An Efficient Second-Order Algorithm for Self-Organizing Fuzzy Neural Networks
Intelligent computing technologies are useful and important for online data modeling, where system dynamics may be nonstationary with some uncertainties. In this paper, an efficient learning mechanism is developed for building self-organizing fuzzy neural networks (SOFNNs), where a second-order algo...
        Saved in:
      
    
          | Published in | IEEE transactions on cybernetics Vol. 49; no. 1; pp. 14 - 26 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.01.2019
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2168-2267 2168-2275 2168-2275  | 
| DOI | 10.1109/TCYB.2017.2762521 | 
Cover
| Abstract | Intelligent computing technologies are useful and important for online data modeling, where system dynamics may be nonstationary with some uncertainties. In this paper, an efficient learning mechanism is developed for building self-organizing fuzzy neural networks (SOFNNs), where a second-order algorithm (SOA) with adaptive learning rate is employed, the network size and the parameters can be determined simultaneously in the learning process. First, all parameters of SOFNN are adjusted by using the SOA strategy to achieve fast convergence through a powerful search scheme. Second, the structure of SOFNN can be self-organized using the relative importance index of each rule. The fuzzy rules used in SOFNN with SOA (SOA-SOFNN) are generated or pruned automatically to reduce the computational complexity and potentially improve the generalization power. Finally, a theoretical analysis on the learning convergence of the proposed SOA-SOFNN is given to show the computational efficiency. To demonstrate the merits of our proposed approach for data modeling, several benchmark datasets, and a real world application associated with nonlinear systems modeling problems are examined with comparisons against other existing methods. The results indicate that our proposed SOA-SOFNN performs favorably in terms of both learning speed and prediction accuracy for online data modeling. | 
    
|---|---|
| AbstractList | Intelligent computing technologies are useful and important for online data modeling, where system dynamics may be nonstationary with some uncertainties. In this paper, an efficient learning mechanism is developed for building self-organizing fuzzy neural networks (SOFNNs), where a second-order algorithm (SOA) with adaptive learning rate is employed, the network size and the parameters can be determined simultaneously in the learning process. First, all parameters of SOFNN are adjusted by using the SOA strategy to achieve fast convergence through a powerful search scheme. Second, the structure of SOFNN can be self-organized using the relative importance index of each rule. The fuzzy rules used in SOFNN with SOA (SOA-SOFNN) are generated or pruned automatically to reduce the computational complexity and potentially improve the generalization power. Finally, a theoretical analysis on the learning convergence of the proposed SOA-SOFNN is given to show the computational efficiency. To demonstrate the merits of our proposed approach for data modeling, several benchmark datasets, and a real world application associated with nonlinear systems modeling problems are examined with comparisons against other existing methods. The results indicate that our proposed SOA-SOFNN performs favorably in terms of both learning speed and prediction accuracy for online data modeling. Intelligent computing technologies are useful and important for online data modeling, where system dynamics may be nonstationary with some uncertainties. In this paper, an efficient learning mechanism is developed for building self-organizing fuzzy neural networks (SOFNNs), where a second-order algorithm (SOA) with adaptive learning rate is employed, the network size and the parameters can be determined simultaneously in the learning process. First, all parameters of SOFNN are adjusted by using the SOA strategy to achieve fast convergence through a powerful search scheme. Second, the structure of SOFNN can be self-organized using the relative importance index of each rule. The fuzzy rules used in SOFNN with SOA (SOA-SOFNN) are generated or pruned automatically to reduce the computational complexity and potentially improve the generalization power. Finally, a theoretical analysis on the learning convergence of the proposed SOA-SOFNN is given to show the computational efficiency. To demonstrate the merits of our proposed approach for data modeling, several benchmark datasets, and a real world application associated with nonlinear systems modeling problems are examined with comparisons against other existing methods. The results indicate that our proposed SOA-SOFNN performs favorably in terms of both learning speed and prediction accuracy for online data modeling.Intelligent computing technologies are useful and important for online data modeling, where system dynamics may be nonstationary with some uncertainties. In this paper, an efficient learning mechanism is developed for building self-organizing fuzzy neural networks (SOFNNs), where a second-order algorithm (SOA) with adaptive learning rate is employed, the network size and the parameters can be determined simultaneously in the learning process. First, all parameters of SOFNN are adjusted by using the SOA strategy to achieve fast convergence through a powerful search scheme. Second, the structure of SOFNN can be self-organized using the relative importance index of each rule. The fuzzy rules used in SOFNN with SOA (SOA-SOFNN) are generated or pruned automatically to reduce the computational complexity and potentially improve the generalization power. Finally, a theoretical analysis on the learning convergence of the proposed SOA-SOFNN is given to show the computational efficiency. To demonstrate the merits of our proposed approach for data modeling, several benchmark datasets, and a real world application associated with nonlinear systems modeling problems are examined with comparisons against other existing methods. The results indicate that our proposed SOA-SOFNN performs favorably in terms of both learning speed and prediction accuracy for online data modeling.  | 
    
| Author | Wu, Xiaolong Qiao, Junfei Zhang, Lu Han, Honggui  | 
    
| Author_xml | – sequence: 1 givenname: Honggui orcidid: 0000-0001-5617-4075 surname: Han fullname: Han, Honggui email: rechardhan@sina.com organization: Faculty of Information Technology and the Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China – sequence: 2 givenname: Lu surname: Zhang fullname: Zhang, Lu organization: Faculty of Information Technology and the Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China – sequence: 3 givenname: Xiaolong orcidid: 0000-0002-7713-1995 surname: Wu fullname: Wu, Xiaolong organization: Faculty of Information Technology and the Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China – sequence: 4 givenname: Junfei surname: Qiao fullname: Qiao, Junfei organization: Faculty of Information Technology and the Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29990034$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kU9vEzEQxS1UREvpB0BIaCUuXDaM7fW_Y4haQCr0QDlwshxnHFw2duvdFWo-PY4ScugBX57l-b3xaN5LcpJyQkJeU5hRCubD7eLnxxkDqmZMSSYYfUbOGJW6ZUyJk-NdqlNyMQx3UI-uT0a_IKfMGAPAuzPydZ6ayxCij5jG5jv6nFbtTVlhaeb9Opc4_to0IZda6kMtrF2K25jWzdW03T4233Aqrq8y_snl9_CKPA-uH_DioOfkx9Xl7eJze33z6ctift163pmxFU5KBc47FTSgdEF1gAbY0stOMg8Seee9RiGpZ156CIJ3dAV6KcBzLvg5eb_ve1_yw4TDaDdx8Nj3LmGeBstAai6oAVrRd0_QuzyVVKezjAptQEpQlXp7oKblBlf2vsSNK4_236IqQPeAL3kYCoYjQsHu8rC7POwuD3vIo3rUE4-PoxtjTmNxsf-v883eGRHx-JMGzSjj_C9kmZUH | 
    
| CODEN | ITCEB8 | 
    
| CitedBy_id | crossref_primary_10_1088_1361_6501_ad7a93 crossref_primary_10_1109_TASE_2023_3311768 crossref_primary_10_1109_TCYB_2018_2889777 crossref_primary_10_1109_TASE_2022_3189048 crossref_primary_10_1016_j_asoc_2020_106239 crossref_primary_10_1109_TCYB_2024_3434499 crossref_primary_10_1007_s00521_020_05276_w crossref_primary_10_1177_09596518211065581 crossref_primary_10_1109_ACCESS_2017_2779175 crossref_primary_10_1109_TASE_2024_3432937 crossref_primary_10_1109_TKDE_2024_3438259 crossref_primary_10_1109_TCYB_2021_3070578 crossref_primary_10_1016_j_asoc_2023_110553 crossref_primary_10_1109_TCYB_2021_3050508 crossref_primary_10_1109_TCYB_2022_3204030 crossref_primary_10_1109_TII_2022_3216809 crossref_primary_10_1016_j_ins_2022_04_022 crossref_primary_10_1109_TCYB_2021_3129925 crossref_primary_10_1007_s00521_022_06963_6 crossref_primary_10_1109_TSMC_2024_3485470 crossref_primary_10_1016_j_eswa_2024_124977 crossref_primary_10_1109_TSMC_2024_3486364 crossref_primary_10_1109_TSMC_2023_3281518 crossref_primary_10_1016_j_ins_2023_119819 crossref_primary_10_3390_app122211435 crossref_primary_10_1109_TCYB_2020_2984646 crossref_primary_10_1109_TFUZZ_2023_3298333 crossref_primary_10_1109_TNNLS_2023_3334150 crossref_primary_10_1109_TII_2024_3361017 crossref_primary_10_1109_TMTT_2019_2958127 crossref_primary_10_3233_JCM_226145 crossref_primary_10_1109_TCYB_2022_3161271 crossref_primary_10_1109_TFUZZ_2021_3075842 crossref_primary_10_1109_TSMC_2022_3184716  | 
    
| Cites_doi | 10.1016/j.asoc.2014.12.013 10.1109/TFUZZ.2009.2029569 10.1109/TFUZZ.2014.2362144 10.1109/TSMCB.2009.2018469 10.1016/j.asoc.2015.04.013 10.1109/TSMCB.2007.901375 10.1109/TSMCB.2012.2231068 10.1109/91.940970 10.1016/j.watres.2015.01.039 10.1109/TFUZZ.2015.2446535 10.1016/j.fss.2011.04.013 10.1109/TFUZZ.2014.2321594 10.1109/TNNLS.2013.2264292 10.1109/TCYB.2013.2259229 10.1109/TNNLS.2014.2306915 10.1109/TNN.2011.2170093 10.1109/TCYB.2013.2260537 10.1109/3477.836384 10.1109/TFUZZ.2011.2175932 10.1016/j.watres.2015.02.041 10.1080/15459620802225481 10.1109/TFUZZ.2014.2337938 10.1016/j.fss.2013.08.011 10.1016/j.ins.2013.10.035 10.1016/j.fss.2009.12.016 10.1109/TSMCB.2012.2217323 10.1016/j.asoc.2013.01.023 10.1109/TSMCB.2012.2218804 10.1109/TFUZZ.2014.2329707 10.1109/TCYB.2014.2382679 10.1109/TNNLS.2015.2496330 10.1016/j.watres.2014.12.005 10.1016/j.watres.2009.08.038 10.1007/s10869-010-9204-3 10.1109/TCYB.2015.2486779 10.1016/j.fss.2011.02.004 10.1016/j.watres.2008.12.039 10.1109/TIE.2015.2408571 10.1109/TSMCB.2008.2004501 10.1109/TIE.2017.2650858 10.1016/j.ins.2014.09.054 10.1109/TFUZZ.2012.2200900 10.1109/TNNLS.2014.2315214 10.1109/TFUZZ.2010.2070841 10.1109/TNNLS.2013.2295813 10.1109/5.784219 10.1109/TNN.2002.1031939 10.1016/j.neucom.2009.05.006 10.1109/TNNLS.2012.2227148 10.1109/TSMCC.2009.2016572 10.1016/j.ins.2009.12.030  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 | 
    
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8  | 
    
| DOI | 10.1109/TCYB.2017.2762521 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed Aerospace Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| EISSN | 2168-2275 | 
    
| EndPage | 26 | 
    
| ExternalDocumentID | 29990034 10_1109_TCYB_2017_2762521 8082123  | 
    
| Genre | orig-research Journal Article  | 
    
| GrantInformation_xml | – fundername: Major National Science and Technology Project grantid: 2017ZX07104 – fundername: Natural Science Foundation of Beijing Municipality grantid: 4172005 funderid: 10.13039/501100004826 – fundername: National Natural Science Foundation of China grantid: 61622301; 51609258; 61533002 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8  | 
    
| ID | FETCH-LOGICAL-c349t-5a6670aca7f80e6af740e902bc6462c06e34cc8e561c2c6c0f5341d08b50c3353 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2168-2267 2168-2275  | 
    
| IngestDate | Thu Oct 02 05:01:17 EDT 2025 Sun Sep 07 03:23:15 EDT 2025 Thu Jan 02 23:04:36 EST 2025 Wed Oct 01 05:14:38 EDT 2025 Thu Apr 24 23:12:04 EDT 2025 Wed Aug 27 03:03:37 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c349t-5a6670aca7f80e6af740e902bc6462c06e34cc8e561c2c6c0f5341d08b50c3353 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-7713-1995 0000-0001-5617-4075  | 
    
| PMID | 29990034 | 
    
| PQID | 2158906607 | 
    
| PQPubID | 85422 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_journals_2158906607 crossref_primary_10_1109_TCYB_2017_2762521 ieee_primary_8082123 crossref_citationtrail_10_1109_TCYB_2017_2762521 pubmed_primary_29990034 proquest_miscellaneous_2068351901  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-Jan. 2019-1-00 2019-Jan 20190101  | 
    
| PublicationDateYYYYMMDD | 2019-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-Jan.  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Piscataway  | 
    
| PublicationTitle | IEEE transactions on cybernetics | 
    
| PublicationTitleAbbrev | TCYB | 
    
| PublicationTitleAlternate | IEEE Trans Cybern | 
    
| PublicationYear | 2019 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref16 ref19 ref18 ref51 ref50 li (ref25) 2013; 43 ref46 ref48 ref47 ref42 ref41 ref44 ref43 ref49 sim (ref45) 2009; 39 ref8 ref9 ref4 ref3 ref6 ref5 ref40 kaminski (ref17) 2015; 32 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref20 ref22 ref21 ref28 ref27 ref29 tofighi (ref7) 2015; 28  | 
    
| References_xml | – volume: 28 start-page: 514 year: 2015 ident: ref7 article-title: Direct adaptive power system stabilizer design using fuzzy wavelet neural network with self-recurrent consequent part publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.12.013 – ident: ref33 doi: 10.1109/TFUZZ.2009.2029569 – ident: ref41 doi: 10.1109/TFUZZ.2014.2362144 – ident: ref11 doi: 10.1109/TSMCB.2009.2018469 – volume: 32 start-page: 509 year: 2015 ident: ref17 article-title: An on-line trained neural controller with a fuzzy learning rate of the Levenberg-Marquardt algorithm for speed control of an electrical drive with an elastic joint publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.04.013 – ident: ref16 doi: 10.1109/TSMCB.2007.901375 – ident: ref12 doi: 10.1109/TSMCB.2012.2231068 – ident: ref29 doi: 10.1109/91.940970 – ident: ref49 doi: 10.1016/j.watres.2015.01.039 – ident: ref1 doi: 10.1109/TFUZZ.2015.2446535 – ident: ref9 doi: 10.1016/j.fss.2011.04.013 – ident: ref39 doi: 10.1109/TFUZZ.2014.2321594 – ident: ref35 doi: 10.1109/TNNLS.2013.2264292 – volume: 43 start-page: 1484 year: 2013 ident: ref25 article-title: Fuzzy neural network technique for system state forecasting publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2259229 – ident: ref21 doi: 10.1109/TNNLS.2014.2306915 – ident: ref31 doi: 10.1109/TNN.2011.2170093 – ident: ref26 doi: 10.1109/TCYB.2013.2260537 – ident: ref30 doi: 10.1109/3477.836384 – ident: ref14 doi: 10.1109/TFUZZ.2011.2175932 – ident: ref47 doi: 10.1016/j.watres.2015.02.041 – ident: ref43 doi: 10.1080/15459620802225481 – ident: ref3 doi: 10.1109/TFUZZ.2014.2337938 – ident: ref37 doi: 10.1016/j.fss.2013.08.011 – ident: ref23 doi: 10.1016/j.ins.2013.10.035 – ident: ref8 doi: 10.1016/j.fss.2009.12.016 – ident: ref40 doi: 10.1109/TSMCB.2012.2217323 – ident: ref18 doi: 10.1016/j.asoc.2013.01.023 – ident: ref46 doi: 10.1109/TSMCB.2012.2218804 – ident: ref44 doi: 10.1109/TFUZZ.2014.2329707 – ident: ref38 doi: 10.1109/TCYB.2014.2382679 – ident: ref2 doi: 10.1109/TNNLS.2015.2496330 – ident: ref48 doi: 10.1016/j.watres.2014.12.005 – ident: ref50 doi: 10.1016/j.watres.2009.08.038 – ident: ref42 doi: 10.1007/s10869-010-9204-3 – ident: ref36 doi: 10.1109/TCYB.2015.2486779 – ident: ref15 doi: 10.1016/j.fss.2011.02.004 – ident: ref51 doi: 10.1016/j.watres.2008.12.039 – ident: ref10 doi: 10.1109/TIE.2015.2408571 – volume: 39 start-page: 198 year: 2009 ident: ref45 article-title: BLGAN: Bayesian learning and genetic algorithm for supporting negotiation with incomplete information publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2008.2004501 – ident: ref5 doi: 10.1109/TIE.2017.2650858 – ident: ref6 doi: 10.1016/j.ins.2014.09.054 – ident: ref20 doi: 10.1109/TFUZZ.2012.2200900 – ident: ref4 doi: 10.1109/TNNLS.2014.2315214 – ident: ref34 doi: 10.1109/TFUZZ.2010.2070841 – ident: ref28 doi: 10.1109/TNNLS.2013.2295813 – ident: ref22 doi: 10.1109/5.784219 – ident: ref19 doi: 10.1109/TNN.2002.1031939 – ident: ref32 doi: 10.1016/j.neucom.2009.05.006 – ident: ref27 doi: 10.1109/TNNLS.2012.2227148 – ident: ref24 doi: 10.1109/TSMCC.2009.2016572 – ident: ref13 doi: 10.1016/j.ins.2009.12.030  | 
    
| SSID | ssj0000816898 | 
    
| Score | 2.382711 | 
    
| Snippet | Intelligent computing technologies are useful and important for online data modeling, where system dynamics may be nonstationary with some uncertainties. In... | 
    
| SourceID | proquest pubmed crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 14 | 
    
| SubjectTerms | Adaptive algorithms Adaptive learning rate strategy Algorithm design and analysis Approximation algorithms Artificial neural networks Computing time Convergence Data models Fuzzy logic Fuzzy neural networks Machine learning Mathematical models Model accuracy Neural networks Neurons Nonlinear systems nonlinear systems modeling On-line systems Process parameters second-order algorithm self-organizing fuzzy neural networks (SOFNNs) Semiconductor optical amplifiers System dynamics  | 
    
| Title | An Efficient Second-Order Algorithm for Self-Organizing Fuzzy Neural Networks | 
    
| URI | https://ieeexplore.ieee.org/document/8082123 https://www.ncbi.nlm.nih.gov/pubmed/29990034 https://www.proquest.com/docview/2158906607 https://www.proquest.com/docview/2068351901  | 
    
| Volume | 49 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PXEBSvlYKMhIHADhrTdxHPu4VF1VSFsOtFI5RfHEBsSSRd3kwP56xo43EggQt0h2bMczzjyPx28AXqBG1-QhqD2zisvCK261b7i11tfCS-Fc8EMuL9T5lXx3XVzvwZvxLoxzLgafuWl4jGf5zRr74Co70WSv6E-7D_ulVsNdrdGfEhNIxNS3GT1wQhVlOsScCXNyefrxbYjjKqcZrX4yWYEEmLBRoGf5xSLFFCt_R5vR6izuwHI33iHY5Ou07-wUt79ROf7vB92F2wl-svmgL4ew59p7cJgW-Ia9TCzUr45gOW_ZWeSXoCbYh7Bvbvj7QNTJ5qtP65sv3edvjBAvFa08T1c6yQ6yRb_d_mCB9IM6uhiizDf34Wpxdnl6zlPuBY65NB0vaqVKUWNdei2cqn1JYjMis6ikylAol0tE7Qh-YYYKhS_IHjZC20Jgnhf5Azho1617BMxrZXHmy1rImSwIz0ila2PQGoJmtNuagNjNf4WJmDzkx1hVcYMiTBWkVwXpVUl6E3g9vvJ9YOX4V-WjMPNjxTTpEzjeCblK63ZTEQDShlCYKCfwfCymFReOUerWrXuqI5QOaQ0FtfxwUI6x7Z1OPf5zn0_gFo3MDC6cYzjobnr3lEBNZ59Fbf4Jm9_uDQ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9MwFH4a4wAXYAxYx4AgcQCEOzexHftYplUF1nKgk8Ypih2bIUo6rcmB_nqeHTcSCBC3SHZsx-857_Pz8_cAXhhpbJX5oPZUC8K4E0RLVxGttSupY9Ra74eczcX0nL2_4Bc78Ka_C2OtDcFndugfw1l-tTKtd5UdS7RX-Ke9ATc5Y4x3t7V6j0pIIRGS36b4QBBX5PEYc0TV8eLk81sfyZUPU1z_aLQ8DTCiI0_Q8otNCklW_o43g92Z3IXZdsRduMm3Ydvoodn8Rub4v590D-5EAJqMO43Zgx1b34e9uMTXycvIQ_1qH2bjOjkNDBPYRPLJ75wr8tFTdSbj5ZfV9dfm8nuCmBeLlo7ES51oCZNJu9n8SDztB3Y07-LM1w_gfHK6OJmSmH2BmIyphvBSiJyWpsydpFaULkfBKZpqI5hIDRU2Y8ZIiwDMpEYY6jhaxIpKzanJMp49hN16VdsDSJwU2oxcXlI2YhwRDROyVMpoheAM91sDoNv5L0ykJvcZMpZF2KJQVXjpFV56RZTeAF73r1x1vBz_qrzvZ76vGCd9AEdbIRdx5a4LhEBSIQ6j-QCe98W45vxBSlnbVYt1qJA-sSHFlh91ytG3vdWpwz_3-QxuTRezs-Ls3fzDY7iNo1SdQ-cIdpvr1j5BiNPop0GzfwI-Y_Fa | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Second-Order+Algorithm+for+Self-Organizing+Fuzzy+Neural+Networks&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Han%2C+Honggui&rft.au=Zhang%2C+Lu&rft.au=Wu%2C+Xiaolong&rft.au=Qiao%2C+Junfei&rft.date=2019-01-01&rft.eissn=2168-2275&rft.volume=49&rft.issue=1&rft.spage=14&rft_id=info:doi/10.1109%2FTCYB.2017.2762521&rft_id=info%3Apmid%2F29990034&rft.externalDocID=29990034 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |