An Efficient Second-Order Algorithm for Self-Organizing Fuzzy Neural Networks

Intelligent computing technologies are useful and important for online data modeling, where system dynamics may be nonstationary with some uncertainties. In this paper, an efficient learning mechanism is developed for building self-organizing fuzzy neural networks (SOFNNs), where a second-order algo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 49; no. 1; pp. 14 - 26
Main Authors Han, Honggui, Zhang, Lu, Wu, Xiaolong, Qiao, Junfei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2017.2762521

Cover

Abstract Intelligent computing technologies are useful and important for online data modeling, where system dynamics may be nonstationary with some uncertainties. In this paper, an efficient learning mechanism is developed for building self-organizing fuzzy neural networks (SOFNNs), where a second-order algorithm (SOA) with adaptive learning rate is employed, the network size and the parameters can be determined simultaneously in the learning process. First, all parameters of SOFNN are adjusted by using the SOA strategy to achieve fast convergence through a powerful search scheme. Second, the structure of SOFNN can be self-organized using the relative importance index of each rule. The fuzzy rules used in SOFNN with SOA (SOA-SOFNN) are generated or pruned automatically to reduce the computational complexity and potentially improve the generalization power. Finally, a theoretical analysis on the learning convergence of the proposed SOA-SOFNN is given to show the computational efficiency. To demonstrate the merits of our proposed approach for data modeling, several benchmark datasets, and a real world application associated with nonlinear systems modeling problems are examined with comparisons against other existing methods. The results indicate that our proposed SOA-SOFNN performs favorably in terms of both learning speed and prediction accuracy for online data modeling.
AbstractList Intelligent computing technologies are useful and important for online data modeling, where system dynamics may be nonstationary with some uncertainties. In this paper, an efficient learning mechanism is developed for building self-organizing fuzzy neural networks (SOFNNs), where a second-order algorithm (SOA) with adaptive learning rate is employed, the network size and the parameters can be determined simultaneously in the learning process. First, all parameters of SOFNN are adjusted by using the SOA strategy to achieve fast convergence through a powerful search scheme. Second, the structure of SOFNN can be self-organized using the relative importance index of each rule. The fuzzy rules used in SOFNN with SOA (SOA-SOFNN) are generated or pruned automatically to reduce the computational complexity and potentially improve the generalization power. Finally, a theoretical analysis on the learning convergence of the proposed SOA-SOFNN is given to show the computational efficiency. To demonstrate the merits of our proposed approach for data modeling, several benchmark datasets, and a real world application associated with nonlinear systems modeling problems are examined with comparisons against other existing methods. The results indicate that our proposed SOA-SOFNN performs favorably in terms of both learning speed and prediction accuracy for online data modeling.
Intelligent computing technologies are useful and important for online data modeling, where system dynamics may be nonstationary with some uncertainties. In this paper, an efficient learning mechanism is developed for building self-organizing fuzzy neural networks (SOFNNs), where a second-order algorithm (SOA) with adaptive learning rate is employed, the network size and the parameters can be determined simultaneously in the learning process. First, all parameters of SOFNN are adjusted by using the SOA strategy to achieve fast convergence through a powerful search scheme. Second, the structure of SOFNN can be self-organized using the relative importance index of each rule. The fuzzy rules used in SOFNN with SOA (SOA-SOFNN) are generated or pruned automatically to reduce the computational complexity and potentially improve the generalization power. Finally, a theoretical analysis on the learning convergence of the proposed SOA-SOFNN is given to show the computational efficiency. To demonstrate the merits of our proposed approach for data modeling, several benchmark datasets, and a real world application associated with nonlinear systems modeling problems are examined with comparisons against other existing methods. The results indicate that our proposed SOA-SOFNN performs favorably in terms of both learning speed and prediction accuracy for online data modeling.Intelligent computing technologies are useful and important for online data modeling, where system dynamics may be nonstationary with some uncertainties. In this paper, an efficient learning mechanism is developed for building self-organizing fuzzy neural networks (SOFNNs), where a second-order algorithm (SOA) with adaptive learning rate is employed, the network size and the parameters can be determined simultaneously in the learning process. First, all parameters of SOFNN are adjusted by using the SOA strategy to achieve fast convergence through a powerful search scheme. Second, the structure of SOFNN can be self-organized using the relative importance index of each rule. The fuzzy rules used in SOFNN with SOA (SOA-SOFNN) are generated or pruned automatically to reduce the computational complexity and potentially improve the generalization power. Finally, a theoretical analysis on the learning convergence of the proposed SOA-SOFNN is given to show the computational efficiency. To demonstrate the merits of our proposed approach for data modeling, several benchmark datasets, and a real world application associated with nonlinear systems modeling problems are examined with comparisons against other existing methods. The results indicate that our proposed SOA-SOFNN performs favorably in terms of both learning speed and prediction accuracy for online data modeling.
Author Wu, Xiaolong
Qiao, Junfei
Zhang, Lu
Han, Honggui
Author_xml – sequence: 1
  givenname: Honggui
  orcidid: 0000-0001-5617-4075
  surname: Han
  fullname: Han, Honggui
  email: rechardhan@sina.com
  organization: Faculty of Information Technology and the Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China
– sequence: 2
  givenname: Lu
  surname: Zhang
  fullname: Zhang, Lu
  organization: Faculty of Information Technology and the Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China
– sequence: 3
  givenname: Xiaolong
  orcidid: 0000-0002-7713-1995
  surname: Wu
  fullname: Wu, Xiaolong
  organization: Faculty of Information Technology and the Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China
– sequence: 4
  givenname: Junfei
  surname: Qiao
  fullname: Qiao, Junfei
  organization: Faculty of Information Technology and the Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29990034$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vEzEQxS1UREvpB0BIaCUuXDaM7fW_Y4haQCr0QDlwshxnHFw2duvdFWo-PY4ScugBX57l-b3xaN5LcpJyQkJeU5hRCubD7eLnxxkDqmZMSSYYfUbOGJW6ZUyJk-NdqlNyMQx3UI-uT0a_IKfMGAPAuzPydZ6ayxCij5jG5jv6nFbtTVlhaeb9Opc4_to0IZda6kMtrF2K25jWzdW03T4233Aqrq8y_snl9_CKPA-uH_DioOfkx9Xl7eJze33z6ctift163pmxFU5KBc47FTSgdEF1gAbY0stOMg8Seee9RiGpZ156CIJ3dAV6KcBzLvg5eb_ve1_yw4TDaDdx8Nj3LmGeBstAai6oAVrRd0_QuzyVVKezjAptQEpQlXp7oKblBlf2vsSNK4_236IqQPeAL3kYCoYjQsHu8rC7POwuD3vIo3rUE4-PoxtjTmNxsf-v883eGRHx-JMGzSjj_C9kmZUH
CODEN ITCEB8
CitedBy_id crossref_primary_10_1088_1361_6501_ad7a93
crossref_primary_10_1109_TASE_2023_3311768
crossref_primary_10_1109_TCYB_2018_2889777
crossref_primary_10_1109_TASE_2022_3189048
crossref_primary_10_1016_j_asoc_2020_106239
crossref_primary_10_1109_TCYB_2024_3434499
crossref_primary_10_1007_s00521_020_05276_w
crossref_primary_10_1177_09596518211065581
crossref_primary_10_1109_ACCESS_2017_2779175
crossref_primary_10_1109_TASE_2024_3432937
crossref_primary_10_1109_TKDE_2024_3438259
crossref_primary_10_1109_TCYB_2021_3070578
crossref_primary_10_1016_j_asoc_2023_110553
crossref_primary_10_1109_TCYB_2021_3050508
crossref_primary_10_1109_TCYB_2022_3204030
crossref_primary_10_1109_TII_2022_3216809
crossref_primary_10_1016_j_ins_2022_04_022
crossref_primary_10_1109_TCYB_2021_3129925
crossref_primary_10_1007_s00521_022_06963_6
crossref_primary_10_1109_TSMC_2024_3485470
crossref_primary_10_1016_j_eswa_2024_124977
crossref_primary_10_1109_TSMC_2024_3486364
crossref_primary_10_1109_TSMC_2023_3281518
crossref_primary_10_1016_j_ins_2023_119819
crossref_primary_10_3390_app122211435
crossref_primary_10_1109_TCYB_2020_2984646
crossref_primary_10_1109_TFUZZ_2023_3298333
crossref_primary_10_1109_TNNLS_2023_3334150
crossref_primary_10_1109_TII_2024_3361017
crossref_primary_10_1109_TMTT_2019_2958127
crossref_primary_10_3233_JCM_226145
crossref_primary_10_1109_TCYB_2022_3161271
crossref_primary_10_1109_TFUZZ_2021_3075842
crossref_primary_10_1109_TSMC_2022_3184716
Cites_doi 10.1016/j.asoc.2014.12.013
10.1109/TFUZZ.2009.2029569
10.1109/TFUZZ.2014.2362144
10.1109/TSMCB.2009.2018469
10.1016/j.asoc.2015.04.013
10.1109/TSMCB.2007.901375
10.1109/TSMCB.2012.2231068
10.1109/91.940970
10.1016/j.watres.2015.01.039
10.1109/TFUZZ.2015.2446535
10.1016/j.fss.2011.04.013
10.1109/TFUZZ.2014.2321594
10.1109/TNNLS.2013.2264292
10.1109/TCYB.2013.2259229
10.1109/TNNLS.2014.2306915
10.1109/TNN.2011.2170093
10.1109/TCYB.2013.2260537
10.1109/3477.836384
10.1109/TFUZZ.2011.2175932
10.1016/j.watres.2015.02.041
10.1080/15459620802225481
10.1109/TFUZZ.2014.2337938
10.1016/j.fss.2013.08.011
10.1016/j.ins.2013.10.035
10.1016/j.fss.2009.12.016
10.1109/TSMCB.2012.2217323
10.1016/j.asoc.2013.01.023
10.1109/TSMCB.2012.2218804
10.1109/TFUZZ.2014.2329707
10.1109/TCYB.2014.2382679
10.1109/TNNLS.2015.2496330
10.1016/j.watres.2014.12.005
10.1016/j.watres.2009.08.038
10.1007/s10869-010-9204-3
10.1109/TCYB.2015.2486779
10.1016/j.fss.2011.02.004
10.1016/j.watres.2008.12.039
10.1109/TIE.2015.2408571
10.1109/TSMCB.2008.2004501
10.1109/TIE.2017.2650858
10.1016/j.ins.2014.09.054
10.1109/TFUZZ.2012.2200900
10.1109/TNNLS.2014.2315214
10.1109/TFUZZ.2010.2070841
10.1109/TNNLS.2013.2295813
10.1109/5.784219
10.1109/TNN.2002.1031939
10.1016/j.neucom.2009.05.006
10.1109/TNNLS.2012.2227148
10.1109/TSMCC.2009.2016572
10.1016/j.ins.2009.12.030
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2017.2762521
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Aerospace Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 26
ExternalDocumentID 29990034
10_1109_TCYB_2017_2762521
8082123
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Major National Science and Technology Project
  grantid: 2017ZX07104
– fundername: Natural Science Foundation of Beijing Municipality
  grantid: 4172005
  funderid: 10.13039/501100004826
– fundername: National Natural Science Foundation of China
  grantid: 61622301; 51609258; 61533002
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-5a6670aca7f80e6af740e902bc6462c06e34cc8e561c2c6c0f5341d08b50c3353
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Thu Oct 02 05:01:17 EDT 2025
Sun Sep 07 03:23:15 EDT 2025
Thu Jan 02 23:04:36 EST 2025
Wed Oct 01 05:14:38 EDT 2025
Thu Apr 24 23:12:04 EDT 2025
Wed Aug 27 03:03:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-5a6670aca7f80e6af740e902bc6462c06e34cc8e561c2c6c0f5341d08b50c3353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7713-1995
0000-0001-5617-4075
PMID 29990034
PQID 2158906607
PQPubID 85422
PageCount 13
ParticipantIDs proquest_journals_2158906607
crossref_primary_10_1109_TCYB_2017_2762521
ieee_primary_8082123
crossref_citationtrail_10_1109_TCYB_2017_2762521
pubmed_primary_29990034
proquest_miscellaneous_2068351901
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Jan.
2019-1-00
2019-Jan
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref16
ref19
ref18
ref51
ref50
li (ref25) 2013; 43
ref46
ref48
ref47
ref42
ref41
ref44
ref43
ref49
sim (ref45) 2009; 39
ref8
ref9
ref4
ref3
ref6
ref5
ref40
kaminski (ref17) 2015; 32
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref29
tofighi (ref7) 2015; 28
References_xml – volume: 28
  start-page: 514
  year: 2015
  ident: ref7
  article-title: Direct adaptive power system stabilizer design using fuzzy wavelet neural network with self-recurrent consequent part
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.12.013
– ident: ref33
  doi: 10.1109/TFUZZ.2009.2029569
– ident: ref41
  doi: 10.1109/TFUZZ.2014.2362144
– ident: ref11
  doi: 10.1109/TSMCB.2009.2018469
– volume: 32
  start-page: 509
  year: 2015
  ident: ref17
  article-title: An on-line trained neural controller with a fuzzy learning rate of the Levenberg-Marquardt algorithm for speed control of an electrical drive with an elastic joint
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.04.013
– ident: ref16
  doi: 10.1109/TSMCB.2007.901375
– ident: ref12
  doi: 10.1109/TSMCB.2012.2231068
– ident: ref29
  doi: 10.1109/91.940970
– ident: ref49
  doi: 10.1016/j.watres.2015.01.039
– ident: ref1
  doi: 10.1109/TFUZZ.2015.2446535
– ident: ref9
  doi: 10.1016/j.fss.2011.04.013
– ident: ref39
  doi: 10.1109/TFUZZ.2014.2321594
– ident: ref35
  doi: 10.1109/TNNLS.2013.2264292
– volume: 43
  start-page: 1484
  year: 2013
  ident: ref25
  article-title: Fuzzy neural network technique for system state forecasting
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2259229
– ident: ref21
  doi: 10.1109/TNNLS.2014.2306915
– ident: ref31
  doi: 10.1109/TNN.2011.2170093
– ident: ref26
  doi: 10.1109/TCYB.2013.2260537
– ident: ref30
  doi: 10.1109/3477.836384
– ident: ref14
  doi: 10.1109/TFUZZ.2011.2175932
– ident: ref47
  doi: 10.1016/j.watres.2015.02.041
– ident: ref43
  doi: 10.1080/15459620802225481
– ident: ref3
  doi: 10.1109/TFUZZ.2014.2337938
– ident: ref37
  doi: 10.1016/j.fss.2013.08.011
– ident: ref23
  doi: 10.1016/j.ins.2013.10.035
– ident: ref8
  doi: 10.1016/j.fss.2009.12.016
– ident: ref40
  doi: 10.1109/TSMCB.2012.2217323
– ident: ref18
  doi: 10.1016/j.asoc.2013.01.023
– ident: ref46
  doi: 10.1109/TSMCB.2012.2218804
– ident: ref44
  doi: 10.1109/TFUZZ.2014.2329707
– ident: ref38
  doi: 10.1109/TCYB.2014.2382679
– ident: ref2
  doi: 10.1109/TNNLS.2015.2496330
– ident: ref48
  doi: 10.1016/j.watres.2014.12.005
– ident: ref50
  doi: 10.1016/j.watres.2009.08.038
– ident: ref42
  doi: 10.1007/s10869-010-9204-3
– ident: ref36
  doi: 10.1109/TCYB.2015.2486779
– ident: ref15
  doi: 10.1016/j.fss.2011.02.004
– ident: ref51
  doi: 10.1016/j.watres.2008.12.039
– ident: ref10
  doi: 10.1109/TIE.2015.2408571
– volume: 39
  start-page: 198
  year: 2009
  ident: ref45
  article-title: BLGAN: Bayesian learning and genetic algorithm for supporting negotiation with incomplete information
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.2004501
– ident: ref5
  doi: 10.1109/TIE.2017.2650858
– ident: ref6
  doi: 10.1016/j.ins.2014.09.054
– ident: ref20
  doi: 10.1109/TFUZZ.2012.2200900
– ident: ref4
  doi: 10.1109/TNNLS.2014.2315214
– ident: ref34
  doi: 10.1109/TFUZZ.2010.2070841
– ident: ref28
  doi: 10.1109/TNNLS.2013.2295813
– ident: ref22
  doi: 10.1109/5.784219
– ident: ref19
  doi: 10.1109/TNN.2002.1031939
– ident: ref32
  doi: 10.1016/j.neucom.2009.05.006
– ident: ref27
  doi: 10.1109/TNNLS.2012.2227148
– ident: ref24
  doi: 10.1109/TSMCC.2009.2016572
– ident: ref13
  doi: 10.1016/j.ins.2009.12.030
SSID ssj0000816898
Score 2.382711
Snippet Intelligent computing technologies are useful and important for online data modeling, where system dynamics may be nonstationary with some uncertainties. In...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14
SubjectTerms Adaptive algorithms
Adaptive learning rate strategy
Algorithm design and analysis
Approximation algorithms
Artificial neural networks
Computing time
Convergence
Data models
Fuzzy logic
Fuzzy neural networks
Machine learning
Mathematical models
Model accuracy
Neural networks
Neurons
Nonlinear systems
nonlinear systems modeling
On-line systems
Process parameters
second-order algorithm
self-organizing fuzzy neural networks (SOFNNs)
Semiconductor optical amplifiers
System dynamics
Title An Efficient Second-Order Algorithm for Self-Organizing Fuzzy Neural Networks
URI https://ieeexplore.ieee.org/document/8082123
https://www.ncbi.nlm.nih.gov/pubmed/29990034
https://www.proquest.com/docview/2158906607
https://www.proquest.com/docview/2068351901
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PXEBSvlYKMhIHADhrTdxHPu4VF1VSFsOtFI5RfHEBsSSRd3kwP56xo43EggQt0h2bMczzjyPx28AXqBG1-QhqD2zisvCK261b7i11tfCS-Fc8EMuL9T5lXx3XVzvwZvxLoxzLgafuWl4jGf5zRr74Co70WSv6E-7D_ulVsNdrdGfEhNIxNS3GT1wQhVlOsScCXNyefrxbYjjKqcZrX4yWYEEmLBRoGf5xSLFFCt_R5vR6izuwHI33iHY5Ou07-wUt79ROf7vB92F2wl-svmgL4ew59p7cJgW-Ia9TCzUr45gOW_ZWeSXoCbYh7Bvbvj7QNTJ5qtP65sv3edvjBAvFa08T1c6yQ6yRb_d_mCB9IM6uhiizDf34Wpxdnl6zlPuBY65NB0vaqVKUWNdei2cqn1JYjMis6ikylAol0tE7Qh-YYYKhS_IHjZC20Jgnhf5Azho1617BMxrZXHmy1rImSwIz0ila2PQGoJmtNuagNjNf4WJmDzkx1hVcYMiTBWkVwXpVUl6E3g9vvJ9YOX4V-WjMPNjxTTpEzjeCblK63ZTEQDShlCYKCfwfCymFReOUerWrXuqI5QOaQ0FtfxwUI6x7Z1OPf5zn0_gFo3MDC6cYzjobnr3lEBNZ59Fbf4Jm9_uDQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9MwFH4a4wAXYAxYx4AgcQCEOzexHftYplUF1nKgk8Ypih2bIUo6rcmB_nqeHTcSCBC3SHZsx-857_Pz8_cAXhhpbJX5oPZUC8K4E0RLVxGttSupY9Ra74eczcX0nL2_4Bc78Ka_C2OtDcFndugfw1l-tTKtd5UdS7RX-Ke9ATc5Y4x3t7V6j0pIIRGS36b4QBBX5PEYc0TV8eLk81sfyZUPU1z_aLQ8DTCiI0_Q8otNCklW_o43g92Z3IXZdsRduMm3Ydvoodn8Rub4v590D-5EAJqMO43Zgx1b34e9uMTXycvIQ_1qH2bjOjkNDBPYRPLJ75wr8tFTdSbj5ZfV9dfm8nuCmBeLlo7ES51oCZNJu9n8SDztB3Y07-LM1w_gfHK6OJmSmH2BmIyphvBSiJyWpsydpFaULkfBKZpqI5hIDRU2Y8ZIiwDMpEYY6jhaxIpKzanJMp49hN16VdsDSJwU2oxcXlI2YhwRDROyVMpoheAM91sDoNv5L0ykJvcZMpZF2KJQVXjpFV56RZTeAF73r1x1vBz_qrzvZ76vGCd9AEdbIRdx5a4LhEBSIQ6j-QCe98W45vxBSlnbVYt1qJA-sSHFlh91ytG3vdWpwz_3-QxuTRezs-Ls3fzDY7iNo1SdQ-cIdpvr1j5BiNPop0GzfwI-Y_Fa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Second-Order+Algorithm+for+Self-Organizing+Fuzzy+Neural+Networks&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Han%2C+Honggui&rft.au=Zhang%2C+Lu&rft.au=Wu%2C+Xiaolong&rft.au=Qiao%2C+Junfei&rft.date=2019-01-01&rft.eissn=2168-2275&rft.volume=49&rft.issue=1&rft.spage=14&rft_id=info:doi/10.1109%2FTCYB.2017.2762521&rft_id=info%3Apmid%2F29990034&rft.externalDocID=29990034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon