Real-Time Model-Based Fault Detection of Continuous Glucose Sensor Measurements

Objective: Faults in subcutaneous glucose concentration readings with a continuous glucose monitoring (CGM) may affect the computation of insulin infusion rates that can lead to hypoglycemia or hyperglycemia in artificial pancreas control systems for patients with type 1 diabetes (T1D). Methods: Mul...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 64; no. 7; pp. 1437 - 1445
Main Authors Turksoy, Kamuran, Roy, Anirban, Cinar, Ali
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2016.2535412

Cover

Abstract Objective: Faults in subcutaneous glucose concentration readings with a continuous glucose monitoring (CGM) may affect the computation of insulin infusion rates that can lead to hypoglycemia or hyperglycemia in artificial pancreas control systems for patients with type 1 diabetes (T1D). Methods: Multivariable statistical monitoring methods are proposed for detection of faults in glucose concentration values reported by a subcutaneous glucose sensor. A nonlinear first principle glucose/insulin/meal dynamic model is developed. An unscented Kalman filter is used for state and parameter estimation of the nonlinear model. Principal component analysis models are developed and used for detection of dynamic changes. K-nearest neighbor classification algorithm is used for diagnosis of faults. Data from 51 subjects are used to assess the performance of the algorithm. Results: The results indicate that the proposed algorithm works successfully with 84.2% sensitivity. Overall, 155 (out of 184) of the CGM failures are detected with a 2.8-min average detection time. Conclusion: A novel algorithm that integrates data-driven and model-based methods is developed. The proposed method is able to detect CGM failures with a high rate of success. Significance: The proposed fault detection algorithm can decrease the effects of faults on insulin infusion rates and reduce the potential for hypo- or hyperglycemia for patients with T1D.
AbstractList Objective: Faults in subcutaneous glucose concentration readings with a continuous glucose monitoring (CGM) may affect the computation of insulin infusion rates that can lead to hypoglycemia or hyperglycemia in artificial pancreas control systems for patients with type 1 diabetes (T1D). Methods: Multivariable statistical monitoring methods are proposed for detection of faults in glucose concentration values reported by a subcutaneous glucose sensor. A nonlinear first principle glucose/insulin/meal dynamic model is developed. An unscented Kalman filter is used for state and parameter estimation of the nonlinear model. Principal component analysis models are developed and used for detection of dynamic changes. K-nearest neighbor classification algorithm is used for diagnosis of faults. Data from 51 subjects are used to assess the performance of the algorithm. Results: The results indicate that the proposed algorithm works successfully with 84.2% sensitivity. Overall, 155 (out of 184) of the CGM failures are detected with a 2.8-min average detection time. Conclusion: A novel algorithm that integrates data-driven and model-based methods is developed. The proposed method is able to detect CGM failures with a high rate of success. Significance: The proposed fault detection algorithm can decrease the effects of faults on insulin infusion rates and reduce the potential for hypo- or hyperglycemia for patients with T1D.
Faults in subcutaneous glucose concentration readings with a continuous glucose monitoring (CGM) may affect the computation of insulin infusion rates that can lead to hypoglycemia or hyperglycemia in artificial pancreas control systems for patients with type 1 diabetes (T1D).OBJECTIVEFaults in subcutaneous glucose concentration readings with a continuous glucose monitoring (CGM) may affect the computation of insulin infusion rates that can lead to hypoglycemia or hyperglycemia in artificial pancreas control systems for patients with type 1 diabetes (T1D).Multivariable statistical monitoring methods are proposed for detection of faults in glucose concentration values reported by a subcutaneous glucose sensor. A nonlinear first principle glucose/insulin/meal dynamic model is developed. An unscented Kalman filter is used for state and parameter estimation of the nonlinear model. Principal component analysis models are developed and used for detection of dynamic changes. K-nearest neighbor classification algorithm is used for diagnosis of faults. Data from 51 subjects are used to assess the performance of the algorithm.METHODSMultivariable statistical monitoring methods are proposed for detection of faults in glucose concentration values reported by a subcutaneous glucose sensor. A nonlinear first principle glucose/insulin/meal dynamic model is developed. An unscented Kalman filter is used for state and parameter estimation of the nonlinear model. Principal component analysis models are developed and used for detection of dynamic changes. K-nearest neighbor classification algorithm is used for diagnosis of faults. Data from 51 subjects are used to assess the performance of the algorithm.The results indicate that the proposed algorithm works successfully with 84.2% sensitivity. Overall, 155 (out of 184) of the CGM failures are detected with a 2.8-min average detection time.RESULTSThe results indicate that the proposed algorithm works successfully with 84.2% sensitivity. Overall, 155 (out of 184) of the CGM failures are detected with a 2.8-min average detection time.A novel algorithm that integrates data-driven and model-based methods is developed. The proposed method is able to detect CGM failures with a high rate of success.CONCLUSIONA novel algorithm that integrates data-driven and model-based methods is developed. The proposed method is able to detect CGM failures with a high rate of success.The proposed fault detection algorithm can decrease the effects of faults on insulin infusion rates and reduce the potential for hypo- or hyperglycemia for patients with T1D.SIGNIFICANCEThe proposed fault detection algorithm can decrease the effects of faults on insulin infusion rates and reduce the potential for hypo- or hyperglycemia for patients with T1D.
Faults in subcutaneous glucose concentration readings with a continuous glucose monitoring (CGM) may affect the computation of insulin infusion rates that can lead to hypoglycemia or hyperglycemia in artificial pancreas control systems for patients with type 1 diabetes (T1D). Multivariable statistical monitoring methods are proposed for detection of faults in glucose concentration values reported by a subcutaneous glucose sensor. A nonlinear first principle glucose/insulin/meal dynamic model is developed. An unscented Kalman filter is used for state and parameter estimation of the nonlinear model. Principal component analysis models are developed and used for detection of dynamic changes. K-nearest neighbor classification algorithm is used for diagnosis of faults. Data from 51 subjects are used to assess the performance of the algorithm. The results indicate that the proposed algorithm works successfully with 84.2% sensitivity. Overall, 155 (out of 184) of the CGM failures are detected with a 2.8-min average detection time. A novel algorithm that integrates data-driven and model-based methods is developed. The proposed method is able to detect CGM failures with a high rate of success. The proposed fault detection algorithm can decrease the effects of faults on insulin infusion rates and reduce the potential for hypo- or hyperglycemia for patients with T1D.
Author Turksoy, Kamuran
Cinar, Ali
Roy, Anirban
Author_xml – sequence: 1
  givenname: Kamuran
  surname: Turksoy
  fullname: Turksoy, Kamuran
  organization: Department of Biomedical EngineeringIllinois Institute of Technology
– sequence: 2
  givenname: Anirban
  surname: Roy
  fullname: Roy, Anirban
  organization: Medtronic Diabetes
– sequence: 3
  givenname: Ali
  orcidid: 0000-0002-1607-9943
  surname: Cinar
  fullname: Cinar, Ali
  email: cinar@iit.edu
  organization: Department of Chemical and Biological Engineering and the Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26930674$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoMoun78ABGk4MVL13w3PbrrJ7gIup5Dmk6h0iaapAf_vS27evDgaZjheWde5j1Eu847QOiU4DkhuLxaL1a3c4qJnFPBBCd0B82IECofW7KLZhgTlZe05AfoMMb3seWKy310QGXJsCz4DD2_gOnyddtDtvI1dPnCRKizOzN0KbuBBDa13mW-yZbepdYNfojZfTdYHyF7BRd9yFZg4hCgB5fiMdprTBfhZFuP0Nvd7Xr5kD893z8ur59yy3iZclZXigiwYBmjti4MU7QWDZYCQzHNma3qgivTNNxUjYFamKqoeFMCA0GAHaHLzd6P4D8HiEn3bbTQdcbBaFETRaUUpSR0RC_-oO9-CG50pykpOKOCKjVS51tqqHqo9UdoexO-9M-rRoBsABt8jAGaX4RgPcWhpzj0FIfexjFqij8a2yYzfTQF03b_Ks82yhYAfi8VnJRKCvYNpAmXMw
CODEN IEBEAX
CitedBy_id crossref_primary_10_1007_s12553_018_0269_8
crossref_primary_10_3390_s21217117
crossref_primary_10_1021_acs_iecr_2c03259
crossref_primary_10_1016_j_ifacol_2017_08_2477
crossref_primary_10_1109_JBHI_2024_3465893
crossref_primary_10_1016_j_eij_2024_100573
crossref_primary_10_3390_pr8050609
crossref_primary_10_3390_s21186263
crossref_primary_10_1049_iet_cta_2017_1119
crossref_primary_10_2196_10775
crossref_primary_10_2196_44384
crossref_primary_10_1016_j_jprocont_2024_103162
crossref_primary_10_1016_j_ifacol_2024_07_276
crossref_primary_10_1109_TSG_2020_3005238
crossref_primary_10_12677_SEA_2022_114075
crossref_primary_10_1016_j_bspc_2021_103196
crossref_primary_10_1007_s00521_020_05432_2
crossref_primary_10_1016_j_ifacol_2023_10_441
crossref_primary_10_1109_ACCESS_2019_2916785
crossref_primary_10_1016_j_ifacol_2018_11_646
crossref_primary_10_1109_JSEN_2023_3234594
crossref_primary_10_1177_1932296816658666
crossref_primary_10_1016_j_ifacol_2018_09_279
crossref_primary_10_1007_s12647_021_00518_1
crossref_primary_10_1109_JSEN_2018_2829345
Cites_doi 10.1089/dia.2006.8.617
10.1016/j.jprocont.2007.11.004
10.2337/dc13-2076
10.1177/193229680900300508
10.1177/1932296814553267
10.1186/1475-925X-11-45
10.1155/2011/368015
10.1089/dia.2013.0333
10.1016/S0098-1354(02)00161-8
10.1152/ajpendo.1986.250.5.E591
10.2337/dc12-0816
10.1152/ajpendo.00304.2001
10.1177/193229681000400611
10.1089/dia.2012.0283
10.1201/9780203911358
10.1152/ajpendo.1999.277.3.E481
10.1172/JCI110398
10.1177/1932296814524862
10.1109/TBME.2013.2244092
10.1177/1932296814543661
10.1016/j.compchemeng.2012.06.017
10.1210/jc.2013-4151
10.1111/pedi.12071
10.1177/193229680800200413
10.1021/ie3034015
10.1111/dom.12378
10.1016/j.automatica.2012.05.076
10.1016/j.bspc.2013.05.008
10.1186/1687-9856-2015-S1-P26
10.1109/ACC.2013.6580279
10.1016/S0140-6736(09)61998-X
10.1109/IEMBS.2011.6091226
10.1177/193229680700100305
10.1089/dia.2013.0139
10.1177/1932296813514502
10.1109/ASSPCC.2000.882463
10.2337/dc09-1080
10.1016/S0098-1354(02)00162-X
10.1201/9781420020106
10.1109/JPROC.2003.823141
10.1109/TBME.2013.2291777
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2016.2535412
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1445
ExternalDocumentID 26930674
10_1109_TBME_2016_2535412
7419865
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: 1DP3DK101077-01
  funderid: 10.13039/100000002
– fundername: Juvenile Diabetes Research Foundation International
  grantid: 17-2013-472
  funderid: 10.13039/100000901
– fundername: NIDDK NIH HHS
  grantid: DP3 DK101077
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-3db815ecec332cd7a382d5f0650e75ece3cbd748aff4abfaed5ab7b4f9e3e51e3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Sun Sep 28 12:25:11 EDT 2025
Mon Jun 30 08:38:35 EDT 2025
Thu Apr 03 07:01:17 EDT 2025
Wed Oct 01 04:08:43 EDT 2025
Thu Apr 24 23:12:37 EDT 2025
Wed Aug 27 02:30:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-3db815ecec332cd7a382d5f0650e75ece3cbd748aff4abfaed5ab7b4f9e3e51e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1607-9943
PMID 26930674
PQID 2174325288
PQPubID 85474
PageCount 9
ParticipantIDs proquest_miscellaneous_1826659612
proquest_journals_2174325288
crossref_primary_10_1109_TBME_2016_2535412
crossref_citationtrail_10_1109_TBME_2016_2535412
ieee_primary_7419865
pubmed_primary_26930674
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref14
ref31
cobelli (ref17) 1986; 250
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref38
ref16
ref19
van der merwe (ref37) 2004
cobelli (ref18) 1999; 277
cinar (ref15) 2003
ref24
ref23
man (ref36) 2014; 8
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
roy (ref39) 2015; 17
ref40
cinar (ref34) 2007
shen (ref27) 0
References_xml – start-page: 4373
  year: 0
  ident: ref27
  article-title: Online dropout detection in subcutaneously implanted continuous glucose monitoring
  publication-title: Proc IEEE Am Control Conf
– ident: ref20
  doi: 10.1089/dia.2006.8.617
– ident: ref35
  doi: 10.1016/j.jprocont.2007.11.004
– ident: ref12
  doi: 10.2337/dc13-2076
– year: 2004
  ident: ref37
  article-title: Sigma-point Kalman filters for probabilistic inference in dynamic state-space models
– ident: ref22
  doi: 10.1177/193229680900300508
– ident: ref30
  doi: 10.1177/1932296814553267
– ident: ref31
  doi: 10.1186/1475-925X-11-45
– ident: ref28
  doi: 10.1155/2011/368015
– ident: ref7
  doi: 10.1089/dia.2013.0333
– ident: ref14
  doi: 10.1016/S0098-1354(02)00161-8
– volume: 250
  start-page: 591e
  year: 1986
  ident: ref17
  article-title: Estimation of insulin sensitivity and glucose clearance from minimal model: new insights from labeled IVGTT
  publication-title: Amer J Physiol-Endocrinol Metabolism
  doi: 10.1152/ajpendo.1986.250.5.E591
– ident: ref4
  doi: 10.2337/dc12-0816
– ident: ref19
  doi: 10.1152/ajpendo.00304.2001
– ident: ref3
  doi: 10.1177/193229681000400611
– ident: ref5
  doi: 10.1089/dia.2012.0283
– year: 2003
  ident: ref15
  publication-title: Batch Fermentation Modeling Monitoring and Control
  doi: 10.1201/9780203911358
– volume: 277
  start-page: 481e
  year: 1999
  ident: ref18
  article-title: Minimal model sgoverestimation and siunderestimation: Improved accuracy by a Bayesian two-compartment model
  publication-title: Amer J Physiol-Endocrinol Metabolism
  doi: 10.1152/ajpendo.1999.277.3.E481
– ident: ref16
  doi: 10.1172/JCI110398
– ident: ref8
  doi: 10.1177/1932296814524862
– ident: ref26
  doi: 10.1109/TBME.2013.2244092
– ident: ref13
  doi: 10.1177/1932296814543661
– ident: ref41
  doi: 10.1016/j.compchemeng.2012.06.017
– ident: ref9
  doi: 10.1210/jc.2013-4151
– ident: ref6
  doi: 10.1111/pedi.12071
– ident: ref25
  doi: 10.1177/193229680800200413
– ident: ref44
  doi: 10.1021/ie3034015
– ident: ref40
  doi: 10.1111/dom.12378
– ident: ref43
  doi: 10.1016/j.automatica.2012.05.076
– ident: ref33
  doi: 10.1016/j.bspc.2013.05.008
– ident: ref38
  doi: 10.1186/1687-9856-2015-S1-P26
– ident: ref32
  doi: 10.1109/ACC.2013.6580279
– ident: ref2
  doi: 10.1016/S0140-6736(09)61998-X
– ident: ref29
  doi: 10.1109/IEMBS.2011.6091226
– ident: ref21
  doi: 10.1177/193229680700100305
– ident: ref11
  doi: 10.1089/dia.2013.0139
– volume: 8
  start-page: 26
  year: 2014
  ident: ref36
  article-title: The UVA/Padova type 1 diabetes simulator new features
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/1932296813514502
– ident: ref24
  doi: 10.1109/ASSPCC.2000.882463
– ident: ref1
  doi: 10.2337/dc09-1080
– ident: ref42
  doi: 10.1016/S0098-1354(02)00162-X
– year: 2007
  ident: ref34
  publication-title: Chemical Process Performance Evaluatoin
  doi: 10.1201/9781420020106
– volume: 17
  start-page: 18a
  year: 2015
  ident: ref39
  article-title: Physiological and technical stress test for medtronic's artificial pancreas system in a supervised outpatient setting
  publication-title: Diabetes Technol Therapeutics
– ident: ref23
  doi: 10.1109/JPROC.2003.823141
– ident: ref10
  doi: 10.1109/TBME.2013.2291777
SSID ssj0014846
Score 2.3800972
Snippet Objective: Faults in subcutaneous glucose concentration readings with a continuous glucose monitoring (CGM) may affect the computation of insulin infusion...
Faults in subcutaneous glucose concentration readings with a continuous glucose monitoring (CGM) may affect the computation of insulin infusion rates that can...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1437
SubjectTerms Algorithms
Biomedical measurement
Blood Glucose - analysis
Blood Glucose - metabolism
Change detection
Clinical Alarms
Computational modeling
Computer Simulation
Computer Systems
Continuous glucose sensor failures
Control systems
Diabetes mellitus
Diabetes mellitus (insulin dependent)
Diabetes Mellitus, Type 1 - blood
Diabetes Mellitus, Type 1 - diagnosis
Diabetes Mellitus, Type 1 - drug therapy
Diagnostic Errors - prevention & control
Drug Therapy, Computer-Assisted - methods
Dynamic models
Equipment Failure Analysis - methods
Failure
Fault detection
Fault diagnosis
First principles
Glucose
Glucose monitoring
Humans
Hyperglycemia
Hypoglycemia
Insulin
Insulin - administration & dosage
Insulin - blood
k-nearest neighbor (KNN) classification
Kalman filters
Models, Biological
Models, Statistical
Monitoring
Monitoring methods
Multivariable control
Nonlinear analysis
Pancreas
Parameter estimation
Patients
Performance assessment
Plasmas
Principal component analysis
principal component analysis (PCA)
Principal components analysis
Reproducibility of Results
Sensitivity and Specificity
Statistical methods
Sugar
unscented Kalman filter (UKF)
Title Real-Time Model-Based Fault Detection of Continuous Glucose Sensor Measurements
URI https://ieeexplore.ieee.org/document/7419865
https://www.ncbi.nlm.nih.gov/pubmed/26930674
https://www.proquest.com/docview/2174325288
https://www.proquest.com/docview/1826659612
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLbaHhAcCrQ8FgqaSpwQ2W7mlZkjhS5VpYAErdRblMl4pIpVgnaTS3894yQbHgLELY_JJBnbsj3-bAO88oRLlFonmQ42kS6KolHGx9OoIERQSiE5ivlHfX4lL67V9Q68mXJhELEHn-GcDvtYvm-qjrbKTqL2s0arXdjNjB5ytaaIgTRDUs4ijQLMrRwjmOnCnlye5mcE4tJzroSSKXWw4dQCUGfyF3XU91f5u6nZq5zlfci3HzsgTb7Ou9bNq9vf6jj-7988gP3R9mRvB2Z5CDtYH8C9nyoSHsCdfIy1H8Knz9GGTChFhFHDtFVyGhWeZ8uyW7XsPbY9hqtmTWBU4eqm7ppuwz4MCHj2JXrHzZrlP3YgN4_ganl2-e48GdsvJJWQtk2EdyZVWGElBK98VgrDvQpk02FG10XlfCZNGYIsXSjRq9JlTgaLAlWK4jHs1U2NT4Epr1Jns-CcQVmiMdJTobPMc26DNmoGiy0VimqsTU4tMlZF76MsbEE0LIiGxUjDGbyeHvk2FOb41-BDWv9p4Lj0MzjakroYRXdT9D4aV9yYGRxPt6PQUSSlrDEuZkFOmVZW08xPBhaZ5t5y1rM_v_M53OVkGfSI3yPYa9cdvoh2Tete9gz9HZp88Ek
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9QwDLaWReJx4LHLY2CBIHFCdHaaxGlyZGGHAbaLBLPS3qqmSSTEqIN22gu_nrjtlIcAcesjTdvYlu34sw3wzBEuUSqVZCqYRNooihq1i6dRQYiAiJ4cxfxULc7ku3M834EXYy6M974Dn_kpHXaxfLeuWtoqO4zaz2iFl-AySimxz9YaYwZS92k5szSKMDdyiGGmM3O4PMqPCcalphwFypR62HBqAqgy-YtC6jqs_N3Y7JTO_Cbk28_tsSZfpm1jp9W33yo5_u__3IIbg_XJXvbscht2fL0H13-qSbgHV_Ih2r4PHz5GKzKhJBFGLdNWyVFUeY7Ny3bVsNe-6VBcNVsHRjWuPtftut2wNz0Gnn2K_vH6guU_9iA3d-Bsfrx8tUiGBgxJJaRpEuGsTtFXvhKCVy4rheYOA1l1PqProrIuk7oMQZY2lN5haTMrg_HCY-rFXdit17W_DwwdptZkwVrtZem1lo5KnWWOcxOUxgnMtlQoqqE6OTXJWBWdlzIzBdGwIBoWAw0n8Hx85GtfmuNfg_dp_ceBw9JP4GBL6mIQ3k3ReWkcudYTeDrejmJHsZSy9nExC3LLFBpFM9_rWWSce8tZD_78zidwdbHMT4qTt6fvH8I1TnZCh_89gN3movWPopXT2Mcdc38HVOPzlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Model-Based+Fault+Detection+of+Continuous+Glucose+Sensor+Measurements&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Turksoy%2C+Kamuran&rft.au=Roy%2C+Anirban&rft.au=Cinar%2C+Ali&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=64&rft.issue=7&rft.spage=1437&rft.epage=1445&rft_id=info:doi/10.1109%2FTBME.2016.2535412&rft_id=info%3Apmid%2F26930674&rft.externalDocID=7419865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon