An Effective Cooperative Co-Evolutionary Algorithm for Distributed Flowshop Group Scheduling Problems

This article addresses a novel scheduling problem, a distributed flowshop group scheduling problem, which has important applications in modern manufacturing systems. The problem considers how to arrange a variety of jobs subject to group constraints at a number of identical manufacturing cellulars,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 7; pp. 1 - 14
Main Authors Pan, Quan-Ke, Gao, Liang, Wang, Ling
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2020.3041494

Cover

More Information
Summary:This article addresses a novel scheduling problem, a distributed flowshop group scheduling problem, which has important applications in modern manufacturing systems. The problem considers how to arrange a variety of jobs subject to group constraints at a number of identical manufacturing cellulars, each one with a flowshop structure, with the objective of minimizing makespan. We explore the problem-specific knowledge and present a mixed-integer linear programming model, a counterintuitive paradox, and two suites of accelerations to save computational efforts. Due to the complexity of the problem, we consider a decomposition strategy and propose a cooperative co-evolutionary algorithm (CCEA) with a novel collaboration model and a reinitialization scheme. A comprehensive and thorough computational and statistical campaign is carried out. The results show that the proposed collaboration model and reinitialization scheme are very effective. The proposed CCEA outperforms a number of metaheuristics adapted from closely related scheduling problems in the literature by a significantly considerable margin.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2020.3041494