Effects of building direction and loading mode on the high cycle fatigue strength of the laser powder bed fusion 316L

•Experimental torsion and bending fatigue strengths of 90°, 45°, and 0° LPBF building direction were determined.•Kitagawa diagrams were provided in bending and torsion loading at different building directions.•Bending fatigue behavior is very sensitive to building direction compared to torsion.•Tors...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fatigue Vol. 170; p. 107506
Main Authors Liang, Xiaoyu, Hor, Anis, Robert, Camille, Lin, Feng, Morel, Franck
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2023
Elsevier
Subjects
Online AccessGet full text
ISSN0142-1123
1879-3452
DOI10.1016/j.ijfatigue.2023.107506

Cover

Abstract •Experimental torsion and bending fatigue strengths of 90°, 45°, and 0° LPBF building direction were determined.•Kitagawa diagrams were provided in bending and torsion loading at different building directions.•Bending fatigue behavior is very sensitive to building direction compared to torsion.•Torsion fatigue behavior of LPBF 316L is not sensitive to lack-of-fusion defects. The present study aims to investigate the high cycle fatigue (HCF) performance of steel 316L fabricated by the laser powder bed fusion (LPBF) process. Bending and torsional fatigue test specimens built horizontally (0°), inclined (45°), and vertically (90°) have been prepared and tested. Stress-relieving heat treatment was carried out to reduce the residual stresses. The 90°, 45°, and 0° built near-net-shape and polished specimens have fatigue strengths between 140 and 250 MPa under bending loading and 150 and 170 MPa under torsion loading. This difference illustrates a more pronounced defect sensitivity in bending compared to torsion. Fractographical analyses revealed the fatigue failure mechanisms. As the building direction inclines from vertical to horizontal, the effective areas of inherent defects diminish contributing to improving fatigue strength under bending loading whilst the differences from building directions in torsional fatigue strengths are minor. Microstructural features are seen to compete with inherent defects to affect fatigue performance in the condition that the effective defect sizes are close to the critical fatigue crack size.
AbstractList •Experimental torsion and bending fatigue strengths of 90°, 45°, and 0° LPBF building direction were determined.•Kitagawa diagrams were provided in bending and torsion loading at different building directions.•Bending fatigue behavior is very sensitive to building direction compared to torsion.•Torsion fatigue behavior of LPBF 316L is not sensitive to lack-of-fusion defects. The present study aims to investigate the high cycle fatigue (HCF) performance of steel 316L fabricated by the laser powder bed fusion (LPBF) process. Bending and torsional fatigue test specimens built horizontally (0°), inclined (45°), and vertically (90°) have been prepared and tested. Stress-relieving heat treatment was carried out to reduce the residual stresses. The 90°, 45°, and 0° built near-net-shape and polished specimens have fatigue strengths between 140 and 250 MPa under bending loading and 150 and 170 MPa under torsion loading. This difference illustrates a more pronounced defect sensitivity in bending compared to torsion. Fractographical analyses revealed the fatigue failure mechanisms. As the building direction inclines from vertical to horizontal, the effective areas of inherent defects diminish contributing to improving fatigue strength under bending loading whilst the differences from building directions in torsional fatigue strengths are minor. Microstructural features are seen to compete with inherent defects to affect fatigue performance in the condition that the effective defect sizes are close to the critical fatigue crack size.
The present study aims to investigate the high cycle fatigue (HCF) performance of steel 316L fabricated by the laser powder bed fusion (LPBF) process. Bending and torsional fatigue test specimens built horizontally (0°), inclined (45°), and vertically (90°) have been prepared and tested. Stress-relieving heat treatment was carried out to reduce the residual stresses. The 90°, 45°, and 0° built near-net-shape and polished specimens have fatigue strengths between 140 and 250 MPa under bending loading and 150 and 170 MPa under torsion loading. This difference illustrates a more pronounced defect sensitivity in bending compared to torsion. Fractographical analyses revealed the fatigue failure mechanisms. As the building direction inclines from vertical to horizontal, the effective areas of inherent defects diminish contributing to improving fatigue strength under bending loading whilst the differences from building directions in torsional fatigue strengths are minor. Microstructural features are seen to compete with inherent defects to affect fatigue performance in the condition that the effective defect sizes are close to the critical fatigue crack size.
ArticleNumber 107506
Author Liang, Xiaoyu
Hor, Anis
Robert, Camille
Lin, Feng
Morel, Franck
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Liang
  fullname: Liang, Xiaoyu
  email: liang.xiaoyu@outlook.com
  organization: Department of Mechanical Engineering, Tsinghua University, 100084 Beijing, China
– sequence: 2
  givenname: Anis
  surname: Hor
  fullname: Hor, Anis
  organization: Institut Clément Ader (ICA), Université de Toulouse, CNRS, ISAE-SUPAERO, UPS, INSA, Mines-Albi, 3 rue Caroline Aigle, 31400 Toulouse, France
– sequence: 3
  givenname: Camille
  surname: Robert
  fullname: Robert, Camille
  organization: Angers Laboratory of Mechanics, Manufacturing Process and Innovation (LAMPA), Arts et Métiers Campus Angers, 49035 Angers Cedex, France
– sequence: 4
  givenname: Feng
  surname: Lin
  fullname: Lin, Feng
  organization: Department of Mechanical Engineering, Tsinghua University, 100084 Beijing, China
– sequence: 5
  givenname: Franck
  surname: Morel
  fullname: Morel, Franck
  organization: Angers Laboratory of Mechanics, Manufacturing Process and Innovation (LAMPA), Arts et Métiers Campus Angers, 49035 Angers Cedex, France
BackLink https://hal.science/hal-04184608$$DView record in HAL
BookMark eNqNkTtPwzAYRS1UJErhN-CVIeVzXk4GhqoqFKkSC8yW40fiKo0rOy3qv8chVQcWmCxd3XMtH9-iSWc7hdADgTkBkj9t52areW_qg5rHECchpRnkV2hKClpGSZrFEzQFksYRIXFyg2693wJAGWpTdFhprUTvsdW4OphWmq7G0riQGdth3kncWv6T7qxUOGR9o3Bj6gaLk2gVPt-Nfe9UV_fNsDRUWu6Vw3v7JcNRKYn1wQ-TCck3d-ha89ar-_M5Q58vq4_lOtq8v74tF5tIJGnZRxlQyCpS5nFZQkI0obRMAx9DJWkBmeJpTmPQoCXNc01FldFChvcAL6pEiGSGHsfdhrds78yOuxOz3LD1YsOGDFJSpDkURxK6dOwKZ713Sl8AAmwwzbbsYpoNptloOpDPv0hhej746x037T_4xciroOJolGNeGNUJNf4Dk9b8ufEN5gShMA
CitedBy_id crossref_primary_10_1111_ffe_14490
crossref_primary_10_1038_s41598_025_89003_2
crossref_primary_10_1016_j_ijfatigue_2023_107665
crossref_primary_10_1016_j_ijmecsci_2024_109219
crossref_primary_10_1016_j_jallcom_2023_172804
crossref_primary_10_1080_17452759_2024_2302556
crossref_primary_10_1111_ffe_14312
crossref_primary_10_1016_j_ijfatigue_2023_107835
crossref_primary_10_3390_ma17235861
crossref_primary_10_1016_j_matdes_2024_113077
crossref_primary_10_3390_met13101762
Cites_doi 10.1016/j.engfracmech.2014.03.008
10.1016/j.pmatsci.2017.10.001
10.1016/j.jmrt.2021.12.039
10.1016/j.matchar.2021.111350
10.1016/j.patrec.2016.04.021
10.1016/j.actamat.2021.117240
10.1016/j.ijfatigue.2021.106412
10.1016/j.msea.2020.139445
10.1016/j.tafmec.2019.102260
10.1016/j.ijfatigue.2019.01.013
10.1016/j.engfracmech.2019.03.048
10.1111/j.1460-2695.2004.00823.x
10.1016/j.jnucmat.2015.12.034
10.1016/j.msea.2015.10.068
10.1016/j.ijfatigue.2020.105898
10.1016/j.msea.2021.142236
10.1111/ffe.13684
10.1016/j.tafmec.2020.102849
10.3390/ma11040537
10.1016/j.ijfatigue.2016.03.014
10.1111/ffe.12304
10.1016/j.ijfatigue.2019.04.008
10.1016/j.msea.2019.138633
10.1016/j.ijfatigue.2019.03.022
10.1016/j.matchar.2020.110200
10.1016/j.msea.2017.04.058
10.1016/j.ijfatigue.2012.08.004
10.1016/j.ijfatigue.2019.105222
10.1016/j.ijfatigue.2021.106273
10.1016/j.vacuum.2020.109732
10.1016/j.msea.2021.141141
10.1016/j.ijfatigue.2012.07.008
10.1016/j.msea.2019.138409
10.1016/j.ijfatigue.2022.106843
10.1016/j.ijfatigue.2016.08.014
10.1115/1.3443647
10.1111/ffe.13845
10.1016/j.jallcom.2021.160934
10.1016/j.jmatprotec.2018.08.049
10.1016/j.matdes.2017.11.021
10.1016/j.prostr.2016.06.157
10.1016/j.ijfatigue.2020.105541
10.1016/j.pmatsci.2020.100724
10.1111/ffe.13518
10.1016/j.ijfatigue.2022.107108
10.1111/ffe.12755
10.1016/j.jmatprotec.2017.05.042
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.ijfatigue.2023.107506
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-3452
ExternalDocumentID oai_HAL_hal_04184608v1
10_1016_j_ijfatigue_2023_107506
S0142112323000075
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
AGCQF
ID FETCH-LOGICAL-c349t-50705b196299031f1779431620bd7805ea46720f0fd766f7cb578dfec0a8b3cc3
IEDL.DBID .~1
ISSN 0142-1123
IngestDate Fri Sep 12 12:42:13 EDT 2025
Wed Oct 01 02:37:21 EDT 2025
Thu Apr 24 23:12:35 EDT 2025
Fri Feb 23 02:38:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Building direction
Laser powder bed fusion
Stainless steel 316L
High cycle fatigue
Bending and torsion
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-50705b196299031f1779431620bd7805ea46720f0fd766f7cb578dfec0a8b3cc3
ParticipantIDs hal_primary_oai_HAL_hal_04184608v1
crossref_primary_10_1016_j_ijfatigue_2023_107506
crossref_citationtrail_10_1016_j_ijfatigue_2023_107506
elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2023_107506
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
2023-05
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle International journal of fatigue
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Fousová M, Vojtěch D, Doubrava K, Daniel M, Lin CF. Influence of Inherent Surface and Internal Defects on Mechanical Properties of Additively Manufactured Ti6Al4V Alloy: Comparison between Selective Laser Melting and Electron Beam Melting. Mater 2018, Vol 11, Page 537 2018;11:537. https://doi.org/10.3390/MA11040537.
Bajaj, Hariharan, Kini, Kürnsteiner, Raabe, Jägle (b0105) 2020; 772
Becker, Kumar, Ramamurty (b0070) 2021; 219
Koutiri, Bellett, Morel, Augustins, Adrien (b0260) 2013; 47
Moeinfar, Khodabakhshi, Kashani-bozorg, Mohammadi, Gerlich (b0010) 2022; 16
Balachandramurthi, Moverare, Hansson, Pederson (b0095) 2020; 141
Suryawanshi, Prashanth, Ramamurty (b0245) 2017; 696
Bemfica, Nascimento, Fessler, Araújo, Castro (b0150) 2022; 163
Li, Kan, Zhang, Li, Liang, Yu (b0055) 2021; 47
Liang, Hor, Robert, Salem, Lin, Morel (b0130) 2022; 160
Romano, Miccoli, Beretta (b0175) 2019; 125
Mower, Long (b0110) 2016; 651
Riemer, Leuders, Thöne, Richard, Tröster, Niendorf (b0230) 2014; 120
Fergani, Bratli Wold, Berto, Brotan, Bambach (b0240) 2018; 41
Xu, Liu, Wang (b0085) 2021; 812
Li, Liang, Yu, Li, Kan, Lin (b0050) 2021; 883
Liang, Hor, Robert, Salem, Morel (b0160) 2022; 45
Xu, Liu, Wang (b0090) 2019; 767
Kok, Tan, Wang, Nai, Loh, Liu (b0060) 2018; 139
Andreau, Koutiri, Peyre, Penot, Saintier, Pessard (b0020) 2019; 264
Sanaei, Fatemi (b0065) 2021; 117
Basquin (b0195) 1910; 10
Roirand H, Hor A, Malard B, Saintier N. Effect of laser-scan strategy on microstructure and fatigue properties of 316L additively manufactured stainless steel 2022:1–17. https://doi.org/10.1111/ffe.13845.
Flaceliere, Morel (b0265) 2004; 27
Le, Pessard, Morel, Edy (b0180) 2019; 214
Liverani, Toschi, Ceschini, Fortunato (b0115) 2017; 249
Shrestha, Simsiriwong, Shamsaei (b0125) 2019; 28
Murakami (b0165) 2002
Nadot (b0185) 2022; 154
Wang, Chen, Liu, Zhao, Xu, Hu (b0045) 2022; 30
Dražić, Sladoje, Lindblad (b0190) 2016; 80
Kitagawa H, Takahashi S. Applicability of Fracture Mechanics to Very Small Cracks or the Cracks in the Early Stage. Proc 2nd Int Conf Mech Behav Mater 1976:627–39.
Elangeswaran, Cutolo, Muralidharan, de Formanoir, Berto, Vanmeensel (b0075) 2019; 123
Guerchais, Morel, Saintier, Robert (b0205) 2015; 38
Wang, Su (b0135) 2021; 111
Rezaei, Rezaeian, Kermanpur, Badrossamay, Foroozmehr, Marashi (b0025) 2020; 162
Zhang, Fatemi (b0145) 2019; 103
Le, Morel, Bellett, Saintier, Osmond (b0270) 2016; 93
Maconachie, Leary, Zhang, Medvedev, Sarker, Ruan (b0035) 2020; 788
Liang, Robert, Hor, Morel (b0250) 2020; 136
Koutiri, Bellett, Morel, Pessard (b0200) 2013; 47
Yadollahi, Shamsaei, Thompson, Elwany, Bian (b0080) 2017; 94
Zhong, Liu, Wikman, Cui, Shen (b0015) 2016; 470
Zheng, Jin, Bai, Yang, Ni, Lu (b0030) 2022; 831
Blinn, Ley, Buschhorn, Teutsch, Beck (b0120) 2019; 124
Liang, Robert, Hor, Morel (b0255) 2021; 149
Riemer, Richard (b0235) 2016; 2
Ghorbanpour, Sahu, Deshmukh, Borisov, Riemslag, Reinton (b0100) 2021; 179
DebRoy, Wei, Zuback, Mukherjee, Elmer, Milewski (b0005) 2018; 92
El Haddad, Smith, Topper (b0225) 1979; 101
Renzo, Sgambitterra, Maletta, Furgiuele, Biffi, Fiocchi (b0155) 2021; 44
Chang, Wang, Liang, Zhang (b0040) 2020; 181
Wang, Wang, Susmel (b0140) 2021; 152
El Khoukhi, Morel, Saintier, Bellett, Osmond, Le (b0170) 2019; 129
El Haddad (10.1016/j.ijfatigue.2023.107506_b0225) 1979; 101
Mower (10.1016/j.ijfatigue.2023.107506_b0110) 2016; 651
Zhang (10.1016/j.ijfatigue.2023.107506_b0145) 2019; 103
10.1016/j.ijfatigue.2023.107506_b0210
Kok (10.1016/j.ijfatigue.2023.107506_b0060) 2018; 139
El Khoukhi (10.1016/j.ijfatigue.2023.107506_b0170) 2019; 129
Liverani (10.1016/j.ijfatigue.2023.107506_b0115) 2017; 249
Romano (10.1016/j.ijfatigue.2023.107506_b0175) 2019; 125
Le (10.1016/j.ijfatigue.2023.107506_b0180) 2019; 214
Nadot (10.1016/j.ijfatigue.2023.107506_b0185) 2022; 154
Blinn (10.1016/j.ijfatigue.2023.107506_b0120) 2019; 124
Moeinfar (10.1016/j.ijfatigue.2023.107506_b0010) 2022; 16
Guerchais (10.1016/j.ijfatigue.2023.107506_b0205) 2015; 38
Li (10.1016/j.ijfatigue.2023.107506_b0055) 2021; 47
Balachandramurthi (10.1016/j.ijfatigue.2023.107506_b0095) 2020; 141
Koutiri (10.1016/j.ijfatigue.2023.107506_b0260) 2013; 47
Renzo (10.1016/j.ijfatigue.2023.107506_b0155) 2021; 44
10.1016/j.ijfatigue.2023.107506_b0215
Fergani (10.1016/j.ijfatigue.2023.107506_b0240) 2018; 41
Riemer (10.1016/j.ijfatigue.2023.107506_b0235) 2016; 2
Liang (10.1016/j.ijfatigue.2023.107506_b0130) 2022; 160
10.1016/j.ijfatigue.2023.107506_b0220
Bemfica (10.1016/j.ijfatigue.2023.107506_b0150) 2022; 163
Maconachie (10.1016/j.ijfatigue.2023.107506_b0035) 2020; 788
Le (10.1016/j.ijfatigue.2023.107506_b0270) 2016; 93
Flaceliere (10.1016/j.ijfatigue.2023.107506_b0265) 2004; 27
Liang (10.1016/j.ijfatigue.2023.107506_b0250) 2020; 136
Li (10.1016/j.ijfatigue.2023.107506_b0050) 2021; 883
Elangeswaran (10.1016/j.ijfatigue.2023.107506_b0075) 2019; 123
Zhong (10.1016/j.ijfatigue.2023.107506_b0015) 2016; 470
Rezaei (10.1016/j.ijfatigue.2023.107506_b0025) 2020; 162
Wang (10.1016/j.ijfatigue.2023.107506_b0135) 2021; 111
Dražić (10.1016/j.ijfatigue.2023.107506_b0190) 2016; 80
Suryawanshi (10.1016/j.ijfatigue.2023.107506_b0245) 2017; 696
Xu (10.1016/j.ijfatigue.2023.107506_b0085) 2021; 812
Riemer (10.1016/j.ijfatigue.2023.107506_b0230) 2014; 120
Xu (10.1016/j.ijfatigue.2023.107506_b0090) 2019; 767
Liang (10.1016/j.ijfatigue.2023.107506_b0160) 2022; 45
Shrestha (10.1016/j.ijfatigue.2023.107506_b0125) 2019; 28
Basquin (10.1016/j.ijfatigue.2023.107506_b0195) 1910; 10
Chang (10.1016/j.ijfatigue.2023.107506_b0040) 2020; 181
Wang (10.1016/j.ijfatigue.2023.107506_b0140) 2021; 152
Murakami (10.1016/j.ijfatigue.2023.107506_b0165) 2002
Sanaei (10.1016/j.ijfatigue.2023.107506_b0065) 2021; 117
Liang (10.1016/j.ijfatigue.2023.107506_b0255) 2021; 149
Wang (10.1016/j.ijfatigue.2023.107506_b0045) 2022; 30
Andreau (10.1016/j.ijfatigue.2023.107506_b0020) 2019; 264
Yadollahi (10.1016/j.ijfatigue.2023.107506_b0080) 2017; 94
Ghorbanpour (10.1016/j.ijfatigue.2023.107506_b0100) 2021; 179
Zheng (10.1016/j.ijfatigue.2023.107506_b0030) 2022; 831
DebRoy (10.1016/j.ijfatigue.2023.107506_b0005) 2018; 92
Bajaj (10.1016/j.ijfatigue.2023.107506_b0105) 2020; 772
Koutiri (10.1016/j.ijfatigue.2023.107506_b0200) 2013; 47
Becker (10.1016/j.ijfatigue.2023.107506_b0070) 2021; 219
References_xml – volume: 47
  start-page: 44
  year: 2013
  end-page: 57
  ident: b0260
  article-title: High cycle fatigue damage mechanisms in cast aluminium subject to complex loads
  publication-title: Int J Fatigue
– volume: 2
  start-page: 1229
  year: 2016
  end-page: 1236
  ident: b0235
  article-title: Crack Propagation in Additive Manufactured Materials and Structures
  publication-title: Procedia Struct Integr
– volume: 125
  start-page: 324
  year: 2019
  end-page: 341
  ident: b0175
  article-title: A new FE post-processor for probabilistic fatigue assessment in the presence of defects and its application to AM parts
  publication-title: Int J Fatigue
– volume: 41
  start-page: 1102
  year: 2018
  end-page: 1119
  ident: b0240
  article-title: Study of the effect of heat treatment on fatigue crack growth behaviour of 316L stainless steel produced by selective laser melting
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 120
  start-page: 15
  year: 2014
  end-page: 25
  ident: b0230
  article-title: On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting
  publication-title: Eng Fract Mech
– volume: 47
  start-page: 137
  year: 2013
  end-page: 147
  ident: b0200
  article-title: A probabilistic model for the high cycle fatigue behaviour of cast aluminium alloys subject to complex loads
  publication-title: Int J Fatigue
– volume: 139
  start-page: 565
  year: 2018
  end-page: 586
  ident: b0060
  article-title: Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review
  publication-title: Mater Des
– volume: 44
  start-page: 2625
  year: 2021
  end-page: 2642
  ident: b0155
  article-title: Multiaxial fatigue behavior of SLM Ti6Al4V alloy under different loading conditions
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 788
  year: 2020
  ident: b0035
  article-title: Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg
  publication-title: Mater Sci Eng A
– volume: 179
  year: 2021
  ident: b0100
  article-title: Effect of microstructure induced anisotropy on fatigue behaviour of functionally graded Inconel 718 fabricated by additive manufacturing
  publication-title: Mater Charact
– volume: 124
  start-page: 389
  year: 2019
  end-page: 399
  ident: b0120
  article-title: Investigation of the anisotropic fatigue behavior of additively manufactured structures made of AISI 316L with short-time procedures PhyBaL LIT and PhyBaL CHT
  publication-title: Int J Fatigue
– volume: 28
  start-page: 23
  year: 2019
  end-page: 38
  ident: b0125
  article-title: Fatigue behavior of additive manufactured 316L stainless steel parts: Effects of layer orientation and surface roughness
  publication-title: Addit Manuf
– volume: 181
  year: 2020
  ident: b0040
  article-title: On the texture and mechanical property anisotropy of Ti6Al4V alloy fabricated by powder-bed based laser additive manufacturing
  publication-title: Vacuum
– volume: 249
  start-page: 255
  year: 2017
  end-page: 263
  ident: b0115
  article-title: Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel
  publication-title: J Mater Process Technol
– volume: 152
  year: 2021
  ident: b0140
  article-title: Constant/variable amplitude multiaxial notch fatigue of additively manufactured AISI 316L
  publication-title: Int J Fatigue
– volume: 470
  start-page: 170
  year: 2016
  end-page: 178
  ident: b0015
  article-title: Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting
  publication-title: J Nucl Mater
– volume: 141
  year: 2020
  ident: b0095
  article-title: Anisotropic fatigue properties of Alloy 718 manufactured by Electron Beam Powder Bed Fusion
  publication-title: Int J Fatigue
– reference: Fousová M, Vojtěch D, Doubrava K, Daniel M, Lin CF. Influence of Inherent Surface and Internal Defects on Mechanical Properties of Additively Manufactured Ti6Al4V Alloy: Comparison between Selective Laser Melting and Electron Beam Melting. Mater 2018, Vol 11, Page 537 2018;11:537. https://doi.org/10.3390/MA11040537.
– volume: 47
  year: 2021
  ident: b0055
  article-title: Microstructure, mechanical properties and strengthening mechanisms of IN738LC alloy produced by Electron Beam Selective Melting
  publication-title: Addit Manuf
– volume: 129
  year: 2019
  ident: b0170
  article-title: Experimental investigation of the size effect in High Cycle Fatigue: role of the defect population in cast aluminium alloys
  publication-title: Int J Fatigue
– volume: 162
  year: 2020
  ident: b0025
  article-title: Microstructural and mechanical anisotropy of selective laser melted IN718 superalloy at room and high temperatures using small punch test
  publication-title: Mater Charact
– volume: 16
  start-page: 1029
  year: 2022
  end-page: 1068
  ident: b0010
  article-title: A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys
  publication-title: J Mater Res Technol
– volume: 214
  start-page: 410
  year: 2019
  end-page: 426
  ident: b0180
  article-title: Interpretation of the fatigue anisotropy of additively manufactured TA6V alloys via a fracture mechanics approach
  publication-title: Eng Fract Mech
– volume: 219
  year: 2021
  ident: b0070
  article-title: Fracture and fatigue in additively manufactured metals
  publication-title: Acta Mater
– reference: Kitagawa H, Takahashi S. Applicability of Fracture Mechanics to Very Small Cracks or the Cracks in the Early Stage. Proc 2nd Int Conf Mech Behav Mater 1976:627–39.
– volume: 30
  year: 2022
  ident: b0045
  article-title: Effects of laser scanning speed and building direction on the microstructure and mechanical properties of selective laser melted Inconel 718 superalloy
  publication-title: Mater Today Commun
– volume: 93
  start-page: 109
  year: 2016
  end-page: 121
  ident: b0270
  article-title: Simulation of the Kitagawa-Takahashi diagram using a probabilistic approach for cast Al-Si alloys under different multiaxial loads
  publication-title: Int J Fatigue
– volume: 103
  year: 2019
  ident: b0145
  article-title: Surface roughness effect on multiaxial fatigue behavior of additive manufactured metals and its modeling
  publication-title: Theor Appl Fract Mech
– volume: 163
  year: 2022
  ident: b0150
  article-title: Multiaxial fatigue of Inconel 718 produced by Selective Laser Melting at room and high temperature
  publication-title: Int J Fatigue
– volume: 92
  start-page: 112
  year: 2018
  end-page: 224
  ident: b0005
  article-title: Additive manufacturing of metallic components – Process, structure and properties
  publication-title: Prog Mater Sci
– volume: 160
  year: 2022
  ident: b0130
  article-title: High cycle fatigue behavior of 316L steel fabricated by laser powder bed fusion: Effects of surface defect and loading mode
  publication-title: Int J Fatigue
– volume: 136
  year: 2020
  ident: b0250
  article-title: A numerical investigation of the high cycle fatigue sensitivity to microstructure and defect
  publication-title: Int J Fatigue
– volume: 38
  start-page: 1087
  year: 2015
  end-page: 1104
  ident: b0205
  article-title: Influence of the microstructure and voids on the high-cycle fatigue strength of 316L stainless steel under multiaxial loading
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 27
  start-page: 1123
  year: 2004
  end-page: 1135
  ident: b0265
  article-title: Probabilistic approach in high-cycle multiaxial fatigue: volume and surface effects
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 767
  year: 2019
  ident: b0090
  article-title: The influence of building direction on the fatigue crack propagation behavior of Ti6Al4V alloy produced by selective laser melting
  publication-title: Mater Sci Eng A
– volume: 123
  start-page: 31
  year: 2019
  end-page: 39
  ident: b0075
  article-title: Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion
  publication-title: Int J Fatigue
– volume: 94
  start-page: 218
  year: 2017
  end-page: 235
  ident: b0080
  article-title: Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17–4 PH stainless steel
  publication-title: Int J Fatigue
– volume: 149
  year: 2021
  ident: b0255
  article-title: Numerical investigation of the surface and microstructure effects on the high cycle fatigue performance of additive manufactured stainless steel 316L
  publication-title: Int J Fatigue
– volume: 101
  start-page: 42
  year: 1979
  ident: b0225
  article-title: Fatigue Crack Propagation of Short Cracks
  publication-title: J Eng Mater Technol
– volume: 111
  year: 2021
  ident: b0135
  article-title: Effect of micro-defects on fatigue lifetime of additive manufactured 316L stainless steel under multiaxial loading
  publication-title: Theor Appl Fract Mech
– year: 2002
  ident: b0165
  article-title: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions
– volume: 45
  start-page: 1505
  year: 2022
  end-page: 1520
  ident: b0160
  article-title: Correlation between microstructure and cyclic behavior of 316L stainless steel obtained by Laser Powder Bed Fusion
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 80
  start-page: 37
  year: 2016
  end-page: 45
  ident: b0190
  article-title: Estimation of Feret’s diameter from pixel coverage representation of a shape
  publication-title: Pattern Recognit Lett
– volume: 696
  start-page: 113
  year: 2017
  end-page: 121
  ident: b0245
  article-title: Mechanical behavior of selective laser melted 316L stainless steel
  publication-title: Mater Sci Eng A
– volume: 10
  start-page: 625
  year: 1910
  end-page: 630
  ident: b0195
  article-title: The Exponential Law of Endurance Tests
  publication-title: Am Soc Test Mater Proc
– volume: 651
  start-page: 198
  year: 2016
  end-page: 213
  ident: b0110
  article-title: Mechanical behavior of additive manufactured, powder-bed laser-fused materials
  publication-title: Mater Sci Eng A
– volume: 154
  year: 2022
  ident: b0185
  article-title: Fatigue from Defect: Influence of Size, Type, Position
  publication-title: Morphology and Loading Int J Fatigue
– volume: 883
  year: 2021
  ident: b0050
  article-title: Microstructures and mechanical properties evolution of IN939 alloy during electron beam selective melting process
  publication-title: J Alloys Compd
– volume: 264
  start-page: 21
  year: 2019
  end-page: 31
  ident: b0020
  article-title: Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting
  publication-title: J Mater Process Technol
– volume: 117
  year: 2021
  ident: b0065
  article-title: Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review
  publication-title: Prog Mater Sci
– volume: 772
  year: 2020
  ident: b0105
  article-title: Steels in additive manufacturing: A review of their microstructure and properties
  publication-title: Mater Sci Eng A
– volume: 831
  year: 2022
  ident: b0030
  article-title: Microstructure and anisotropic mechanical properties of selective laser melted Ti6Al4V alloy under different scanning strategies
  publication-title: Mater Sci Eng A
– volume: 812
  year: 2021
  ident: b0085
  article-title: Fatigue performance and crack propagation behavior of selective laser melted AlSi10Mg in 0°, 15°, 45° and 90° building directions
  publication-title: Mater Sci Eng A
– reference: Roirand H, Hor A, Malard B, Saintier N. Effect of laser-scan strategy on microstructure and fatigue properties of 316L additively manufactured stainless steel 2022:1–17. https://doi.org/10.1111/ffe.13845.
– volume: 120
  start-page: 15
  year: 2014
  ident: 10.1016/j.ijfatigue.2023.107506_b0230
  article-title: On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2014.03.008
– volume: 92
  start-page: 112
  year: 2018
  ident: 10.1016/j.ijfatigue.2023.107506_b0005
  article-title: Additive manufacturing of metallic components – Process, structure and properties
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2017.10.001
– volume: 16
  start-page: 1029
  year: 2022
  ident: 10.1016/j.ijfatigue.2023.107506_b0010
  article-title: A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2021.12.039
– volume: 179
  year: 2021
  ident: 10.1016/j.ijfatigue.2023.107506_b0100
  article-title: Effect of microstructure induced anisotropy on fatigue behaviour of functionally graded Inconel 718 fabricated by additive manufacturing
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2021.111350
– volume: 80
  start-page: 37
  year: 2016
  ident: 10.1016/j.ijfatigue.2023.107506_b0190
  article-title: Estimation of Feret’s diameter from pixel coverage representation of a shape
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2016.04.021
– volume: 219
  year: 2021
  ident: 10.1016/j.ijfatigue.2023.107506_b0070
  article-title: Fracture and fatigue in additively manufactured metals
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2021.117240
– volume: 152
  year: 2021
  ident: 10.1016/j.ijfatigue.2023.107506_b0140
  article-title: Constant/variable amplitude multiaxial notch fatigue of additively manufactured AISI 316L
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2021.106412
– volume: 788
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107506_b0035
  article-title: Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2020.139445
– volume: 47
  year: 2021
  ident: 10.1016/j.ijfatigue.2023.107506_b0055
  article-title: Microstructure, mechanical properties and strengthening mechanisms of IN738LC alloy produced by Electron Beam Selective Melting
  publication-title: Addit Manuf
– volume: 103
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107506_b0145
  article-title: Surface roughness effect on multiaxial fatigue behavior of additive manufactured metals and its modeling
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2019.102260
– volume: 123
  start-page: 31
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107506_b0075
  article-title: Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2019.01.013
– volume: 214
  start-page: 410
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107506_b0180
  article-title: Interpretation of the fatigue anisotropy of additively manufactured TA6V alloys via a fracture mechanics approach
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2019.03.048
– volume: 27
  start-page: 1123
  year: 2004
  ident: 10.1016/j.ijfatigue.2023.107506_b0265
  article-title: Probabilistic approach in high-cycle multiaxial fatigue: volume and surface effects
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/j.1460-2695.2004.00823.x
– volume: 470
  start-page: 170
  year: 2016
  ident: 10.1016/j.ijfatigue.2023.107506_b0015
  article-title: Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting
  publication-title: J Nucl Mater
  doi: 10.1016/j.jnucmat.2015.12.034
– volume: 651
  start-page: 198
  year: 2016
  ident: 10.1016/j.ijfatigue.2023.107506_b0110
  article-title: Mechanical behavior of additive manufactured, powder-bed laser-fused materials
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2015.10.068
– volume: 141
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107506_b0095
  article-title: Anisotropic fatigue properties of Alloy 718 manufactured by Electron Beam Powder Bed Fusion
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2020.105898
– volume: 831
  year: 2022
  ident: 10.1016/j.ijfatigue.2023.107506_b0030
  article-title: Microstructure and anisotropic mechanical properties of selective laser melted Ti6Al4V alloy under different scanning strategies
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2021.142236
– volume: 45
  start-page: 1505
  year: 2022
  ident: 10.1016/j.ijfatigue.2023.107506_b0160
  article-title: Correlation between microstructure and cyclic behavior of 316L stainless steel obtained by Laser Powder Bed Fusion
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.13684
– volume: 111
  year: 2021
  ident: 10.1016/j.ijfatigue.2023.107506_b0135
  article-title: Effect of micro-defects on fatigue lifetime of additive manufactured 316L stainless steel under multiaxial loading
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2020.102849
– ident: 10.1016/j.ijfatigue.2023.107506_b0220
– ident: 10.1016/j.ijfatigue.2023.107506_b0215
  doi: 10.3390/ma11040537
– volume: 94
  start-page: 218
  year: 2017
  ident: 10.1016/j.ijfatigue.2023.107506_b0080
  article-title: Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17–4 PH stainless steel
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.03.014
– volume: 38
  start-page: 1087
  year: 2015
  ident: 10.1016/j.ijfatigue.2023.107506_b0205
  article-title: Influence of the microstructure and voids on the high-cycle fatigue strength of 316L stainless steel under multiaxial loading
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.12304
– volume: 154
  year: 2022
  ident: 10.1016/j.ijfatigue.2023.107506_b0185
  article-title: Fatigue from Defect: Influence of Size, Type, Position
  publication-title: Morphology and Loading Int J Fatigue
– volume: 125
  start-page: 324
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107506_b0175
  article-title: A new FE post-processor for probabilistic fatigue assessment in the presence of defects and its application to AM parts
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2019.04.008
– volume: 772
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107506_b0105
  article-title: Steels in additive manufacturing: A review of their microstructure and properties
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2019.138633
– volume: 124
  start-page: 389
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107506_b0120
  article-title: Investigation of the anisotropic fatigue behavior of additively manufactured structures made of AISI 316L with short-time procedures PhyBaL LIT and PhyBaL CHT
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2019.03.022
– volume: 162
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107506_b0025
  article-title: Microstructural and mechanical anisotropy of selective laser melted IN718 superalloy at room and high temperatures using small punch test
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2020.110200
– volume: 696
  start-page: 113
  year: 2017
  ident: 10.1016/j.ijfatigue.2023.107506_b0245
  article-title: Mechanical behavior of selective laser melted 316L stainless steel
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2017.04.058
– volume: 47
  start-page: 137
  year: 2013
  ident: 10.1016/j.ijfatigue.2023.107506_b0200
  article-title: A probabilistic model for the high cycle fatigue behaviour of cast aluminium alloys subject to complex loads
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2012.08.004
– volume: 129
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107506_b0170
  article-title: Experimental investigation of the size effect in High Cycle Fatigue: role of the defect population in cast aluminium alloys
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2019.105222
– volume: 149
  year: 2021
  ident: 10.1016/j.ijfatigue.2023.107506_b0255
  article-title: Numerical investigation of the surface and microstructure effects on the high cycle fatigue performance of additive manufactured stainless steel 316L
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2021.106273
– volume: 181
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107506_b0040
  article-title: On the texture and mechanical property anisotropy of Ti6Al4V alloy fabricated by powder-bed based laser additive manufacturing
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2020.109732
– volume: 812
  year: 2021
  ident: 10.1016/j.ijfatigue.2023.107506_b0085
  article-title: Fatigue performance and crack propagation behavior of selective laser melted AlSi10Mg in 0°, 15°, 45° and 90° building directions
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2021.141141
– volume: 47
  start-page: 44
  year: 2013
  ident: 10.1016/j.ijfatigue.2023.107506_b0260
  article-title: High cycle fatigue damage mechanisms in cast aluminium subject to complex loads
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2012.07.008
– volume: 767
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107506_b0090
  article-title: The influence of building direction on the fatigue crack propagation behavior of Ti6Al4V alloy produced by selective laser melting
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2019.138409
– volume: 160
  year: 2022
  ident: 10.1016/j.ijfatigue.2023.107506_b0130
  article-title: High cycle fatigue behavior of 316L steel fabricated by laser powder bed fusion: Effects of surface defect and loading mode
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2022.106843
– year: 2002
  ident: 10.1016/j.ijfatigue.2023.107506_b0165
– volume: 93
  start-page: 109
  year: 2016
  ident: 10.1016/j.ijfatigue.2023.107506_b0270
  article-title: Simulation of the Kitagawa-Takahashi diagram using a probabilistic approach for cast Al-Si alloys under different multiaxial loads
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.08.014
– volume: 101
  start-page: 42
  year: 1979
  ident: 10.1016/j.ijfatigue.2023.107506_b0225
  article-title: Fatigue Crack Propagation of Short Cracks
  publication-title: J Eng Mater Technol
  doi: 10.1115/1.3443647
– ident: 10.1016/j.ijfatigue.2023.107506_b0210
  doi: 10.1111/ffe.13845
– volume: 883
  year: 2021
  ident: 10.1016/j.ijfatigue.2023.107506_b0050
  article-title: Microstructures and mechanical properties evolution of IN939 alloy during electron beam selective melting process
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2021.160934
– volume: 264
  start-page: 21
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107506_b0020
  article-title: Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2018.08.049
– volume: 139
  start-page: 565
  year: 2018
  ident: 10.1016/j.ijfatigue.2023.107506_b0060
  article-title: Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.11.021
– volume: 2
  start-page: 1229
  year: 2016
  ident: 10.1016/j.ijfatigue.2023.107506_b0235
  article-title: Crack Propagation in Additive Manufactured Materials and Structures
  publication-title: Procedia Struct Integr
  doi: 10.1016/j.prostr.2016.06.157
– volume: 136
  year: 2020
  ident: 10.1016/j.ijfatigue.2023.107506_b0250
  article-title: A numerical investigation of the high cycle fatigue sensitivity to microstructure and defect
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2020.105541
– volume: 117
  year: 2021
  ident: 10.1016/j.ijfatigue.2023.107506_b0065
  article-title: Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2020.100724
– volume: 44
  start-page: 2625
  year: 2021
  ident: 10.1016/j.ijfatigue.2023.107506_b0155
  article-title: Multiaxial fatigue behavior of SLM Ti6Al4V alloy under different loading conditions
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.13518
– volume: 163
  year: 2022
  ident: 10.1016/j.ijfatigue.2023.107506_b0150
  article-title: Multiaxial fatigue of Inconel 718 produced by Selective Laser Melting at room and high temperature
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2022.107108
– volume: 30
  year: 2022
  ident: 10.1016/j.ijfatigue.2023.107506_b0045
  article-title: Effects of laser scanning speed and building direction on the microstructure and mechanical properties of selective laser melted Inconel 718 superalloy
  publication-title: Mater Today Commun
– volume: 28
  start-page: 23
  year: 2019
  ident: 10.1016/j.ijfatigue.2023.107506_b0125
  article-title: Fatigue behavior of additive manufactured 316L stainless steel parts: Effects of layer orientation and surface roughness
  publication-title: Addit Manuf
– volume: 41
  start-page: 1102
  year: 2018
  ident: 10.1016/j.ijfatigue.2023.107506_b0240
  article-title: Study of the effect of heat treatment on fatigue crack growth behaviour of 316L stainless steel produced by selective laser melting
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.12755
– volume: 249
  start-page: 255
  year: 2017
  ident: 10.1016/j.ijfatigue.2023.107506_b0115
  article-title: Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2017.05.042
– volume: 10
  start-page: 625
  year: 1910
  ident: 10.1016/j.ijfatigue.2023.107506_b0195
  article-title: The Exponential Law of Endurance Tests
  publication-title: Am Soc Test Mater Proc
SSID ssj0009075
Score 2.4603155
Snippet •Experimental torsion and bending fatigue strengths of 90°, 45°, and 0° LPBF building direction were determined.•Kitagawa diagrams were provided in bending and...
The present study aims to investigate the high cycle fatigue (HCF) performance of steel 316L fabricated by the laser powder bed fusion (LPBF) process. Bending...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 107506
SubjectTerms Bending and torsion
Building direction
High cycle fatigue
Laser powder bed fusion
Physics
Stainless steel 316L
Title Effects of building direction and loading mode on the high cycle fatigue strength of the laser powder bed fusion 316L
URI https://dx.doi.org/10.1016/j.ijfatigue.2023.107506
https://hal.science/hal-04184608
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-3452
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009075
  issn: 0142-1123
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-3452
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009075
  issn: 0142-1123
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-3452
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009075
  issn: 0142-1123
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-3452
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009075
  issn: 0142-1123
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-3452
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009075
  issn: 0142-1123
  databaseCode: AKRWK
  dateStart: 19790101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR27TsMw0CplgQHxFOVRWYg1NE8nZasqqgClE5W6WbVj06IqqUoKYuHbuYuTQgfUgSnKyT7bZ_se9vmOkGsBRg_D9O3CSyLL98LAEuNAWNoNEqF8CfsPb3SfBiwe-g-jYFQj3eotDLpVlrzf8PSCW5eQVknN1nw6baFbElgvoBF45j4OX7D7DN36br5-3DzaJtguFraw9JqP1_RVw_jxiASziAMU5Cf7S0JtTaqz1kL29PbJXqk00o7p1wGpqfSQ7P4KJXhEliYM8RvNNBVlqmtqxgaUp-M0obOs8JenmPyGAgxUP4rRiqn8BKy07CPF1yPpSz5BTFgE1Gu1oPPsI4GPUAnVSzxho57D-sdk2Lt77sZWmVLBkp7fzi3Q_uxAwK5DKeQ52gkxQJzDXFskmN1AjYFxura2dRIypkMpYEcn0H97HAlPSu-E1NMsVaeE4o1fBDiUBJ3K1YAQTEXhhhHzQyVF2CCsIiOXZbxxTHsx45Vj2Stf0Z8j_bmhf4PYq4pzE3Jjc5Xbap742urhIBg2V76CmV01hfG2406fI8z2wQBmdvTunP2nhXOyg3_GT_KC1PPFUl2CLpOLZrFYm2S7c_8YD74BNs7xpQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbYdgAOiKd4EyGu1fpMC7cJgToYO4G0W7SkCWxC3QQbiH-PvaSDHdAOnCqlsZs6ie0kzmeAC4mLHk7p22VUZF4cpYkn-4n0TJgUUscK5x-d6D50ef4U3_WS3gpcV3dhKKzS6X6r02fa2pU0nTSb48GgSWFJuHpBjyCy53E1aMQJ6uQ6NFrt-7z7g71r8XapvkcEC2Feg6FBEdAuCSUSx1I0ofwvI1V7qbZbZ-bndhM2nN_IWrZpW7Ciy21Y_4UmuANTi0T8zkaGSZftmtnfQ-Gzflmw19EsZJ5R_huGZej9MQIsZuoLuTLXRkYXSMrnyQtxoiroYes3Nh59FviQumBmSptsLAp4Zxeebm8er3PPZVXwVBRfTjx0AP1E4sQjQxQFJkgJIy7goS8LSnCg-6g7Q9_4pkg5N6mSOKkLbL_fz2SkVLQH9XJU6n1gdOiXIQ-t0K0KDTLE1aIM04zHqVYyPQBeiVEoBzlOmS9eRRVbNhRz-QuSv7DyPwB_Tji2qBvLSa6qfhILA0igbVhOfI49O_8UQW7nrY6gMj_GNTD3s4_g8D9fOIPV_PGhIzrt7v0RrNEbGzZ5DPXJ21SfoGszkadu6H4Dcw_0UA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+building+direction+and+loading+mode+on+the+high+cycle+fatigue+strength+of+the+laser+powder+bed+fusion+316L&rft.jtitle=International+journal+of+fatigue&rft.au=Liang%2C+Xiaoyu&rft.au=Hor%2C+Anis&rft.au=Robert%2C+Camille&rft.au=Lin%2C+Feng&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=170&rft_id=info:doi/10.1016%2Fj.ijfatigue.2023.107506&rft.externalDocID=S0142112323000075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon