pulsational-pair-instability and pair-instability supernova (PPSN/PSN), now produce neutron star (NS) and BH masses that agree nearly perfectly, over large ranges of zero-age-main-sequence (ZAMS) mass and metallicity, with those from the widely recognised
StarTrack
population-synthesis program. We also demonstrate the new, recipe-based implementations of various widely debated mechanisms of natal kicks on NSs and BHs, such as “convection-asymmetry-driven”, “collapse-asymmetry-driven”, and “neutrino-emission-driven” kicks, in addition to a fully consistent implementation of the standard, fallback-dependent, momentum-conserving natal kick.
Methods.
All the above newly implemented schemes are also shared with the standalone versions of
SSE
and
BSE
. All these demonstrations are performed with both the updated standalone
BSE
and the updated
NBODY7
/
BSE
.
Results.
When convolved with stellar and primordial-binary populations as observed in young massive clusters, such remnant-formation and natal-kick mechanisms crucially determine the accumulated number, mass, and mass distribution of the BHs retained in young massive, open, and globular clusters (GCs); these BHs would eventually become available for long-term dynamical processing.
Conclusions.
Among other conclusions, we find that although the newer, delayed SN remnant formation model gives birth to the largest number (mass) of BHs, the older remnant-formation schemes cause the largest number (mass) of BHs to survive in clusters, when incorporating SN material fallback onto the BHs. The SN material fallback also causes the convection-asymmetry-driven SN kick to effectively retain similar numbers and masses of BHs in clusters as for the standard, momentum-conserving kick. The collapse-asymmetry-driven SN kick would cause nearly all BHs to be retained in clusters irrespective of their mass, remnant-formation model, and metallicity, whereas the inference of a large population of BHs in GCs would potentially rule out the neutrino-driven SN kick mechanism. Pre-SN mergers of massive primordial binaries would potentially cause BH masses to deviate from the theoretical, single-star ZAMS to mass-remnant mass relation unless a substantial of the total merging stellar mass of up to ≈40% is lost during a merger process. In particular, such mergers, at low metallicities, have the potential to produce low-spinning BHs within the PSN mass gap that can be retained in a stellar cluster and be available for subsequent dynamical interactions. As recent studies indicate, the new remnant-formation modelling reassures us that young massive and open clusters would potentially contribute to the dynamical BBH merger detection rate to a similar extent as their more massive GC counterparts. |
---|---|
AbstractList | Context. As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great interest in this era of gravitational-wave detection from binary black hole (BBH) and binary neutron star merger events. Aims. In this work, we present new developments in the stellar-remnant formation and related schemes of the current N-body evolution program NBODY7. We demonstrate that the newly implemented stellar-wind and remnant-formation schemes in the stellar-evolutionary sector or BSE of the NBODY7 code, such as the “rapid” and the “delayed” supernova (SN) schemes along with an implementation of pulsational-pair-instability and pair-instability supernova (PPSN/PSN), now produce neutron star (NS) and BH masses that agree nearly perfectly, over large ranges of zero-age-main-sequence (ZAMS) mass and metallicity, with those from the widely recognised StarTrack population-synthesis program. We also demonstrate the new, recipe-based implementations of various widely debated mechanisms of natal kicks on NSs and BHs, such as “convection-asymmetry-driven”, “collapse-asymmetry-driven”, and “neutrino-emission-driven” kicks, in addition to a fully consistent implementation of the standard, fallback-dependent, momentum-conserving natal kick. Methods. All the above newly implemented schemes are also shared with the standalone versions of SSE and BSE. All these demonstrations are performed with both the updated standalone BSE and the updated NBODY7/BSE. Results. When convolved with stellar and primordial-binary populations as observed in young massive clusters, such remnant-formation and natal-kick mechanisms crucially determine the accumulated number, mass, and mass distribution of the BHs retained in young massive, open, and globular clusters (GCs); these BHs would eventually become available for long-term dynamical processing. Conclusions. Among other conclusions, we find that although the newer, delayed SN remnant formation model gives birth to the largest number (mass) of BHs, the older remnant-formation schemes cause the largest number (mass) of BHs to survive in clusters, when incorporating SN material fallback onto the BHs. The SN material fallback also causes the convection-asymmetry-driven SN kick to effectively retain similar numbers and masses of BHs in clusters as for the standard, momentum-conserving kick. The collapse-asymmetry-driven SN kick would cause nearly all BHs to be retained in clusters irrespective of their mass, remnant-formation model, and metallicity, whereas the inference of a large population of BHs in GCs would potentially rule out the neutrino-driven SN kick mechanism. Pre-SN mergers of massive primordial binaries would potentially cause BH masses to deviate from the theoretical, single-star ZAMS to mass-remnant mass relation unless a substantial of the total merging stellar mass of up to ≈40% is lost during a merger process. In particular, such mergers, at low metallicities, have the potential to produce low-spinning BHs within the PSN mass gap that can be retained in a stellar cluster and be available for subsequent dynamical interactions. As recent studies indicate, the new remnant-formation modelling reassures us that young massive and open clusters would potentially contribute to the dynamical BBH merger detection rate to a similar extent as their more massive GC counterparts. As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great interest in this era of gravitational-wave detection from binary black hole (BBH) and binary neutron star merger events. In this work, we present new developments in the stellar-remnant formation and related schemes of the current N-body evolution program NBODY7. We demonstrate that the newly implemented stellar-wind and remnant-formation schemes in the stellar-evolutionary sector or BSE of the NBODY7 code, such as the “rapid” and the “delayed” supernova (SN) schemes along with an implementation of pulsational-pair-instability and pair-instability supernova (PPSN/PSN), now produce neutron star (NS) and BH masses that agree nearly perfectly, over large ranges of zero-age-main-sequence (ZAMS) mass and metallicity, with those from the widely recognised StarTrack population-synthesis program. We also demonstrate the new, recipe-based implementations of various widely debated mechanisms of natal kicks on NSs and BHs, such as “convection-asymmetry-driven”, “collapse-asymmetry-driven”, and “neutrino-emission-driven” kicks, in addition to a fully consistent implementation of the standard, fallback-dependent, momentum-conserving natal kick. All the above newly implemented schemes are also shared with the standalone versions of SSE and BSE. Furthermore, all these demonstrations are performed with both the updated standalone BSE and the updated NBODY7/BSE. When convolved with stellar and primordial-binary populations as observed in young massive clusters, such remnant-formation and natal-kick mechanisms crucially determine the accumulated number, mass, and mass distribution of the BHs retained in young massive, open, and globular clusters (GCs); these BHs would eventually become available for long-term dynamical processing. Among other conclusions, we find that although the newer, delayed SN remnant formation model gives birth to the largest number (mass) of BHs, the older remnant-formation schemes cause the largest number (mass) of BHs to survive in clusters, when incorporating SN material fallback onto the BHs. The SN material fallback also causes the convection-asymmetry-driven SN kick to effectively retain similar numbers and masses of BHs in clusters as for the standard, momentum-conserving kick. The collapse-asymmetry-driven SN kick would cause nearly all BHs to be retained in clusters irrespective of their mass, remnant-formation model, and metallicity, whereas the inference of a large population of BHs in GCs would potentially rule out the neutrino-driven SN kick mechanism. Pre-SN mergers of massive primordial binaries would potentially cause BH masses to deviate from the theoretical, single-star ZAMS to mass-remnant mass relation unless a substantial of the total merging stellar mass of up to ≈40% is lost during a merger process. In particular, such mergers, at low metallicities, have the potential to produce low-spinning BHs within the PSN mass gap that can be retained in a stellar cluster and be available for subsequent dynamical interactions. As recent studies indicate, the new remnant-formation modelling reassures us that young massive and open clusters would potentially contribute to the dynamical BBH merger detection rate to a similar extent as their more massive GC counterparts. Context. As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great interest in this era of gravitational-wave detection from binary black hole (BBH) and binary neutron star merger events. Aims. In this work, we present new developments in the stellar-remnant formation and related schemes of the current N -body evolution program NBODY7 . We demonstrate that the newly implemented stellar-wind and remnant-formation schemes in the stellar-evolutionary sector or BSE of the NBODY7 code, such as the “rapid” and the “delayed” supernova (SN) schemes along with an implementation of pulsational-pair-instability and pair-instability supernova (PPSN/PSN), now produce neutron star (NS) and BH masses that agree nearly perfectly, over large ranges of zero-age-main-sequence (ZAMS) mass and metallicity, with those from the widely recognised StarTrack population-synthesis program. We also demonstrate the new, recipe-based implementations of various widely debated mechanisms of natal kicks on NSs and BHs, such as “convection-asymmetry-driven”, “collapse-asymmetry-driven”, and “neutrino-emission-driven” kicks, in addition to a fully consistent implementation of the standard, fallback-dependent, momentum-conserving natal kick. Methods. All the above newly implemented schemes are also shared with the standalone versions of SSE and BSE . All these demonstrations are performed with both the updated standalone BSE and the updated NBODY7 / BSE . Results. When convolved with stellar and primordial-binary populations as observed in young massive clusters, such remnant-formation and natal-kick mechanisms crucially determine the accumulated number, mass, and mass distribution of the BHs retained in young massive, open, and globular clusters (GCs); these BHs would eventually become available for long-term dynamical processing. Conclusions. Among other conclusions, we find that although the newer, delayed SN remnant formation model gives birth to the largest number (mass) of BHs, the older remnant-formation schemes cause the largest number (mass) of BHs to survive in clusters, when incorporating SN material fallback onto the BHs. The SN material fallback also causes the convection-asymmetry-driven SN kick to effectively retain similar numbers and masses of BHs in clusters as for the standard, momentum-conserving kick. The collapse-asymmetry-driven SN kick would cause nearly all BHs to be retained in clusters irrespective of their mass, remnant-formation model, and metallicity, whereas the inference of a large population of BHs in GCs would potentially rule out the neutrino-driven SN kick mechanism. Pre-SN mergers of massive primordial binaries would potentially cause BH masses to deviate from the theoretical, single-star ZAMS to mass-remnant mass relation unless a substantial of the total merging stellar mass of up to ≈40% is lost during a merger process. In particular, such mergers, at low metallicities, have the potential to produce low-spinning BHs within the PSN mass gap that can be retained in a stellar cluster and be available for subsequent dynamical interactions. As recent studies indicate, the new remnant-formation modelling reassures us that young massive and open clusters would potentially contribute to the dynamical BBH merger detection rate to a similar extent as their more massive GC counterparts. |
Author | Fryer, C. L. Berczik, P. Spurzem, R. Banerjee, S. Belczynski, K. Hurley, J. R. Wang, L. |
Author_xml | – sequence: 1 givenname: S. orcidid: 0000-0002-1254-2603 surname: Banerjee fullname: Banerjee, S. – sequence: 2 givenname: K. surname: Belczynski fullname: Belczynski, K. – sequence: 3 givenname: C. L. surname: Fryer fullname: Fryer, C. L. – sequence: 4 givenname: P. surname: Berczik fullname: Berczik, P. – sequence: 5 givenname: J. R. surname: Hurley fullname: Hurley, J. R. – sequence: 6 givenname: R. surname: Spurzem fullname: Spurzem, R. – sequence: 7 givenname: L. surname: Wang fullname: Wang, L. |
BackLink | https://www.osti.gov/servlets/purl/1830577$$D View this record in Osti.gov |
BookMark | eNp9kc1OHDEQhK2ISFkIT5CLFa5M8N-MZ7jxmyAhOAAHTpbH09aanbEX2wviGXhpvLsRhxxyarX6q1Kpehft-OABoR-U_KKkpkeEEFE1vKFHjNCO15yzL2hGBWcVkaLZQbNP4hvaTemprIy2fIbeT-8u8AvEtEr4Lut4H7VZHOOraTnCBD7r7IJPOFjs4RW_Oj8c4giT1z5XNsRpcz_E2g_Y66zHauHMAiczL-qEncc3p7fnj3ID5Dm4iHXKMSznb8kZPWJT3OF5Bd5A-o6-Wj0m2P8799DD5cX92Z_q-vb31dnJdWW46HJVgx1qQaVtWT9YNlhpemnIYPuWkV7Woq6HznS27UC0g-4bSkijQTeia0Xb9XwP_dz6hpSdSsZlMPMSxIPJqrRCaikLdLCFljGUfCmrp7CKvuRSTLSSioY1tFDdljIxpBTBquK26SRH7UZFiVo_SK3rV-v61eeDipb_o11GN-n49l_VB2XZlbg |
CitedBy_id | crossref_primary_10_1093_mnras_stab591 crossref_primary_10_1093_mnras_staf279 crossref_primary_10_1093_mnras_stae2644 crossref_primary_10_3847_1538_4357_ace4c1 crossref_primary_10_1051_0004_6361_201936688 crossref_primary_10_3847_2041_8213_ac00a7 crossref_primary_10_1093_mnras_stac2192 crossref_primary_10_1093_mnras_stad3657 crossref_primary_10_1093_mnras_stad1630 crossref_primary_10_1093_mnras_stab1589 crossref_primary_10_1051_0004_6361_202142331 crossref_primary_10_1093_mnras_stae470 crossref_primary_10_1088_1674_4527_acdc08 crossref_primary_10_3847_1538_4357_ac339f crossref_primary_10_1093_mnras_staf303 crossref_primary_10_1103_PhysRevD_105_023004 crossref_primary_10_1093_mnras_stad1360 crossref_primary_10_3847_1538_4357_ad6306 crossref_primary_10_3847_1538_4357_ac9d95 crossref_primary_10_1093_mnras_stad2292 crossref_primary_10_3847_1538_4357_ac75d0 crossref_primary_10_1051_0004_6361_202452962 crossref_primary_10_1051_0004_6361_202348978 crossref_primary_10_1093_mnras_stad3306 crossref_primary_10_1093_mnras_stad1800 crossref_primary_10_1093_mnras_stad1925 crossref_primary_10_3847_1538_3881_ad3103 crossref_primary_10_1103_PhysRevD_102_103002 crossref_primary_10_3847_1538_4357_ad499c crossref_primary_10_3847_1538_4357_acdd59 crossref_primary_10_3847_1538_4357_ac1419 crossref_primary_10_3847_1538_4357_acc24c crossref_primary_10_1093_mnras_stab2136 crossref_primary_10_1103_PhysRevD_110_043023 crossref_primary_10_1093_mnras_stad1254 crossref_primary_10_1051_0004_6361_202347931 crossref_primary_10_3847_2041_8213_ac3bcd crossref_primary_10_1093_mnras_staa2047 crossref_primary_10_1093_mnras_stad3951 crossref_primary_10_1093_mnras_stad3952 crossref_primary_10_1093_mnras_stae1174 crossref_primary_10_3847_1538_4357_ad4c66 crossref_primary_10_1093_mnras_stab3748 crossref_primary_10_3847_1538_4357_ac8167 crossref_primary_10_1051_0004_6361_202244225 crossref_primary_10_1093_mnras_staf321 crossref_primary_10_1093_mnras_stab1157 crossref_primary_10_1126_science_adi4211 crossref_primary_10_1093_mnras_stac2281 crossref_primary_10_1103_PhysRevD_103_063007 crossref_primary_10_1093_mnras_stad3600 crossref_primary_10_3847_2041_8213_ac225a crossref_primary_10_1093_mnras_stac2563 crossref_primary_10_3847_1538_4357_acd9c9 crossref_primary_10_1051_0004_6361_202451728 crossref_primary_10_1103_PhysRevD_108_083012 crossref_primary_10_1093_mnras_stac2043 crossref_primary_10_1134_S1063773721120021 crossref_primary_10_3847_1538_4357_accae0 crossref_primary_10_1093_mnras_staa3634 crossref_primary_10_1093_mnras_stad3294 crossref_primary_10_1051_0004_6361_202141838 crossref_primary_10_3847_1538_4357_ac9b0f crossref_primary_10_3847_1538_4357_ad701e crossref_primary_10_3847_1538_4357_ac2838 crossref_primary_10_3847_1538_4357_ac674e crossref_primary_10_3847_2041_8213_aba74e crossref_primary_10_1093_mnras_stac231 crossref_primary_10_1007_s41114_022_00041_y crossref_primary_10_1093_mnras_stad1287 crossref_primary_10_3847_1538_4357_ad7953 crossref_primary_10_1051_0004_6361_202449235 crossref_primary_10_3847_2041_8213_abbc0a crossref_primary_10_1007_s41115_023_00018_w crossref_primary_10_1093_mnras_staf076 crossref_primary_10_3847_1538_4357_ad6b16 crossref_primary_10_3847_1538_4357_ac5026 crossref_primary_10_1093_mnras_staa2392 crossref_primary_10_1093_mnras_stae1413 crossref_primary_10_1093_mnras_stac1567 crossref_primary_10_1051_0004_6361_202349115 crossref_primary_10_3847_1538_4357_ad77bc crossref_primary_10_3847_2041_8213_abdf5b crossref_primary_10_1088_1674_4527_ac7f0f crossref_primary_10_1051_0004_6361_202450399 crossref_primary_10_1093_mnras_stad2548 crossref_primary_10_1093_mnras_stac1163 crossref_primary_10_1093_mnras_stab3255 crossref_primary_10_1038_s41550_021_01392_2 crossref_primary_10_1051_0004_6361_202452064 crossref_primary_10_3847_2041_8213_abb671 crossref_primary_10_3847_1538_4365_ac416c crossref_primary_10_1093_mnras_stae2591 crossref_primary_10_1051_0004_6361_202449978 crossref_primary_10_1051_0004_6361_202141299 crossref_primary_10_1103_PhysRevD_105_124048 crossref_primary_10_1103_PhysRevD_102_123016 |
Cites_doi | 10.1086/173033 10.1103/PhysRevLett.118.221101 10.1093/mnras/stx2933 10.3847/0004-637X/819/2/108 10.1515/9781400858736 10.1086/321359 10.1093/mnras/stv2733 10.1046/j.1365-8711.2003.06616.x 10.1093/mnras/sty2608 10.1088/0004-637X/714/2/1217 10.1093/mnras/277.4.1491 10.1086/513003 10.1038/nature23453 10.3847/2515-5172/ab66be 10.1051/0004-6361/200810425 10.1093/mnras/stu824 10.3847/2041-8213/ab3800 10.1103/PhysRevLett.120.151101 10.1103/PhysRevLett.116.061102 10.1038/547284a 10.1088/978-0-7503-1320-9 10.1086/500933 10.1111/j.1365-2966.2012.21549.x 10.1051/0004-6361/201628133 10.1103/PhysRevLett.92.011103 10.1086/382044 10.3847/2041-8213/ab77c9 10.1046/j.1365-8711.2002.05038.x 10.1111/j.1365-2966.2012.21227.x 10.1111/j.1745-3933.2007.00399.x 10.1103/PhysRevLett.119.141101 10.1093/mnrasl/slw177 10.1093/mnras/stz514 10.1093/mnrasl/slx203 10.1051/0004-6361:20010127 10.1088/0264-9381/27/17/173001 10.1086/429557 10.1088/0004-637X/725/1/816 10.3847/2041-8205/818/2/L22 10.1093/mnras/stt617 10.1103/PhysRevD.93.084029 10.1093/mnras/stv1753 10.1093/mnras/stz3033 10.3847/2041-8213/aab26c 10.1051/0004-6361/201219621 10.1093/mnras/sts673 10.1088/0004-637X/800/1/9 10.1051/0004-6361:20011465 10.1038/nature18322 10.1086/519372 10.1093/mnras/stv817 10.1093/mnras/stw869 10.1051/0004-6361:20077701 10.1088/0004-637X/749/1/91 10.1088/0004-637X/697/2/1057 10.1007/s00159-013-0059-2 10.1086/421713 10.1093/mnras/stz359 10.1093/mnras/stz1453 10.1093/mnras/stt1106 10.1051/0004-6361/201936528 10.1093/mnras/stx1015 10.1046/j.1365-8711.2001.04022.x 10.1093/mnras/sty2190 10.1111/j.1365-2966.2012.21672.x 10.1051/0004-6361:20066641 10.1093/mnras/sts415 10.3847/1538-4357/ab0214 10.1086/521026 10.1093/mnras/sty1859 10.1111/j.1365-2966.2004.08041.x 10.1093/mnras/71.5.460 10.3847/1538-4357/836/2/244 10.1017/CBO9780511535246 10.1093/mnras/sty1186 10.1103/PhysRevLett.76.352 10.1086/340304 10.3847/1538-4357/aadbae 10.3847/1538-4357/aaf646 10.1086/309350 10.1086/500544 10.1086/339060 10.1088/0004-637X/764/2/166 10.1051/0004-6361/201321576 10.1103/PhysRevD.100.104015 10.1086/167404 10.1086/307647 10.1051/0004-6361/201628980 10.1093/mnras/stt307 10.1038/ncomms14906 10.1051/0004-6361:20052862 10.1111/j.1365-2966.2012.20666.x 10.1093/mnras/stw274 10.3847/1538-4357/834/1/68 10.1046/j.1365-8711.2000.03426.x 10.1086/176778 10.1086/133478 10.1111/j.1365-2966.2005.09087.x 10.1093/mnras/stx2347 10.1093/mnras/stx2123 10.1103/PhysRevD.97.103014 10.1111/j.1365-2966.2009.15880.x 10.1103/PhysRevD.68.103002 |
ContentType | Journal Article |
Copyright | Copyright EDP Sciences Jul 2020 |
Copyright_xml | – notice: Copyright EDP Sciences Jul 2020 |
CorporateAuthor | Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
CorporateAuthor_xml | – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
DBID | AAYXX CITATION 8FD H8D L7M OIOZB OTOTI |
DOI | 10.1051/0004-6361/201935332 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 1830577 10_1051_0004_6361_201935332 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 8FD H8D L7M ACBIF ACZCS OIOZB OTOTI RSV SOJ |
ID | FETCH-LOGICAL-c349t-5efd5417f82bdf2df7cb7c0dfb820b75455d9c9f89e48dab61006aea6498489b3 |
ISSN | 0004-6361 |
IngestDate | Fri May 19 00:39:26 EDT 2023 Sun Jun 29 12:43:32 EDT 2025 Tue Jul 01 03:59:28 EDT 2025 Thu Apr 24 23:00:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://www.edpsciences.org/en/authors/copyright-and-licensing |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c349t-5efd5417f82bdf2df7cb7c0dfb820b75455d9c9f89e48dab61006aea6498489b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 Polish Science Center (NCN) LA-UR-20-22131 Chinese Academy of Sciences (CAS) Volkswagen Foundation German Research Foundation (DFG) 89233218CNA000001; BA 4281/6-1; 2018/30/A/ST9/00050; 90411; 97778; XDB2304010; 11673032 USDOE Laboratory Directed Research and Development (LDRD) Program National Natural Science Foundation of China (NSFC) |
ORCID | 0000-0002-1254-2603 0000000212542603 0000000326240056 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1830577 |
PQID | 2487146261 |
PQPubID | 1796397 |
ParticipantIDs | osti_scitechconnect_1830577 proquest_journals_2487146261 crossref_citationtrail_10_1051_0004_6361_201935332 crossref_primary_10_1051_0004_6361_201935332 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg – name: United States |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2020 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Farr (R34) 2017; 548 Claret (R29) 2007; 467 Meakin (R77) 2006; 637 Timmes (R100) 1996; 457 Arca Sedda (R10) 2018; 479 Fishbach (R35) 2020; 891 Meakin (R78) 2007; 665 Kremer (R64) 2019; 871 Lombardi (R71) 2002; 568 Morscher (R79) 2015; 800 Kudritzki (R68) 1978; 70 Chatziioannou (R28) 2019; 100 R1 Park (R82) 2017; 469 Kremer (R63) 2018; 855 Plummer (R83) 1911; 71 Hamann (R53) 1998; 335 Abbott (R6) 2017; 118 Geller (R47) 2019; 872 Rodriguez (R90) 2018; 120 Eldridge (R33) 2004; 353 Nitadori (R81) 2012; 424 Abbott (R9) 2019; 882 Fuller (R45) 2019; 485 Toonen (R101) 2014; 562 Abadie (R3) 2010; 27 Podsiadlowski (R84) 2004; 612 Gessner (R48) 2018; 865 Rodriguez (R89) 2016; 93 Belczynski (R25) 2020; 636 Lattimer (R69) 1989; 340 Vink (R103) 2005; 442 Belczynski (R18) 2002; 572 Fryer (R38) 2004; 601 Repetto (R88) 2017; 467 Banerjee (R16) 2010; 402 Nieuwenhuijzen (R80) 1990; 231 Sana (R92) 2011; 272 Wang (R108) 2020; 491 Fryer (R40) 2006; 163 Willems (R109) 2005; 625 Hypki (R58) 2013; 429 Scheck (R94) 2004; 92 Askar (R12) 2018; 478 Stevenson (R99) 2017; 8 Fryer (R41) 2007; 659 Duquennoy (R32) 1991; 248 Banerjee (R13) 2017; 467 Abbott (R8) 2019; 9 Repetto (R86) 2015; 453 Belczynski (R21) 2010; 725 Wang (R106) 2015; 450 Belczynski (R19) 2008; 174 Repetto (R87) 2012; 425 Burrows (R26) 1996; 76 Fryer (R42) 2012; 749 Fryer (R37) 1999; 522 Giacobbo (R49) 2018; 474 Kimball (R62) 2020; 4 Banerjee (R17) 2012; 426 Abbott (R7) 2017; 119 Mandel (R73) 2017; 547 Mapelli (R75) 2017; 472 Fragos (R36) 2009; 697 Samsing (R91) 2018; 97 Abbott (R4) 2016; 116 Aarseth (R2) 2012; 422 Gaburov (R46) 2008; 383 Belczynski (R24) 2016; 819 Vassiliadis (R102) 1993; 413 de Mink (R30) 2013; 764 Sana (R93) 2013; 550 Fryer (R39) 2001; 554 Abbott (R5) 2016; 818 Giersz (R50) 2013; 431 Scheck (R95) 2008; 477 Joshi (R61) 2000; 540 Belczynski (R20) 2010; 714 Banerjee (R15) 2018; 481 Janka (R60) 2013; 434 Chatterjee (R27) 2017; 834 Leigh (R70) 2013; 432 Kruckow (R67) 2018; 481 R85 Voss (R105) 2003; 342 Mandel (R72) 2016; 456 Fujii (R43) 2013; 430 Hurley (R57) 2002; 329 Humphreys (R55) 1994; 106 Belczynski (R22) 2016; 534 Wang (R107) 2016; 458 Di Carlo (R31) 2019; 487 Fuller (R44) 2003; 68 Kroupa (R66) 2001; 322 Belczynski (R23) 2016; 594 Woosley (R110) 2017; 836 Giesers (R51) 2018; 475 Kroupa (R65) 1995; 277 Banerjee (R14) 2018; 473 Spera (R96) 2019; 485 R97 Hurley (R56) 2000; 315 Marchant (R76) 2016; 588 Ziosi (R111) 2014; 441 Ivanova (R59) 2013; 21 Hobbs (R54) 2005; 360 Vink (R104) 2001; 369 Glebbeek (R52) 2009; 497 Mapelli (R74) 2016; 459 Askar (R11) 2017; 464 Spruit (R98) 2002; 381 |
References_xml | – volume: 413 start-page: 641 year: 1993 ident: R102 publication-title: ApJ doi: 10.1086/173033 – volume: 118 start-page: 221101 year: 2017 ident: R6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.221101 – volume: 474 start-page: 2959 year: 2018 ident: R49 publication-title: MNRAS doi: 10.1093/mnras/stx2933 – volume: 819 start-page: 108 year: 2016 ident: R24 publication-title: ApJ doi: 10.3847/0004-637X/819/2/108 – ident: R97 doi: 10.1515/9781400858736 – volume: 554 start-page: 548 year: 2001 ident: R39 publication-title: ApJ doi: 10.1086/321359 – volume: 456 start-page: 578 year: 2016 ident: R72 publication-title: MNRAS doi: 10.1093/mnras/stv2733 – volume: 342 start-page: 1169 year: 2003 ident: R105 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06616.x – volume: 481 start-page: 5123 year: 2018 ident: R15 publication-title: MNRAS doi: 10.1093/mnras/sty2608 – volume: 714 start-page: 1217 year: 2010 ident: R20 publication-title: ApJ doi: 10.1088/0004-637X/714/2/1217 – volume: 277 start-page: 1491 year: 1995 ident: R65 publication-title: MNRAS doi: 10.1093/mnras/277.4.1491 – volume: 467 start-page: 524 year: 2017 ident: R13 publication-title: MNRAS – volume: 659 start-page: 1438 year: 2007 ident: R41 publication-title: ApJ doi: 10.1086/513003 – volume: 548 start-page: 426 year: 2017 ident: R34 publication-title: Nature doi: 10.1038/nature23453 – volume: 4 start-page: 2 year: 2020 ident: R62 publication-title: Res. Notes Am. Astron. Soc. doi: 10.3847/2515-5172/ab66be – volume: 497 start-page: 255 year: 2009 ident: R52 publication-title: A&A doi: 10.1051/0004-6361/200810425 – volume: 441 start-page: 3703 year: 2014 ident: R111 publication-title: MNRAS doi: 10.1093/mnras/stu824 – volume: 467 start-page: 298 year: 2017 ident: R88 publication-title: MNRAS – volume: 882 start-page: L24 year: 2019 ident: R9 publication-title: ApJ doi: 10.3847/2041-8213/ab3800 – volume: 120 start-page: 151101 year: 2018 ident: R90 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.151101 – volume: 116 start-page: 061102 year: 2016 ident: R4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.061102 – volume: 547 start-page: 284 year: 2017 ident: R73 publication-title: Nature doi: 10.1038/547284a – ident: R85 doi: 10.1088/978-0-7503-1320-9 – volume: 163 start-page: 335 year: 2006 ident: R40 publication-title: ApJS doi: 10.1086/500933 – volume: 425 start-page: 2799 year: 2012 ident: R87 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21549.x – volume: 588 start-page: A50 year: 2016 ident: R76 publication-title: A&A doi: 10.1051/0004-6361/201628133 – volume: 92 start-page: 011103 year: 2004 ident: R94 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.011103 – volume: 601 start-page: L175 year: 2004 ident: R38 publication-title: ApJ doi: 10.1086/382044 – volume: 891 start-page: L31 year: 2020 ident: R35 publication-title: ApJ doi: 10.3847/2041-8213/ab77c9 – volume: 329 start-page: 897 year: 2002 ident: R57 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.05038.x – volume: 424 start-page: 545 year: 2012 ident: R81 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21227.x – volume: 383 start-page: L5 year: 2008 ident: R46 publication-title: MNRAS doi: 10.1111/j.1745-3933.2007.00399.x – volume: 119 start-page: 141101 year: 2017 ident: R7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.141101 – volume: 464 start-page: L36 year: 2017 ident: R11 publication-title: MNRAS doi: 10.1093/mnrasl/slw177 – volume: 485 start-page: 3661 year: 2019 ident: R45 publication-title: MNRAS doi: 10.1093/mnras/stz514 – volume: 475 start-page: L15 year: 2018 ident: R51 publication-title: MNRAS doi: 10.1093/mnrasl/slx203 – volume: 369 start-page: 574 year: 2001 ident: R104 publication-title: A&A doi: 10.1051/0004-6361:20010127 – volume: 27 start-page: 173001 year: 2010 ident: R3 publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/27/17/173001 – volume: 625 start-page: 324 year: 2005 ident: R109 publication-title: ApJ doi: 10.1086/429557 – volume: 725 start-page: 816 year: 2010 ident: R21 publication-title: ApJ doi: 10.1088/0004-637X/725/1/816 – volume: 272 start-page: 474 year: 2011 ident: R92 publication-title: IAU Symp. – volume: 818 start-page: L22 year: 2016 ident: R5 publication-title: ApJ doi: 10.3847/2041-8205/818/2/L22 – volume: 432 start-page: 2474 year: 2013 ident: R70 publication-title: MNRAS doi: 10.1093/mnras/stt617 – volume: 93 start-page: 084029 year: 2016 ident: R89 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.084029 – volume: 231 start-page: 134 year: 1990 ident: R80 publication-title: A&A – volume: 335 start-page: 1003 year: 1998 ident: R53 publication-title: A&A – volume: 453 start-page: 3341 year: 2015 ident: R86 publication-title: MNRAS doi: 10.1093/mnras/stv1753 – volume: 491 start-page: 440 year: 2020 ident: R108 publication-title: MNRAS doi: 10.1093/mnras/stz3033 – volume: 855 start-page: L15 year: 2018 ident: R63 publication-title: ApJ doi: 10.3847/2041-8213/aab26c – volume: 550 start-page: A107 year: 2013 ident: R93 publication-title: A&A doi: 10.1051/0004-6361/201219621 – volume: 430 start-page: 1018 year: 2013 ident: R43 publication-title: MNRAS doi: 10.1093/mnras/sts673 – volume: 800 start-page: 9 year: 2015 ident: R79 publication-title: ApJ doi: 10.1088/0004-637X/800/1/9 – volume: 381 start-page: 923 year: 2002 ident: R98 publication-title: A&A doi: 10.1051/0004-6361:20011465 – volume: 534 start-page: 512 year: 2016 ident: R22 publication-title: Nature doi: 10.1038/nature18322 – volume: 665 start-page: 690 year: 2007 ident: R78 publication-title: ApJ doi: 10.1086/519372 – volume: 450 start-page: 4070 year: 2015 ident: R106 publication-title: MNRAS doi: 10.1093/mnras/stv817 – volume: 459 start-page: 3432 year: 2016 ident: R74 publication-title: MNRAS doi: 10.1093/mnras/stw869 – volume: 477 start-page: 931 year: 2008 ident: R95 publication-title: A&A doi: 10.1051/0004-6361:20077701 – volume: 749 start-page: 91 year: 2012 ident: R42 publication-title: ApJ doi: 10.1088/0004-637X/749/1/91 – volume: 697 start-page: 1057 year: 2009 ident: R36 publication-title: ApJ doi: 10.1088/0004-637X/697/2/1057 – volume: 21 start-page: 59 year: 2013 ident: R59 publication-title: A&ARv doi: 10.1007/s00159-013-0059-2 – volume: 612 start-page: 1044 year: 2004 ident: R84 publication-title: ApJ doi: 10.1086/421713 – volume: 485 start-page: 889 year: 2019 ident: R96 publication-title: MNRAS doi: 10.1093/mnras/stz359 – volume: 487 start-page: 2947 year: 2019 ident: R31 publication-title: MNRAS doi: 10.1093/mnras/stz1453 – volume: 434 start-page: 1355 year: 2013 ident: R60 publication-title: MNRAS doi: 10.1093/mnras/stt1106 – volume: 636 start-page: A104 year: 2020 ident: R25 publication-title: A&A doi: 10.1051/0004-6361/201936528 – volume: 469 start-page: 4665 year: 2017 ident: R82 publication-title: MNRAS doi: 10.1093/mnras/stx1015 – volume: 322 start-page: 231 year: 2001 ident: R66 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04022.x – volume: 481 start-page: 1908 year: 2018 ident: R67 publication-title: MNRAS doi: 10.1093/mnras/sty2190 – volume: 426 start-page: 1416 year: 2012 ident: R17 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21672.x – volume: 467 start-page: 1389 year: 2007 ident: R29 publication-title: A&A doi: 10.1051/0004-6361:20066641 – volume: 429 start-page: 1221 year: 2013 ident: R58 publication-title: MNRAS doi: 10.1093/mnras/sts415 – volume: 9 start-page: 031040 year: 2019 ident: R8 publication-title: Phys. Rev. X – volume: 872 start-page: 165 year: 2019 ident: R47 publication-title: ApJ doi: 10.3847/1538-4357/ab0214 – volume: 174 start-page: 223 year: 2008 ident: R19 publication-title: ApJS doi: 10.1086/521026 – volume: 479 start-page: 4652 year: 2018 ident: R10 publication-title: MNRAS doi: 10.1093/mnras/sty1859 – volume: 353 start-page: 87 year: 2004 ident: R33 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.08041.x – volume: 71 start-page: 460 year: 1911 ident: R83 publication-title: MNRAS doi: 10.1093/mnras/71.5.460 – volume: 836 start-page: 244 year: 2017 ident: R110 publication-title: ApJ doi: 10.3847/1538-4357/836/2/244 – ident: R1 doi: 10.1017/CBO9780511535246 – volume: 478 start-page: 1844 year: 2018 ident: R12 publication-title: MNRAS doi: 10.1093/mnras/sty1186 – volume: 76 start-page: 352 year: 1996 ident: R26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.352 – volume: 572 start-page: 407 year: 2002 ident: R18 publication-title: ApJ doi: 10.1086/340304 – volume: 865 start-page: 61 year: 2018 ident: R48 publication-title: ApJ doi: 10.3847/1538-4357/aadbae – volume: 871 start-page: 38 year: 2019 ident: R64 publication-title: ApJ doi: 10.3847/1538-4357/aaf646 – volume: 248 start-page: 485 year: 1991 ident: R32 publication-title: A&A – volume: 540 start-page: 969 year: 2000 ident: R61 publication-title: ApJ doi: 10.1086/309350 – volume: 637 start-page: L53 year: 2006 ident: R77 publication-title: ApJ doi: 10.1086/500544 – volume: 568 start-page: 939 year: 2002 ident: R71 publication-title: ApJ doi: 10.1086/339060 – volume: 764 start-page: 166 year: 2013 ident: R30 publication-title: ApJ doi: 10.1088/0004-637X/764/2/166 – volume: 562 start-page: A14 year: 2014 ident: R101 publication-title: A&A doi: 10.1051/0004-6361/201321576 – volume: 100 start-page: 104015 year: 2019 ident: R28 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.104015 – volume: 340 start-page: 426 year: 1989 ident: R69 publication-title: ApJ doi: 10.1086/167404 – volume: 70 start-page: 227 year: 1978 ident: R68 publication-title: A&A – volume: 522 start-page: 413 year: 1999 ident: R37 publication-title: ApJ doi: 10.1086/307647 – volume: 594 start-page: A97 year: 2016 ident: R23 publication-title: A&A doi: 10.1051/0004-6361/201628980 – volume: 431 start-page: 2184 year: 2013 ident: R50 publication-title: MNRAS doi: 10.1093/mnras/stt307 – volume: 8 start-page: 14906 year: 2017 ident: R99 publication-title: Nat. Commun. doi: 10.1038/ncomms14906 – volume: 442 start-page: 587 year: 2005 ident: R103 publication-title: A&A doi: 10.1051/0004-6361:20052862 – volume: 422 start-page: 841 year: 2012 ident: R2 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.20666.x – volume: 458 start-page: 1450 year: 2016 ident: R107 publication-title: MNRAS doi: 10.1093/mnras/stw274 – volume: 834 start-page: 68 year: 2017 ident: R27 publication-title: ApJ doi: 10.3847/1538-4357/834/1/68 – volume: 315 start-page: 543 year: 2000 ident: R56 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03426.x – volume: 457 start-page: 834 year: 1996 ident: R100 publication-title: ApJ doi: 10.1086/176778 – volume: 106 start-page: 1025 year: 1994 ident: R55 publication-title: PASP doi: 10.1086/133478 – volume: 360 start-page: 974 year: 2005 ident: R54 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09087.x – volume: 473 start-page: 909 year: 2018 ident: R14 publication-title: MNRAS doi: 10.1093/mnras/stx2347 – volume: 472 start-page: 2422 year: 2017 ident: R75 publication-title: MNRAS doi: 10.1093/mnras/stx2123 – volume: 97 start-page: 103014 year: 2018 ident: R91 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.103014 – volume: 402 start-page: 371 year: 2010 ident: R16 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15880.x – volume: 68 start-page: 103002 year: 2003 ident: R44 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.68.103002 |
SSID | ssj0002183 |
Score | 2.62222 |
Snippet | Context.
As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great... Context. As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great... As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great interest... |
SourceID | osti proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | A41 |
SubjectTerms | ASTRONOMY AND ASTROPHYSICS Asymmetry Binary stars Black holes Convection Globular clusters Gravitational waves Mass distribution Metallicity methods: numerical Momentum Neutrinos Neutron stars Open clusters Star clusters stars: black holes stars: kinematics and dynamics stars: mass-loss stars: massive Stellar evolution Stellar mass supernovae: general |
Title | BSE versus StarTrack: Implementations of new wind, remnant-formation, and natal-kick schemes in NBODY7 and their astrophysical consequences |
URI | https://www.proquest.com/docview/2487146261 https://www.osti.gov/servlets/purl/1830577 |
Volume | 639 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVKERIXBAtoyy7IB8QlzW4-nDjh1rKtFlS6K9FK5RTFjiOFbtNVmgrRA3-AKz-YcZyvUrQCLlHkOo7UeRm_mbyZIPTaNEUID1qkx5EDAYpjxbrPHYh5qG96hhMbpOjO_3HqXs7Jh4Wz6HR-tlRL25yd8d0f60r-x6owBnaVVbL_YNl6URiAc7AvHMHCcPwrGw8_jTQpq9huJGnMYN8B5wYhftHyd1VWFSmdG7Bn7WuissiZWEn5i14XLlYSzlTmcvRlwpcaBL1iVYi1tOnw6uIzraSWSaaFmzxb31YG5i09dpvqDuQsWTGh-sE21xR5XtVmq5WHGIapyL6UbfvrQXHDd9-qb2vXGdmxDBSKFK82aaZmfJcsm5K1MpUBcWsley3zaxfXlUfb7Plsoru2atl-JpSbJrbUzJbJy9KPu6or0sGeAG5HiSjVMrIEBnitDTzXajbB6sX_9CoYzyeTYDZazO6h-xYFRiZLyN9_r_d3SSpVUKUWrHpZOeZ5PXZe32KP73TX4LcPdv2Cysweo0dlDIIHClBPUEekR-i4thd-gwctax2hB9fq7Cn6AYjDCnG4Rtxb_Bve8DrGgDcs8dbHB2jrYwAEbrCGS6zhJMUKa8WEAmt4D2u4jbVnaD4ezd5d6uXnPHRuEz_XHQH-gJg09iwWxVYUU84oN6KYAQtlFKi8E_ncjz1fEC8KGRB7ww1F6BLfI57P7Oeom65TcYywyWwuX8kzgztEUMEIo0YcMQZLmJHwe8iq_vSAl73u5SdXboJCc-GYUnNBAmmpoLZUD_Xri25Vq5e7p59IawbAVGW7ZS51aTwPABwQAtEeOq2MHJQeYxNYxKPATCzXfHH3zyfoYfN8nKJunm3FSyC_OXtVYPEXIhGtDQ |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BSE+versus+StarTrack%3A+Implementations+of+new+wind%2C+remnant-formation%2C+and+natal-kick+schemes+in+NBODY7+and+their+astrophysical+consequences&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Banerjee%2C+S&rft.au=Belczynski%2C+K&rft.au=Fryer%2C+C+L&rft.au=Berczik%2C+P&rft.date=2020-07-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=639&rft_id=info:doi/10.1051%2F0004-6361%2F201935332&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |