Effects of building direction and loading mode on the high cycle fatigue strength of the laser powder bed fusion 316L
•Experimental torsion and bending fatigue strengths of 90°, 45°, and 0° LPBF building direction were determined.•Kitagawa diagrams were provided in bending and torsion loading at different building directions.•Bending fatigue behavior is very sensitive to building direction compared to torsion.•Tors...
Saved in:
Published in | International journal of fatigue Vol. 170; p. 107506 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2023
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0142-1123 1879-3452 |
DOI | 10.1016/j.ijfatigue.2023.107506 |
Cover
Abstract | •Experimental torsion and bending fatigue strengths of 90°, 45°, and 0° LPBF building direction were determined.•Kitagawa diagrams were provided in bending and torsion loading at different building directions.•Bending fatigue behavior is very sensitive to building direction compared to torsion.•Torsion fatigue behavior of LPBF 316L is not sensitive to lack-of-fusion defects.
The present study aims to investigate the high cycle fatigue (HCF) performance of steel 316L fabricated by the laser powder bed fusion (LPBF) process. Bending and torsional fatigue test specimens built horizontally (0°), inclined (45°), and vertically (90°) have been prepared and tested. Stress-relieving heat treatment was carried out to reduce the residual stresses. The 90°, 45°, and 0° built near-net-shape and polished specimens have fatigue strengths between 140 and 250 MPa under bending loading and 150 and 170 MPa under torsion loading. This difference illustrates a more pronounced defect sensitivity in bending compared to torsion. Fractographical analyses revealed the fatigue failure mechanisms. As the building direction inclines from vertical to horizontal, the effective areas of inherent defects diminish contributing to improving fatigue strength under bending loading whilst the differences from building directions in torsional fatigue strengths are minor. Microstructural features are seen to compete with inherent defects to affect fatigue performance in the condition that the effective defect sizes are close to the critical fatigue crack size. |
---|---|
AbstractList | •Experimental torsion and bending fatigue strengths of 90°, 45°, and 0° LPBF building direction were determined.•Kitagawa diagrams were provided in bending and torsion loading at different building directions.•Bending fatigue behavior is very sensitive to building direction compared to torsion.•Torsion fatigue behavior of LPBF 316L is not sensitive to lack-of-fusion defects.
The present study aims to investigate the high cycle fatigue (HCF) performance of steel 316L fabricated by the laser powder bed fusion (LPBF) process. Bending and torsional fatigue test specimens built horizontally (0°), inclined (45°), and vertically (90°) have been prepared and tested. Stress-relieving heat treatment was carried out to reduce the residual stresses. The 90°, 45°, and 0° built near-net-shape and polished specimens have fatigue strengths between 140 and 250 MPa under bending loading and 150 and 170 MPa under torsion loading. This difference illustrates a more pronounced defect sensitivity in bending compared to torsion. Fractographical analyses revealed the fatigue failure mechanisms. As the building direction inclines from vertical to horizontal, the effective areas of inherent defects diminish contributing to improving fatigue strength under bending loading whilst the differences from building directions in torsional fatigue strengths are minor. Microstructural features are seen to compete with inherent defects to affect fatigue performance in the condition that the effective defect sizes are close to the critical fatigue crack size. The present study aims to investigate the high cycle fatigue (HCF) performance of steel 316L fabricated by the laser powder bed fusion (LPBF) process. Bending and torsional fatigue test specimens built horizontally (0°), inclined (45°), and vertically (90°) have been prepared and tested. Stress-relieving heat treatment was carried out to reduce the residual stresses. The 90°, 45°, and 0° built near-net-shape and polished specimens have fatigue strengths between 140 and 250 MPa under bending loading and 150 and 170 MPa under torsion loading. This difference illustrates a more pronounced defect sensitivity in bending compared to torsion. Fractographical analyses revealed the fatigue failure mechanisms. As the building direction inclines from vertical to horizontal, the effective areas of inherent defects diminish contributing to improving fatigue strength under bending loading whilst the differences from building directions in torsional fatigue strengths are minor. Microstructural features are seen to compete with inherent defects to affect fatigue performance in the condition that the effective defect sizes are close to the critical fatigue crack size. |
ArticleNumber | 107506 |
Author | Liang, Xiaoyu Hor, Anis Robert, Camille Lin, Feng Morel, Franck |
Author_xml | – sequence: 1 givenname: Xiaoyu surname: Liang fullname: Liang, Xiaoyu email: liang.xiaoyu@outlook.com organization: Department of Mechanical Engineering, Tsinghua University, 100084 Beijing, China – sequence: 2 givenname: Anis surname: Hor fullname: Hor, Anis organization: Institut Clément Ader (ICA), Université de Toulouse, CNRS, ISAE-SUPAERO, UPS, INSA, Mines-Albi, 3 rue Caroline Aigle, 31400 Toulouse, France – sequence: 3 givenname: Camille surname: Robert fullname: Robert, Camille organization: Angers Laboratory of Mechanics, Manufacturing Process and Innovation (LAMPA), Arts et Métiers Campus Angers, 49035 Angers Cedex, France – sequence: 4 givenname: Feng surname: Lin fullname: Lin, Feng organization: Department of Mechanical Engineering, Tsinghua University, 100084 Beijing, China – sequence: 5 givenname: Franck surname: Morel fullname: Morel, Franck organization: Angers Laboratory of Mechanics, Manufacturing Process and Innovation (LAMPA), Arts et Métiers Campus Angers, 49035 Angers Cedex, France |
BackLink | https://hal.science/hal-04184608$$DView record in HAL |
BookMark | eNqNkTtPwzAYRS1UJErhN-CVIeVzXk4GhqoqFKkSC8yW40fiKo0rOy3qv8chVQcWmCxd3XMtH9-iSWc7hdADgTkBkj9t52areW_qg5rHECchpRnkV2hKClpGSZrFEzQFksYRIXFyg2693wJAGWpTdFhprUTvsdW4OphWmq7G0riQGdth3kncWv6T7qxUOGR9o3Bj6gaLk2gVPt-Nfe9UV_fNsDRUWu6Vw3v7JcNRKYn1wQ-TCck3d-ha89ar-_M5Q58vq4_lOtq8v74tF5tIJGnZRxlQyCpS5nFZQkI0obRMAx9DJWkBmeJpTmPQoCXNc01FldFChvcAL6pEiGSGHsfdhrds78yOuxOz3LD1YsOGDFJSpDkURxK6dOwKZ713Sl8AAmwwzbbsYpoNptloOpDPv0hhej746x037T_4xciroOJolGNeGNUJNf4Dk9b8ufEN5gShMA |
CitedBy_id | crossref_primary_10_1111_ffe_14490 crossref_primary_10_1038_s41598_025_89003_2 crossref_primary_10_1016_j_ijfatigue_2023_107665 crossref_primary_10_1016_j_ijmecsci_2024_109219 crossref_primary_10_1016_j_jallcom_2023_172804 crossref_primary_10_1080_17452759_2024_2302556 crossref_primary_10_1111_ffe_14312 crossref_primary_10_1016_j_ijfatigue_2023_107835 crossref_primary_10_3390_ma17235861 crossref_primary_10_1016_j_matdes_2024_113077 crossref_primary_10_3390_met13101762 |
Cites_doi | 10.1016/j.engfracmech.2014.03.008 10.1016/j.pmatsci.2017.10.001 10.1016/j.jmrt.2021.12.039 10.1016/j.matchar.2021.111350 10.1016/j.patrec.2016.04.021 10.1016/j.actamat.2021.117240 10.1016/j.ijfatigue.2021.106412 10.1016/j.msea.2020.139445 10.1016/j.tafmec.2019.102260 10.1016/j.ijfatigue.2019.01.013 10.1016/j.engfracmech.2019.03.048 10.1111/j.1460-2695.2004.00823.x 10.1016/j.jnucmat.2015.12.034 10.1016/j.msea.2015.10.068 10.1016/j.ijfatigue.2020.105898 10.1016/j.msea.2021.142236 10.1111/ffe.13684 10.1016/j.tafmec.2020.102849 10.3390/ma11040537 10.1016/j.ijfatigue.2016.03.014 10.1111/ffe.12304 10.1016/j.ijfatigue.2019.04.008 10.1016/j.msea.2019.138633 10.1016/j.ijfatigue.2019.03.022 10.1016/j.matchar.2020.110200 10.1016/j.msea.2017.04.058 10.1016/j.ijfatigue.2012.08.004 10.1016/j.ijfatigue.2019.105222 10.1016/j.ijfatigue.2021.106273 10.1016/j.vacuum.2020.109732 10.1016/j.msea.2021.141141 10.1016/j.ijfatigue.2012.07.008 10.1016/j.msea.2019.138409 10.1016/j.ijfatigue.2022.106843 10.1016/j.ijfatigue.2016.08.014 10.1115/1.3443647 10.1111/ffe.13845 10.1016/j.jallcom.2021.160934 10.1016/j.jmatprotec.2018.08.049 10.1016/j.matdes.2017.11.021 10.1016/j.prostr.2016.06.157 10.1016/j.ijfatigue.2020.105541 10.1016/j.pmatsci.2020.100724 10.1111/ffe.13518 10.1016/j.ijfatigue.2022.107108 10.1111/ffe.12755 10.1016/j.jmatprotec.2017.05.042 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1016/j.ijfatigue.2023.107506 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-3452 |
ExternalDocumentID | oai_HAL_hal_04184608v1 10_1016_j_ijfatigue_2023_107506 S0142112323000075 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABCJ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 1XC AGCQF |
ID | FETCH-LOGICAL-c349t-50705b196299031f1779431620bd7805ea46720f0fd766f7cb578dfec0a8b3cc3 |
IEDL.DBID | .~1 |
ISSN | 0142-1123 |
IngestDate | Fri Sep 12 12:42:13 EDT 2025 Wed Oct 01 02:37:21 EDT 2025 Thu Apr 24 23:12:35 EDT 2025 Fri Feb 23 02:38:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Building direction Laser powder bed fusion Stainless steel 316L High cycle fatigue Bending and torsion |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-50705b196299031f1779431620bd7805ea46720f0fd766f7cb578dfec0a8b3cc3 |
ParticipantIDs | hal_primary_oai_HAL_hal_04184608v1 crossref_primary_10_1016_j_ijfatigue_2023_107506 crossref_citationtrail_10_1016_j_ijfatigue_2023_107506 elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2023_107506 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-00 2023-05 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationTitle | International journal of fatigue |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Fousová M, Vojtěch D, Doubrava K, Daniel M, Lin CF. Influence of Inherent Surface and Internal Defects on Mechanical Properties of Additively Manufactured Ti6Al4V Alloy: Comparison between Selective Laser Melting and Electron Beam Melting. Mater 2018, Vol 11, Page 537 2018;11:537. https://doi.org/10.3390/MA11040537. Bajaj, Hariharan, Kini, Kürnsteiner, Raabe, Jägle (b0105) 2020; 772 Becker, Kumar, Ramamurty (b0070) 2021; 219 Koutiri, Bellett, Morel, Augustins, Adrien (b0260) 2013; 47 Moeinfar, Khodabakhshi, Kashani-bozorg, Mohammadi, Gerlich (b0010) 2022; 16 Balachandramurthi, Moverare, Hansson, Pederson (b0095) 2020; 141 Suryawanshi, Prashanth, Ramamurty (b0245) 2017; 696 Bemfica, Nascimento, Fessler, Araújo, Castro (b0150) 2022; 163 Li, Kan, Zhang, Li, Liang, Yu (b0055) 2021; 47 Liang, Hor, Robert, Salem, Lin, Morel (b0130) 2022; 160 Romano, Miccoli, Beretta (b0175) 2019; 125 Mower, Long (b0110) 2016; 651 Riemer, Leuders, Thöne, Richard, Tröster, Niendorf (b0230) 2014; 120 Fergani, Bratli Wold, Berto, Brotan, Bambach (b0240) 2018; 41 Xu, Liu, Wang (b0085) 2021; 812 Li, Liang, Yu, Li, Kan, Lin (b0050) 2021; 883 Liang, Hor, Robert, Salem, Morel (b0160) 2022; 45 Xu, Liu, Wang (b0090) 2019; 767 Kok, Tan, Wang, Nai, Loh, Liu (b0060) 2018; 139 Andreau, Koutiri, Peyre, Penot, Saintier, Pessard (b0020) 2019; 264 Sanaei, Fatemi (b0065) 2021; 117 Basquin (b0195) 1910; 10 Roirand H, Hor A, Malard B, Saintier N. Effect of laser-scan strategy on microstructure and fatigue properties of 316L additively manufactured stainless steel 2022:1–17. https://doi.org/10.1111/ffe.13845. Flaceliere, Morel (b0265) 2004; 27 Le, Pessard, Morel, Edy (b0180) 2019; 214 Liverani, Toschi, Ceschini, Fortunato (b0115) 2017; 249 Shrestha, Simsiriwong, Shamsaei (b0125) 2019; 28 Murakami (b0165) 2002 Nadot (b0185) 2022; 154 Wang, Chen, Liu, Zhao, Xu, Hu (b0045) 2022; 30 Dražić, Sladoje, Lindblad (b0190) 2016; 80 Kitagawa H, Takahashi S. Applicability of Fracture Mechanics to Very Small Cracks or the Cracks in the Early Stage. Proc 2nd Int Conf Mech Behav Mater 1976:627–39. Elangeswaran, Cutolo, Muralidharan, de Formanoir, Berto, Vanmeensel (b0075) 2019; 123 Guerchais, Morel, Saintier, Robert (b0205) 2015; 38 Wang, Su (b0135) 2021; 111 Rezaei, Rezaeian, Kermanpur, Badrossamay, Foroozmehr, Marashi (b0025) 2020; 162 Zhang, Fatemi (b0145) 2019; 103 Le, Morel, Bellett, Saintier, Osmond (b0270) 2016; 93 Maconachie, Leary, Zhang, Medvedev, Sarker, Ruan (b0035) 2020; 788 Liang, Robert, Hor, Morel (b0250) 2020; 136 Koutiri, Bellett, Morel, Pessard (b0200) 2013; 47 Yadollahi, Shamsaei, Thompson, Elwany, Bian (b0080) 2017; 94 Zhong, Liu, Wikman, Cui, Shen (b0015) 2016; 470 Zheng, Jin, Bai, Yang, Ni, Lu (b0030) 2022; 831 Blinn, Ley, Buschhorn, Teutsch, Beck (b0120) 2019; 124 Liang, Robert, Hor, Morel (b0255) 2021; 149 Riemer, Richard (b0235) 2016; 2 Ghorbanpour, Sahu, Deshmukh, Borisov, Riemslag, Reinton (b0100) 2021; 179 DebRoy, Wei, Zuback, Mukherjee, Elmer, Milewski (b0005) 2018; 92 El Haddad, Smith, Topper (b0225) 1979; 101 Renzo, Sgambitterra, Maletta, Furgiuele, Biffi, Fiocchi (b0155) 2021; 44 Chang, Wang, Liang, Zhang (b0040) 2020; 181 Wang, Wang, Susmel (b0140) 2021; 152 El Khoukhi, Morel, Saintier, Bellett, Osmond, Le (b0170) 2019; 129 El Haddad (10.1016/j.ijfatigue.2023.107506_b0225) 1979; 101 Mower (10.1016/j.ijfatigue.2023.107506_b0110) 2016; 651 Zhang (10.1016/j.ijfatigue.2023.107506_b0145) 2019; 103 10.1016/j.ijfatigue.2023.107506_b0210 Kok (10.1016/j.ijfatigue.2023.107506_b0060) 2018; 139 El Khoukhi (10.1016/j.ijfatigue.2023.107506_b0170) 2019; 129 Liverani (10.1016/j.ijfatigue.2023.107506_b0115) 2017; 249 Romano (10.1016/j.ijfatigue.2023.107506_b0175) 2019; 125 Le (10.1016/j.ijfatigue.2023.107506_b0180) 2019; 214 Nadot (10.1016/j.ijfatigue.2023.107506_b0185) 2022; 154 Blinn (10.1016/j.ijfatigue.2023.107506_b0120) 2019; 124 Moeinfar (10.1016/j.ijfatigue.2023.107506_b0010) 2022; 16 Guerchais (10.1016/j.ijfatigue.2023.107506_b0205) 2015; 38 Li (10.1016/j.ijfatigue.2023.107506_b0055) 2021; 47 Balachandramurthi (10.1016/j.ijfatigue.2023.107506_b0095) 2020; 141 Koutiri (10.1016/j.ijfatigue.2023.107506_b0260) 2013; 47 Renzo (10.1016/j.ijfatigue.2023.107506_b0155) 2021; 44 10.1016/j.ijfatigue.2023.107506_b0215 Fergani (10.1016/j.ijfatigue.2023.107506_b0240) 2018; 41 Riemer (10.1016/j.ijfatigue.2023.107506_b0235) 2016; 2 Liang (10.1016/j.ijfatigue.2023.107506_b0130) 2022; 160 10.1016/j.ijfatigue.2023.107506_b0220 Bemfica (10.1016/j.ijfatigue.2023.107506_b0150) 2022; 163 Maconachie (10.1016/j.ijfatigue.2023.107506_b0035) 2020; 788 Le (10.1016/j.ijfatigue.2023.107506_b0270) 2016; 93 Flaceliere (10.1016/j.ijfatigue.2023.107506_b0265) 2004; 27 Liang (10.1016/j.ijfatigue.2023.107506_b0250) 2020; 136 Li (10.1016/j.ijfatigue.2023.107506_b0050) 2021; 883 Elangeswaran (10.1016/j.ijfatigue.2023.107506_b0075) 2019; 123 Zhong (10.1016/j.ijfatigue.2023.107506_b0015) 2016; 470 Rezaei (10.1016/j.ijfatigue.2023.107506_b0025) 2020; 162 Wang (10.1016/j.ijfatigue.2023.107506_b0135) 2021; 111 Dražić (10.1016/j.ijfatigue.2023.107506_b0190) 2016; 80 Suryawanshi (10.1016/j.ijfatigue.2023.107506_b0245) 2017; 696 Xu (10.1016/j.ijfatigue.2023.107506_b0085) 2021; 812 Riemer (10.1016/j.ijfatigue.2023.107506_b0230) 2014; 120 Xu (10.1016/j.ijfatigue.2023.107506_b0090) 2019; 767 Liang (10.1016/j.ijfatigue.2023.107506_b0160) 2022; 45 Shrestha (10.1016/j.ijfatigue.2023.107506_b0125) 2019; 28 Basquin (10.1016/j.ijfatigue.2023.107506_b0195) 1910; 10 Chang (10.1016/j.ijfatigue.2023.107506_b0040) 2020; 181 Wang (10.1016/j.ijfatigue.2023.107506_b0140) 2021; 152 Murakami (10.1016/j.ijfatigue.2023.107506_b0165) 2002 Sanaei (10.1016/j.ijfatigue.2023.107506_b0065) 2021; 117 Liang (10.1016/j.ijfatigue.2023.107506_b0255) 2021; 149 Wang (10.1016/j.ijfatigue.2023.107506_b0045) 2022; 30 Andreau (10.1016/j.ijfatigue.2023.107506_b0020) 2019; 264 Yadollahi (10.1016/j.ijfatigue.2023.107506_b0080) 2017; 94 Ghorbanpour (10.1016/j.ijfatigue.2023.107506_b0100) 2021; 179 Zheng (10.1016/j.ijfatigue.2023.107506_b0030) 2022; 831 DebRoy (10.1016/j.ijfatigue.2023.107506_b0005) 2018; 92 Bajaj (10.1016/j.ijfatigue.2023.107506_b0105) 2020; 772 Koutiri (10.1016/j.ijfatigue.2023.107506_b0200) 2013; 47 Becker (10.1016/j.ijfatigue.2023.107506_b0070) 2021; 219 |
References_xml | – volume: 47 start-page: 44 year: 2013 end-page: 57 ident: b0260 article-title: High cycle fatigue damage mechanisms in cast aluminium subject to complex loads publication-title: Int J Fatigue – volume: 2 start-page: 1229 year: 2016 end-page: 1236 ident: b0235 article-title: Crack Propagation in Additive Manufactured Materials and Structures publication-title: Procedia Struct Integr – volume: 125 start-page: 324 year: 2019 end-page: 341 ident: b0175 article-title: A new FE post-processor for probabilistic fatigue assessment in the presence of defects and its application to AM parts publication-title: Int J Fatigue – volume: 41 start-page: 1102 year: 2018 end-page: 1119 ident: b0240 article-title: Study of the effect of heat treatment on fatigue crack growth behaviour of 316L stainless steel produced by selective laser melting publication-title: Fatigue Fract Eng Mater Struct – volume: 120 start-page: 15 year: 2014 end-page: 25 ident: b0230 article-title: On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting publication-title: Eng Fract Mech – volume: 47 start-page: 137 year: 2013 end-page: 147 ident: b0200 article-title: A probabilistic model for the high cycle fatigue behaviour of cast aluminium alloys subject to complex loads publication-title: Int J Fatigue – volume: 139 start-page: 565 year: 2018 end-page: 586 ident: b0060 article-title: Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review publication-title: Mater Des – volume: 44 start-page: 2625 year: 2021 end-page: 2642 ident: b0155 article-title: Multiaxial fatigue behavior of SLM Ti6Al4V alloy under different loading conditions publication-title: Fatigue Fract Eng Mater Struct – volume: 788 year: 2020 ident: b0035 article-title: Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg publication-title: Mater Sci Eng A – volume: 179 year: 2021 ident: b0100 article-title: Effect of microstructure induced anisotropy on fatigue behaviour of functionally graded Inconel 718 fabricated by additive manufacturing publication-title: Mater Charact – volume: 124 start-page: 389 year: 2019 end-page: 399 ident: b0120 article-title: Investigation of the anisotropic fatigue behavior of additively manufactured structures made of AISI 316L with short-time procedures PhyBaL LIT and PhyBaL CHT publication-title: Int J Fatigue – volume: 28 start-page: 23 year: 2019 end-page: 38 ident: b0125 article-title: Fatigue behavior of additive manufactured 316L stainless steel parts: Effects of layer orientation and surface roughness publication-title: Addit Manuf – volume: 181 year: 2020 ident: b0040 article-title: On the texture and mechanical property anisotropy of Ti6Al4V alloy fabricated by powder-bed based laser additive manufacturing publication-title: Vacuum – volume: 249 start-page: 255 year: 2017 end-page: 263 ident: b0115 article-title: Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel publication-title: J Mater Process Technol – volume: 152 year: 2021 ident: b0140 article-title: Constant/variable amplitude multiaxial notch fatigue of additively manufactured AISI 316L publication-title: Int J Fatigue – volume: 470 start-page: 170 year: 2016 end-page: 178 ident: b0015 article-title: Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting publication-title: J Nucl Mater – volume: 141 year: 2020 ident: b0095 article-title: Anisotropic fatigue properties of Alloy 718 manufactured by Electron Beam Powder Bed Fusion publication-title: Int J Fatigue – reference: Fousová M, Vojtěch D, Doubrava K, Daniel M, Lin CF. Influence of Inherent Surface and Internal Defects on Mechanical Properties of Additively Manufactured Ti6Al4V Alloy: Comparison between Selective Laser Melting and Electron Beam Melting. Mater 2018, Vol 11, Page 537 2018;11:537. https://doi.org/10.3390/MA11040537. – volume: 47 year: 2021 ident: b0055 article-title: Microstructure, mechanical properties and strengthening mechanisms of IN738LC alloy produced by Electron Beam Selective Melting publication-title: Addit Manuf – volume: 129 year: 2019 ident: b0170 article-title: Experimental investigation of the size effect in High Cycle Fatigue: role of the defect population in cast aluminium alloys publication-title: Int J Fatigue – volume: 162 year: 2020 ident: b0025 article-title: Microstructural and mechanical anisotropy of selective laser melted IN718 superalloy at room and high temperatures using small punch test publication-title: Mater Charact – volume: 16 start-page: 1029 year: 2022 end-page: 1068 ident: b0010 article-title: A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys publication-title: J Mater Res Technol – volume: 214 start-page: 410 year: 2019 end-page: 426 ident: b0180 article-title: Interpretation of the fatigue anisotropy of additively manufactured TA6V alloys via a fracture mechanics approach publication-title: Eng Fract Mech – volume: 219 year: 2021 ident: b0070 article-title: Fracture and fatigue in additively manufactured metals publication-title: Acta Mater – reference: Kitagawa H, Takahashi S. Applicability of Fracture Mechanics to Very Small Cracks or the Cracks in the Early Stage. Proc 2nd Int Conf Mech Behav Mater 1976:627–39. – volume: 30 year: 2022 ident: b0045 article-title: Effects of laser scanning speed and building direction on the microstructure and mechanical properties of selective laser melted Inconel 718 superalloy publication-title: Mater Today Commun – volume: 93 start-page: 109 year: 2016 end-page: 121 ident: b0270 article-title: Simulation of the Kitagawa-Takahashi diagram using a probabilistic approach for cast Al-Si alloys under different multiaxial loads publication-title: Int J Fatigue – volume: 103 year: 2019 ident: b0145 article-title: Surface roughness effect on multiaxial fatigue behavior of additive manufactured metals and its modeling publication-title: Theor Appl Fract Mech – volume: 163 year: 2022 ident: b0150 article-title: Multiaxial fatigue of Inconel 718 produced by Selective Laser Melting at room and high temperature publication-title: Int J Fatigue – volume: 92 start-page: 112 year: 2018 end-page: 224 ident: b0005 article-title: Additive manufacturing of metallic components – Process, structure and properties publication-title: Prog Mater Sci – volume: 160 year: 2022 ident: b0130 article-title: High cycle fatigue behavior of 316L steel fabricated by laser powder bed fusion: Effects of surface defect and loading mode publication-title: Int J Fatigue – volume: 136 year: 2020 ident: b0250 article-title: A numerical investigation of the high cycle fatigue sensitivity to microstructure and defect publication-title: Int J Fatigue – volume: 38 start-page: 1087 year: 2015 end-page: 1104 ident: b0205 article-title: Influence of the microstructure and voids on the high-cycle fatigue strength of 316L stainless steel under multiaxial loading publication-title: Fatigue Fract Eng Mater Struct – volume: 27 start-page: 1123 year: 2004 end-page: 1135 ident: b0265 article-title: Probabilistic approach in high-cycle multiaxial fatigue: volume and surface effects publication-title: Fatigue Fract Eng Mater Struct – volume: 767 year: 2019 ident: b0090 article-title: The influence of building direction on the fatigue crack propagation behavior of Ti6Al4V alloy produced by selective laser melting publication-title: Mater Sci Eng A – volume: 123 start-page: 31 year: 2019 end-page: 39 ident: b0075 article-title: Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion publication-title: Int J Fatigue – volume: 94 start-page: 218 year: 2017 end-page: 235 ident: b0080 article-title: Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17–4 PH stainless steel publication-title: Int J Fatigue – volume: 149 year: 2021 ident: b0255 article-title: Numerical investigation of the surface and microstructure effects on the high cycle fatigue performance of additive manufactured stainless steel 316L publication-title: Int J Fatigue – volume: 101 start-page: 42 year: 1979 ident: b0225 article-title: Fatigue Crack Propagation of Short Cracks publication-title: J Eng Mater Technol – volume: 111 year: 2021 ident: b0135 article-title: Effect of micro-defects on fatigue lifetime of additive manufactured 316L stainless steel under multiaxial loading publication-title: Theor Appl Fract Mech – year: 2002 ident: b0165 article-title: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions – volume: 45 start-page: 1505 year: 2022 end-page: 1520 ident: b0160 article-title: Correlation between microstructure and cyclic behavior of 316L stainless steel obtained by Laser Powder Bed Fusion publication-title: Fatigue Fract Eng Mater Struct – volume: 80 start-page: 37 year: 2016 end-page: 45 ident: b0190 article-title: Estimation of Feret’s diameter from pixel coverage representation of a shape publication-title: Pattern Recognit Lett – volume: 696 start-page: 113 year: 2017 end-page: 121 ident: b0245 article-title: Mechanical behavior of selective laser melted 316L stainless steel publication-title: Mater Sci Eng A – volume: 10 start-page: 625 year: 1910 end-page: 630 ident: b0195 article-title: The Exponential Law of Endurance Tests publication-title: Am Soc Test Mater Proc – volume: 651 start-page: 198 year: 2016 end-page: 213 ident: b0110 article-title: Mechanical behavior of additive manufactured, powder-bed laser-fused materials publication-title: Mater Sci Eng A – volume: 154 year: 2022 ident: b0185 article-title: Fatigue from Defect: Influence of Size, Type, Position publication-title: Morphology and Loading Int J Fatigue – volume: 883 year: 2021 ident: b0050 article-title: Microstructures and mechanical properties evolution of IN939 alloy during electron beam selective melting process publication-title: J Alloys Compd – volume: 264 start-page: 21 year: 2019 end-page: 31 ident: b0020 article-title: Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting publication-title: J Mater Process Technol – volume: 117 year: 2021 ident: b0065 article-title: Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review publication-title: Prog Mater Sci – volume: 772 year: 2020 ident: b0105 article-title: Steels in additive manufacturing: A review of their microstructure and properties publication-title: Mater Sci Eng A – volume: 831 year: 2022 ident: b0030 article-title: Microstructure and anisotropic mechanical properties of selective laser melted Ti6Al4V alloy under different scanning strategies publication-title: Mater Sci Eng A – volume: 812 year: 2021 ident: b0085 article-title: Fatigue performance and crack propagation behavior of selective laser melted AlSi10Mg in 0°, 15°, 45° and 90° building directions publication-title: Mater Sci Eng A – reference: Roirand H, Hor A, Malard B, Saintier N. Effect of laser-scan strategy on microstructure and fatigue properties of 316L additively manufactured stainless steel 2022:1–17. https://doi.org/10.1111/ffe.13845. – volume: 120 start-page: 15 year: 2014 ident: 10.1016/j.ijfatigue.2023.107506_b0230 article-title: On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2014.03.008 – volume: 92 start-page: 112 year: 2018 ident: 10.1016/j.ijfatigue.2023.107506_b0005 article-title: Additive manufacturing of metallic components – Process, structure and properties publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2017.10.001 – volume: 16 start-page: 1029 year: 2022 ident: 10.1016/j.ijfatigue.2023.107506_b0010 article-title: A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2021.12.039 – volume: 179 year: 2021 ident: 10.1016/j.ijfatigue.2023.107506_b0100 article-title: Effect of microstructure induced anisotropy on fatigue behaviour of functionally graded Inconel 718 fabricated by additive manufacturing publication-title: Mater Charact doi: 10.1016/j.matchar.2021.111350 – volume: 80 start-page: 37 year: 2016 ident: 10.1016/j.ijfatigue.2023.107506_b0190 article-title: Estimation of Feret’s diameter from pixel coverage representation of a shape publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2016.04.021 – volume: 219 year: 2021 ident: 10.1016/j.ijfatigue.2023.107506_b0070 article-title: Fracture and fatigue in additively manufactured metals publication-title: Acta Mater doi: 10.1016/j.actamat.2021.117240 – volume: 152 year: 2021 ident: 10.1016/j.ijfatigue.2023.107506_b0140 article-title: Constant/variable amplitude multiaxial notch fatigue of additively manufactured AISI 316L publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2021.106412 – volume: 788 year: 2020 ident: 10.1016/j.ijfatigue.2023.107506_b0035 article-title: Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2020.139445 – volume: 47 year: 2021 ident: 10.1016/j.ijfatigue.2023.107506_b0055 article-title: Microstructure, mechanical properties and strengthening mechanisms of IN738LC alloy produced by Electron Beam Selective Melting publication-title: Addit Manuf – volume: 103 year: 2019 ident: 10.1016/j.ijfatigue.2023.107506_b0145 article-title: Surface roughness effect on multiaxial fatigue behavior of additive manufactured metals and its modeling publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2019.102260 – volume: 123 start-page: 31 year: 2019 ident: 10.1016/j.ijfatigue.2023.107506_b0075 article-title: Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.01.013 – volume: 214 start-page: 410 year: 2019 ident: 10.1016/j.ijfatigue.2023.107506_b0180 article-title: Interpretation of the fatigue anisotropy of additively manufactured TA6V alloys via a fracture mechanics approach publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2019.03.048 – volume: 27 start-page: 1123 year: 2004 ident: 10.1016/j.ijfatigue.2023.107506_b0265 article-title: Probabilistic approach in high-cycle multiaxial fatigue: volume and surface effects publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/j.1460-2695.2004.00823.x – volume: 470 start-page: 170 year: 2016 ident: 10.1016/j.ijfatigue.2023.107506_b0015 article-title: Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting publication-title: J Nucl Mater doi: 10.1016/j.jnucmat.2015.12.034 – volume: 651 start-page: 198 year: 2016 ident: 10.1016/j.ijfatigue.2023.107506_b0110 article-title: Mechanical behavior of additive manufactured, powder-bed laser-fused materials publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2015.10.068 – volume: 141 year: 2020 ident: 10.1016/j.ijfatigue.2023.107506_b0095 article-title: Anisotropic fatigue properties of Alloy 718 manufactured by Electron Beam Powder Bed Fusion publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2020.105898 – volume: 831 year: 2022 ident: 10.1016/j.ijfatigue.2023.107506_b0030 article-title: Microstructure and anisotropic mechanical properties of selective laser melted Ti6Al4V alloy under different scanning strategies publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2021.142236 – volume: 45 start-page: 1505 year: 2022 ident: 10.1016/j.ijfatigue.2023.107506_b0160 article-title: Correlation between microstructure and cyclic behavior of 316L stainless steel obtained by Laser Powder Bed Fusion publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.13684 – volume: 111 year: 2021 ident: 10.1016/j.ijfatigue.2023.107506_b0135 article-title: Effect of micro-defects on fatigue lifetime of additive manufactured 316L stainless steel under multiaxial loading publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2020.102849 – ident: 10.1016/j.ijfatigue.2023.107506_b0220 – ident: 10.1016/j.ijfatigue.2023.107506_b0215 doi: 10.3390/ma11040537 – volume: 94 start-page: 218 year: 2017 ident: 10.1016/j.ijfatigue.2023.107506_b0080 article-title: Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17–4 PH stainless steel publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.03.014 – volume: 38 start-page: 1087 year: 2015 ident: 10.1016/j.ijfatigue.2023.107506_b0205 article-title: Influence of the microstructure and voids on the high-cycle fatigue strength of 316L stainless steel under multiaxial loading publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.12304 – volume: 154 year: 2022 ident: 10.1016/j.ijfatigue.2023.107506_b0185 article-title: Fatigue from Defect: Influence of Size, Type, Position publication-title: Morphology and Loading Int J Fatigue – volume: 125 start-page: 324 year: 2019 ident: 10.1016/j.ijfatigue.2023.107506_b0175 article-title: A new FE post-processor for probabilistic fatigue assessment in the presence of defects and its application to AM parts publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.04.008 – volume: 772 year: 2020 ident: 10.1016/j.ijfatigue.2023.107506_b0105 article-title: Steels in additive manufacturing: A review of their microstructure and properties publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2019.138633 – volume: 124 start-page: 389 year: 2019 ident: 10.1016/j.ijfatigue.2023.107506_b0120 article-title: Investigation of the anisotropic fatigue behavior of additively manufactured structures made of AISI 316L with short-time procedures PhyBaL LIT and PhyBaL CHT publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.03.022 – volume: 162 year: 2020 ident: 10.1016/j.ijfatigue.2023.107506_b0025 article-title: Microstructural and mechanical anisotropy of selective laser melted IN718 superalloy at room and high temperatures using small punch test publication-title: Mater Charact doi: 10.1016/j.matchar.2020.110200 – volume: 696 start-page: 113 year: 2017 ident: 10.1016/j.ijfatigue.2023.107506_b0245 article-title: Mechanical behavior of selective laser melted 316L stainless steel publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2017.04.058 – volume: 47 start-page: 137 year: 2013 ident: 10.1016/j.ijfatigue.2023.107506_b0200 article-title: A probabilistic model for the high cycle fatigue behaviour of cast aluminium alloys subject to complex loads publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2012.08.004 – volume: 129 year: 2019 ident: 10.1016/j.ijfatigue.2023.107506_b0170 article-title: Experimental investigation of the size effect in High Cycle Fatigue: role of the defect population in cast aluminium alloys publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.105222 – volume: 149 year: 2021 ident: 10.1016/j.ijfatigue.2023.107506_b0255 article-title: Numerical investigation of the surface and microstructure effects on the high cycle fatigue performance of additive manufactured stainless steel 316L publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2021.106273 – volume: 181 year: 2020 ident: 10.1016/j.ijfatigue.2023.107506_b0040 article-title: On the texture and mechanical property anisotropy of Ti6Al4V alloy fabricated by powder-bed based laser additive manufacturing publication-title: Vacuum doi: 10.1016/j.vacuum.2020.109732 – volume: 812 year: 2021 ident: 10.1016/j.ijfatigue.2023.107506_b0085 article-title: Fatigue performance and crack propagation behavior of selective laser melted AlSi10Mg in 0°, 15°, 45° and 90° building directions publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2021.141141 – volume: 47 start-page: 44 year: 2013 ident: 10.1016/j.ijfatigue.2023.107506_b0260 article-title: High cycle fatigue damage mechanisms in cast aluminium subject to complex loads publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2012.07.008 – volume: 767 year: 2019 ident: 10.1016/j.ijfatigue.2023.107506_b0090 article-title: The influence of building direction on the fatigue crack propagation behavior of Ti6Al4V alloy produced by selective laser melting publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2019.138409 – volume: 160 year: 2022 ident: 10.1016/j.ijfatigue.2023.107506_b0130 article-title: High cycle fatigue behavior of 316L steel fabricated by laser powder bed fusion: Effects of surface defect and loading mode publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2022.106843 – year: 2002 ident: 10.1016/j.ijfatigue.2023.107506_b0165 – volume: 93 start-page: 109 year: 2016 ident: 10.1016/j.ijfatigue.2023.107506_b0270 article-title: Simulation of the Kitagawa-Takahashi diagram using a probabilistic approach for cast Al-Si alloys under different multiaxial loads publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.08.014 – volume: 101 start-page: 42 year: 1979 ident: 10.1016/j.ijfatigue.2023.107506_b0225 article-title: Fatigue Crack Propagation of Short Cracks publication-title: J Eng Mater Technol doi: 10.1115/1.3443647 – ident: 10.1016/j.ijfatigue.2023.107506_b0210 doi: 10.1111/ffe.13845 – volume: 883 year: 2021 ident: 10.1016/j.ijfatigue.2023.107506_b0050 article-title: Microstructures and mechanical properties evolution of IN939 alloy during electron beam selective melting process publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2021.160934 – volume: 264 start-page: 21 year: 2019 ident: 10.1016/j.ijfatigue.2023.107506_b0020 article-title: Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2018.08.049 – volume: 139 start-page: 565 year: 2018 ident: 10.1016/j.ijfatigue.2023.107506_b0060 article-title: Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review publication-title: Mater Des doi: 10.1016/j.matdes.2017.11.021 – volume: 2 start-page: 1229 year: 2016 ident: 10.1016/j.ijfatigue.2023.107506_b0235 article-title: Crack Propagation in Additive Manufactured Materials and Structures publication-title: Procedia Struct Integr doi: 10.1016/j.prostr.2016.06.157 – volume: 136 year: 2020 ident: 10.1016/j.ijfatigue.2023.107506_b0250 article-title: A numerical investigation of the high cycle fatigue sensitivity to microstructure and defect publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2020.105541 – volume: 117 year: 2021 ident: 10.1016/j.ijfatigue.2023.107506_b0065 article-title: Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2020.100724 – volume: 44 start-page: 2625 year: 2021 ident: 10.1016/j.ijfatigue.2023.107506_b0155 article-title: Multiaxial fatigue behavior of SLM Ti6Al4V alloy under different loading conditions publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.13518 – volume: 163 year: 2022 ident: 10.1016/j.ijfatigue.2023.107506_b0150 article-title: Multiaxial fatigue of Inconel 718 produced by Selective Laser Melting at room and high temperature publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2022.107108 – volume: 30 year: 2022 ident: 10.1016/j.ijfatigue.2023.107506_b0045 article-title: Effects of laser scanning speed and building direction on the microstructure and mechanical properties of selective laser melted Inconel 718 superalloy publication-title: Mater Today Commun – volume: 28 start-page: 23 year: 2019 ident: 10.1016/j.ijfatigue.2023.107506_b0125 article-title: Fatigue behavior of additive manufactured 316L stainless steel parts: Effects of layer orientation and surface roughness publication-title: Addit Manuf – volume: 41 start-page: 1102 year: 2018 ident: 10.1016/j.ijfatigue.2023.107506_b0240 article-title: Study of the effect of heat treatment on fatigue crack growth behaviour of 316L stainless steel produced by selective laser melting publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.12755 – volume: 249 start-page: 255 year: 2017 ident: 10.1016/j.ijfatigue.2023.107506_b0115 article-title: Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2017.05.042 – volume: 10 start-page: 625 year: 1910 ident: 10.1016/j.ijfatigue.2023.107506_b0195 article-title: The Exponential Law of Endurance Tests publication-title: Am Soc Test Mater Proc |
SSID | ssj0009075 |
Score | 2.4603155 |
Snippet | •Experimental torsion and bending fatigue strengths of 90°, 45°, and 0° LPBF building direction were determined.•Kitagawa diagrams were provided in bending and... The present study aims to investigate the high cycle fatigue (HCF) performance of steel 316L fabricated by the laser powder bed fusion (LPBF) process. Bending... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 107506 |
SubjectTerms | Bending and torsion Building direction High cycle fatigue Laser powder bed fusion Physics Stainless steel 316L |
Title | Effects of building direction and loading mode on the high cycle fatigue strength of the laser powder bed fusion 316L |
URI | https://dx.doi.org/10.1016/j.ijfatigue.2023.107506 https://hal.science/hal-04184608 |
Volume | 170 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-3452 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009075 issn: 0142-1123 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-3452 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009075 issn: 0142-1123 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-3452 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009075 issn: 0142-1123 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-3452 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009075 issn: 0142-1123 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-3452 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009075 issn: 0142-1123 databaseCode: AKRWK dateStart: 19790101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR27TsMw0CplgQHxFOVRWYg1NE8nZasqqgClE5W6WbVj06IqqUoKYuHbuYuTQgfUgSnKyT7bZ_se9vmOkGsBRg_D9O3CSyLL98LAEuNAWNoNEqF8CfsPb3SfBiwe-g-jYFQj3eotDLpVlrzf8PSCW5eQVknN1nw6baFbElgvoBF45j4OX7D7DN36br5-3DzaJtguFraw9JqP1_RVw_jxiASziAMU5Cf7S0JtTaqz1kL29PbJXqk00o7p1wGpqfSQ7P4KJXhEliYM8RvNNBVlqmtqxgaUp-M0obOs8JenmPyGAgxUP4rRiqn8BKy07CPF1yPpSz5BTFgE1Gu1oPPsI4GPUAnVSzxho57D-sdk2Lt77sZWmVLBkp7fzi3Q_uxAwK5DKeQ52gkxQJzDXFskmN1AjYFxura2dRIypkMpYEcn0H97HAlPSu-E1NMsVaeE4o1fBDiUBJ3K1YAQTEXhhhHzQyVF2CCsIiOXZbxxTHsx45Vj2Stf0Z8j_bmhf4PYq4pzE3Jjc5Xbap742urhIBg2V76CmV01hfG2406fI8z2wQBmdvTunP2nhXOyg3_GT_KC1PPFUl2CLpOLZrFYm2S7c_8YD74BNs7xpQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbYdgAOiKd4EyGu1fpMC7cJgToYO4G0W7SkCWxC3QQbiH-PvaSDHdAOnCqlsZs6ie0kzmeAC4mLHk7p22VUZF4cpYkn-4n0TJgUUscK5x-d6D50ef4U3_WS3gpcV3dhKKzS6X6r02fa2pU0nTSb48GgSWFJuHpBjyCy53E1aMQJ6uQ6NFrt-7z7g71r8XapvkcEC2Feg6FBEdAuCSUSx1I0ofwvI1V7qbZbZ-bndhM2nN_IWrZpW7Ciy21Y_4UmuANTi0T8zkaGSZftmtnfQ-Gzflmw19EsZJ5R_huGZej9MQIsZuoLuTLXRkYXSMrnyQtxoiroYes3Nh59FviQumBmSptsLAp4Zxeebm8er3PPZVXwVBRfTjx0AP1E4sQjQxQFJkgJIy7goS8LSnCg-6g7Q9_4pkg5N6mSOKkLbL_fz2SkVLQH9XJU6n1gdOiXIQ-t0K0KDTLE1aIM04zHqVYyPQBeiVEoBzlOmS9eRRVbNhRz-QuSv7DyPwB_Tji2qBvLSa6qfhILA0igbVhOfI49O_8UQW7nrY6gMj_GNTD3s4_g8D9fOIPV_PGhIzrt7v0RrNEbGzZ5DPXJ21SfoGszkadu6H4Dcw_0UA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+building+direction+and+loading+mode+on+the+high+cycle+fatigue+strength+of+the+laser+powder+bed+fusion+316L&rft.jtitle=International+journal+of+fatigue&rft.au=Liang%2C+Xiaoyu&rft.au=Hor%2C+Anis&rft.au=Robert%2C+Camille&rft.au=Lin%2C+Feng&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=170&rft_id=info:doi/10.1016%2Fj.ijfatigue.2023.107506&rft.externalDocID=S0142112323000075 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon |