Real-Time Model-Based Fault Detection of Continuous Glucose Sensor Measurements
Objective: Faults in subcutaneous glucose concentration readings with a continuous glucose monitoring (CGM) may affect the computation of insulin infusion rates that can lead to hypoglycemia or hyperglycemia in artificial pancreas control systems for patients with type 1 diabetes (T1D). Methods: Mul...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 64; no. 7; pp. 1437 - 1445 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2016.2535412 |
Cover
| Abstract | Objective: Faults in subcutaneous glucose concentration readings with a continuous glucose monitoring (CGM) may affect the computation of insulin infusion rates that can lead to hypoglycemia or hyperglycemia in artificial pancreas control systems for patients with type 1 diabetes (T1D). Methods: Multivariable statistical monitoring methods are proposed for detection of faults in glucose concentration values reported by a subcutaneous glucose sensor. A nonlinear first principle glucose/insulin/meal dynamic model is developed. An unscented Kalman filter is used for state and parameter estimation of the nonlinear model. Principal component analysis models are developed and used for detection of dynamic changes. K-nearest neighbor classification algorithm is used for diagnosis of faults. Data from 51 subjects are used to assess the performance of the algorithm. Results: The results indicate that the proposed algorithm works successfully with 84.2% sensitivity. Overall, 155 (out of 184) of the CGM failures are detected with a 2.8-min average detection time. Conclusion: A novel algorithm that integrates data-driven and model-based methods is developed. The proposed method is able to detect CGM failures with a high rate of success. Significance: The proposed fault detection algorithm can decrease the effects of faults on insulin infusion rates and reduce the potential for hypo- or hyperglycemia for patients with T1D. |
|---|---|
| AbstractList | Objective: Faults in subcutaneous glucose concentration readings with a continuous glucose monitoring (CGM) may affect the computation of insulin infusion rates that can lead to hypoglycemia or hyperglycemia in artificial pancreas control systems for patients with type 1 diabetes (T1D). Methods: Multivariable statistical monitoring methods are proposed for detection of faults in glucose concentration values reported by a subcutaneous glucose sensor. A nonlinear first principle glucose/insulin/meal dynamic model is developed. An unscented Kalman filter is used for state and parameter estimation of the nonlinear model. Principal component analysis models are developed and used for detection of dynamic changes. K-nearest neighbor classification algorithm is used for diagnosis of faults. Data from 51 subjects are used to assess the performance of the algorithm. Results: The results indicate that the proposed algorithm works successfully with 84.2% sensitivity. Overall, 155 (out of 184) of the CGM failures are detected with a 2.8-min average detection time. Conclusion: A novel algorithm that integrates data-driven and model-based methods is developed. The proposed method is able to detect CGM failures with a high rate of success. Significance: The proposed fault detection algorithm can decrease the effects of faults on insulin infusion rates and reduce the potential for hypo- or hyperglycemia for patients with T1D. Faults in subcutaneous glucose concentration readings with a continuous glucose monitoring (CGM) may affect the computation of insulin infusion rates that can lead to hypoglycemia or hyperglycemia in artificial pancreas control systems for patients with type 1 diabetes (T1D).OBJECTIVEFaults in subcutaneous glucose concentration readings with a continuous glucose monitoring (CGM) may affect the computation of insulin infusion rates that can lead to hypoglycemia or hyperglycemia in artificial pancreas control systems for patients with type 1 diabetes (T1D).Multivariable statistical monitoring methods are proposed for detection of faults in glucose concentration values reported by a subcutaneous glucose sensor. A nonlinear first principle glucose/insulin/meal dynamic model is developed. An unscented Kalman filter is used for state and parameter estimation of the nonlinear model. Principal component analysis models are developed and used for detection of dynamic changes. K-nearest neighbor classification algorithm is used for diagnosis of faults. Data from 51 subjects are used to assess the performance of the algorithm.METHODSMultivariable statistical monitoring methods are proposed for detection of faults in glucose concentration values reported by a subcutaneous glucose sensor. A nonlinear first principle glucose/insulin/meal dynamic model is developed. An unscented Kalman filter is used for state and parameter estimation of the nonlinear model. Principal component analysis models are developed and used for detection of dynamic changes. K-nearest neighbor classification algorithm is used for diagnosis of faults. Data from 51 subjects are used to assess the performance of the algorithm.The results indicate that the proposed algorithm works successfully with 84.2% sensitivity. Overall, 155 (out of 184) of the CGM failures are detected with a 2.8-min average detection time.RESULTSThe results indicate that the proposed algorithm works successfully with 84.2% sensitivity. Overall, 155 (out of 184) of the CGM failures are detected with a 2.8-min average detection time.A novel algorithm that integrates data-driven and model-based methods is developed. The proposed method is able to detect CGM failures with a high rate of success.CONCLUSIONA novel algorithm that integrates data-driven and model-based methods is developed. The proposed method is able to detect CGM failures with a high rate of success.The proposed fault detection algorithm can decrease the effects of faults on insulin infusion rates and reduce the potential for hypo- or hyperglycemia for patients with T1D.SIGNIFICANCEThe proposed fault detection algorithm can decrease the effects of faults on insulin infusion rates and reduce the potential for hypo- or hyperglycemia for patients with T1D. Faults in subcutaneous glucose concentration readings with a continuous glucose monitoring (CGM) may affect the computation of insulin infusion rates that can lead to hypoglycemia or hyperglycemia in artificial pancreas control systems for patients with type 1 diabetes (T1D). Multivariable statistical monitoring methods are proposed for detection of faults in glucose concentration values reported by a subcutaneous glucose sensor. A nonlinear first principle glucose/insulin/meal dynamic model is developed. An unscented Kalman filter is used for state and parameter estimation of the nonlinear model. Principal component analysis models are developed and used for detection of dynamic changes. K-nearest neighbor classification algorithm is used for diagnosis of faults. Data from 51 subjects are used to assess the performance of the algorithm. The results indicate that the proposed algorithm works successfully with 84.2% sensitivity. Overall, 155 (out of 184) of the CGM failures are detected with a 2.8-min average detection time. A novel algorithm that integrates data-driven and model-based methods is developed. The proposed method is able to detect CGM failures with a high rate of success. The proposed fault detection algorithm can decrease the effects of faults on insulin infusion rates and reduce the potential for hypo- or hyperglycemia for patients with T1D. |
| Author | Turksoy, Kamuran Cinar, Ali Roy, Anirban |
| Author_xml | – sequence: 1 givenname: Kamuran surname: Turksoy fullname: Turksoy, Kamuran organization: Department of Biomedical EngineeringIllinois Institute of Technology – sequence: 2 givenname: Anirban surname: Roy fullname: Roy, Anirban organization: Medtronic Diabetes – sequence: 3 givenname: Ali orcidid: 0000-0002-1607-9943 surname: Cinar fullname: Cinar, Ali email: cinar@iit.edu organization: Department of Chemical and Biological Engineering and the Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26930674$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1LxDAQhoMoun78ABGk4MVL13w3PbrrJ7gIup5Dmk6h0iaapAf_vS27evDgaZjheWde5j1Eu847QOiU4DkhuLxaL1a3c4qJnFPBBCd0B82IECofW7KLZhgTlZe05AfoMMb3seWKy310QGXJsCz4DD2_gOnyddtDtvI1dPnCRKizOzN0KbuBBDa13mW-yZbepdYNfojZfTdYHyF7BRd9yFZg4hCgB5fiMdprTBfhZFuP0Nvd7Xr5kD893z8ur59yy3iZclZXigiwYBmjti4MU7QWDZYCQzHNma3qgivTNNxUjYFamKqoeFMCA0GAHaHLzd6P4D8HiEn3bbTQdcbBaFETRaUUpSR0RC_-oO9-CG50pykpOKOCKjVS51tqqHqo9UdoexO-9M-rRoBsABt8jAGaX4RgPcWhpzj0FIfexjFqij8a2yYzfTQF03b_Ks82yhYAfi8VnJRKCvYNpAmXMw |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1007_s12553_018_0269_8 crossref_primary_10_3390_s21217117 crossref_primary_10_1021_acs_iecr_2c03259 crossref_primary_10_1016_j_ifacol_2017_08_2477 crossref_primary_10_1109_JBHI_2024_3465893 crossref_primary_10_1016_j_eij_2024_100573 crossref_primary_10_3390_pr8050609 crossref_primary_10_3390_s21186263 crossref_primary_10_1049_iet_cta_2017_1119 crossref_primary_10_2196_10775 crossref_primary_10_2196_44384 crossref_primary_10_1016_j_jprocont_2024_103162 crossref_primary_10_1016_j_ifacol_2024_07_276 crossref_primary_10_1109_TSG_2020_3005238 crossref_primary_10_12677_SEA_2022_114075 crossref_primary_10_1016_j_bspc_2021_103196 crossref_primary_10_1007_s00521_020_05432_2 crossref_primary_10_1016_j_ifacol_2023_10_441 crossref_primary_10_1109_ACCESS_2019_2916785 crossref_primary_10_1016_j_ifacol_2018_11_646 crossref_primary_10_1109_JSEN_2023_3234594 crossref_primary_10_1177_1932296816658666 crossref_primary_10_1016_j_ifacol_2018_09_279 crossref_primary_10_1007_s12647_021_00518_1 crossref_primary_10_1109_JSEN_2018_2829345 |
| Cites_doi | 10.1089/dia.2006.8.617 10.1016/j.jprocont.2007.11.004 10.2337/dc13-2076 10.1177/193229680900300508 10.1177/1932296814553267 10.1186/1475-925X-11-45 10.1155/2011/368015 10.1089/dia.2013.0333 10.1016/S0098-1354(02)00161-8 10.1152/ajpendo.1986.250.5.E591 10.2337/dc12-0816 10.1152/ajpendo.00304.2001 10.1177/193229681000400611 10.1089/dia.2012.0283 10.1201/9780203911358 10.1152/ajpendo.1999.277.3.E481 10.1172/JCI110398 10.1177/1932296814524862 10.1109/TBME.2013.2244092 10.1177/1932296814543661 10.1016/j.compchemeng.2012.06.017 10.1210/jc.2013-4151 10.1111/pedi.12071 10.1177/193229680800200413 10.1021/ie3034015 10.1111/dom.12378 10.1016/j.automatica.2012.05.076 10.1016/j.bspc.2013.05.008 10.1186/1687-9856-2015-S1-P26 10.1109/ACC.2013.6580279 10.1016/S0140-6736(09)61998-X 10.1109/IEMBS.2011.6091226 10.1177/193229680700100305 10.1089/dia.2013.0139 10.1177/1932296813514502 10.1109/ASSPCC.2000.882463 10.2337/dc09-1080 10.1016/S0098-1354(02)00162-X 10.1201/9781420020106 10.1109/JPROC.2003.823141 10.1109/TBME.2013.2291777 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TBME.2016.2535412 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 1445 |
| ExternalDocumentID | 26930674 10_1109_TBME_2016_2535412 7419865 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institutes of Health grantid: 1DP3DK101077-01 funderid: 10.13039/100000002 – fundername: Juvenile Diabetes Research Foundation International grantid: 17-2013-472 funderid: 10.13039/100000901 – fundername: NIDDK NIH HHS grantid: DP3 DK101077 |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c349t-3db815ecec332cd7a382d5f0650e75ece3cbd748aff4abfaed5ab7b4f9e3e51e3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Sun Sep 28 12:25:11 EDT 2025 Mon Jun 30 08:38:35 EDT 2025 Thu Apr 03 07:01:17 EDT 2025 Wed Oct 01 04:08:43 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Wed Aug 27 02:30:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-3db815ecec332cd7a382d5f0650e75ece3cbd748aff4abfaed5ab7b4f9e3e51e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1607-9943 |
| PMID | 26930674 |
| PQID | 2174325288 |
| PQPubID | 85474 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1826659612 proquest_journals_2174325288 crossref_primary_10_1109_TBME_2016_2535412 crossref_citationtrail_10_1109_TBME_2016_2535412 ieee_primary_7419865 pubmed_primary_26930674 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-01 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 ref14 ref31 cobelli (ref17) 1986; 250 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref38 ref16 ref19 van der merwe (ref37) 2004 cobelli (ref18) 1999; 277 cinar (ref15) 2003 ref24 ref23 man (ref36) 2014; 8 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 roy (ref39) 2015; 17 ref40 cinar (ref34) 2007 shen (ref27) 0 |
| References_xml | – start-page: 4373 year: 0 ident: ref27 article-title: Online dropout detection in subcutaneously implanted continuous glucose monitoring publication-title: Proc IEEE Am Control Conf – ident: ref20 doi: 10.1089/dia.2006.8.617 – ident: ref35 doi: 10.1016/j.jprocont.2007.11.004 – ident: ref12 doi: 10.2337/dc13-2076 – year: 2004 ident: ref37 article-title: Sigma-point Kalman filters for probabilistic inference in dynamic state-space models – ident: ref22 doi: 10.1177/193229680900300508 – ident: ref30 doi: 10.1177/1932296814553267 – ident: ref31 doi: 10.1186/1475-925X-11-45 – ident: ref28 doi: 10.1155/2011/368015 – ident: ref7 doi: 10.1089/dia.2013.0333 – ident: ref14 doi: 10.1016/S0098-1354(02)00161-8 – volume: 250 start-page: 591e year: 1986 ident: ref17 article-title: Estimation of insulin sensitivity and glucose clearance from minimal model: new insights from labeled IVGTT publication-title: Amer J Physiol-Endocrinol Metabolism doi: 10.1152/ajpendo.1986.250.5.E591 – ident: ref4 doi: 10.2337/dc12-0816 – ident: ref19 doi: 10.1152/ajpendo.00304.2001 – ident: ref3 doi: 10.1177/193229681000400611 – ident: ref5 doi: 10.1089/dia.2012.0283 – year: 2003 ident: ref15 publication-title: Batch Fermentation Modeling Monitoring and Control doi: 10.1201/9780203911358 – volume: 277 start-page: 481e year: 1999 ident: ref18 article-title: Minimal model sgoverestimation and siunderestimation: Improved accuracy by a Bayesian two-compartment model publication-title: Amer J Physiol-Endocrinol Metabolism doi: 10.1152/ajpendo.1999.277.3.E481 – ident: ref16 doi: 10.1172/JCI110398 – ident: ref8 doi: 10.1177/1932296814524862 – ident: ref26 doi: 10.1109/TBME.2013.2244092 – ident: ref13 doi: 10.1177/1932296814543661 – ident: ref41 doi: 10.1016/j.compchemeng.2012.06.017 – ident: ref9 doi: 10.1210/jc.2013-4151 – ident: ref6 doi: 10.1111/pedi.12071 – ident: ref25 doi: 10.1177/193229680800200413 – ident: ref44 doi: 10.1021/ie3034015 – ident: ref40 doi: 10.1111/dom.12378 – ident: ref43 doi: 10.1016/j.automatica.2012.05.076 – ident: ref33 doi: 10.1016/j.bspc.2013.05.008 – ident: ref38 doi: 10.1186/1687-9856-2015-S1-P26 – ident: ref32 doi: 10.1109/ACC.2013.6580279 – ident: ref2 doi: 10.1016/S0140-6736(09)61998-X – ident: ref29 doi: 10.1109/IEMBS.2011.6091226 – ident: ref21 doi: 10.1177/193229680700100305 – ident: ref11 doi: 10.1089/dia.2013.0139 – volume: 8 start-page: 26 year: 2014 ident: ref36 article-title: The UVA/Padova type 1 diabetes simulator new features publication-title: J Diabetes Sci Technol doi: 10.1177/1932296813514502 – ident: ref24 doi: 10.1109/ASSPCC.2000.882463 – ident: ref1 doi: 10.2337/dc09-1080 – ident: ref42 doi: 10.1016/S0098-1354(02)00162-X – year: 2007 ident: ref34 publication-title: Chemical Process Performance Evaluatoin doi: 10.1201/9781420020106 – volume: 17 start-page: 18a year: 2015 ident: ref39 article-title: Physiological and technical stress test for medtronic's artificial pancreas system in a supervised outpatient setting publication-title: Diabetes Technol Therapeutics – ident: ref23 doi: 10.1109/JPROC.2003.823141 – ident: ref10 doi: 10.1109/TBME.2013.2291777 |
| SSID | ssj0014846 |
| Score | 2.3800972 |
| Snippet | Objective: Faults in subcutaneous glucose concentration readings with a continuous glucose monitoring (CGM) may affect the computation of insulin infusion... Faults in subcutaneous glucose concentration readings with a continuous glucose monitoring (CGM) may affect the computation of insulin infusion rates that can... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1437 |
| SubjectTerms | Algorithms Biomedical measurement Blood Glucose - analysis Blood Glucose - metabolism Change detection Clinical Alarms Computational modeling Computer Simulation Computer Systems Continuous glucose sensor failures Control systems Diabetes mellitus Diabetes mellitus (insulin dependent) Diabetes Mellitus, Type 1 - blood Diabetes Mellitus, Type 1 - diagnosis Diabetes Mellitus, Type 1 - drug therapy Diagnostic Errors - prevention & control Drug Therapy, Computer-Assisted - methods Dynamic models Equipment Failure Analysis - methods Failure Fault detection Fault diagnosis First principles Glucose Glucose monitoring Humans Hyperglycemia Hypoglycemia Insulin Insulin - administration & dosage Insulin - blood k-nearest neighbor (KNN) classification Kalman filters Models, Biological Models, Statistical Monitoring Monitoring methods Multivariable control Nonlinear analysis Pancreas Parameter estimation Patients Performance assessment Plasmas Principal component analysis principal component analysis (PCA) Principal components analysis Reproducibility of Results Sensitivity and Specificity Statistical methods Sugar unscented Kalman filter (UKF) |
| Title | Real-Time Model-Based Fault Detection of Continuous Glucose Sensor Measurements |
| URI | https://ieeexplore.ieee.org/document/7419865 https://www.ncbi.nlm.nih.gov/pubmed/26930674 https://www.proquest.com/docview/2174325288 https://www.proquest.com/docview/1826659612 |
| Volume | 64 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLbaHhAcCrQ8FgqaSpwQ2W7mlZkjhS5VpYAErdRblMl4pIpVgnaTS3894yQbHgLELY_JJBnbsj3-bAO88oRLlFonmQ42kS6KolHGx9OoIERQSiE5ivlHfX4lL67V9Q68mXJhELEHn-GcDvtYvm-qjrbKTqL2s0arXdjNjB5ytaaIgTRDUs4ijQLMrRwjmOnCnlye5mcE4tJzroSSKXWw4dQCUGfyF3XU91f5u6nZq5zlfci3HzsgTb7Ou9bNq9vf6jj-7988gP3R9mRvB2Z5CDtYH8C9nyoSHsCdfIy1H8Knz9GGTChFhFHDtFVyGhWeZ8uyW7XsPbY9hqtmTWBU4eqm7ppuwz4MCHj2JXrHzZrlP3YgN4_ganl2-e48GdsvJJWQtk2EdyZVWGElBK98VgrDvQpk02FG10XlfCZNGYIsXSjRq9JlTgaLAlWK4jHs1U2NT4Epr1Jns-CcQVmiMdJTobPMc26DNmoGiy0VimqsTU4tMlZF76MsbEE0LIiGxUjDGbyeHvk2FOb41-BDWv9p4Lj0MzjakroYRXdT9D4aV9yYGRxPt6PQUSSlrDEuZkFOmVZW08xPBhaZ5t5y1rM_v_M53OVkGfSI3yPYa9cdvoh2Tete9gz9HZp88Ek |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9QwDLaWReJx4LHLY2CBIHFCdHaaxGlyZGGHAbaLBLPS3qqmSSTEqIN22gu_nrjtlIcAcesjTdvYlu34sw3wzBEuUSqVZCqYRNooihq1i6dRQYiAiJ4cxfxULc7ku3M834EXYy6M974Dn_kpHXaxfLeuWtoqO4zaz2iFl-AySimxz9YaYwZS92k5szSKMDdyiGGmM3O4PMqPCcalphwFypR62HBqAqgy-YtC6jqs_N3Y7JTO_Cbk28_tsSZfpm1jp9W33yo5_u__3IIbg_XJXvbscht2fL0H13-qSbgHV_Ih2r4PHz5GKzKhJBFGLdNWyVFUeY7Ny3bVsNe-6VBcNVsHRjWuPtftut2wNz0Gnn2K_vH6guU_9iA3d-Bsfrx8tUiGBgxJJaRpEuGsTtFXvhKCVy4rheYOA1l1PqProrIuk7oMQZY2lN5haTMrg_HCY-rFXdit17W_DwwdptZkwVrtZem1lo5KnWWOcxOUxgnMtlQoqqE6OTXJWBWdlzIzBdGwIBoWAw0n8Hx85GtfmuNfg_dp_ceBw9JP4GBL6mIQ3k3ReWkcudYTeDrejmJHsZSy9nExC3LLFBpFM9_rWWSce8tZD_78zidwdbHMT4qTt6fvH8I1TnZCh_89gN3movWPopXT2Mcdc38HVOPzlg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Model-Based+Fault+Detection+of+Continuous+Glucose+Sensor+Measurements&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Turksoy%2C+Kamuran&rft.au=Roy%2C+Anirban&rft.au=Cinar%2C+Ali&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=64&rft.issue=7&rft.spage=1437&rft.epage=1445&rft_id=info:doi/10.1109%2FTBME.2016.2535412&rft_id=info%3Apmid%2F26930674&rft.externalDocID=7419865 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |