Understanding Patients' Behavior: Vision-Based Analysis of Seizure Disorders
A substantial proportion of patients with functional neurological disorders (FND) are being incorrectly diagnosed with epilepsy because their semiology resembles that of epileptic seizures (ES). Misdiagnosis may lead to unnecessary treatment and its associated complications. Diagnostic errors often...
        Saved in:
      
    
          | Published in | IEEE journal of biomedical and health informatics Vol. 23; no. 6; pp. 2583 - 2591 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.11.2019
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2168-2194 2168-2208 2168-2208  | 
| DOI | 10.1109/JBHI.2019.2895855 | 
Cover
| Abstract | A substantial proportion of patients with functional neurological disorders (FND) are being incorrectly diagnosed with epilepsy because their semiology resembles that of epileptic seizures (ES). Misdiagnosis may lead to unnecessary treatment and its associated complications. Diagnostic errors often result from an overreliance on specific clinical features. Furthermore, the lack of electrophysiological changes in patients with FND can also be seen in some forms of epilepsy, making diagnosis extremely challenging. Therefore, understanding semiology is an essential step for differentiating between ES and FND. Existing sensor-based and marker-based systems require physical contact with the body and are vulnerable to clinical situations such as patient positions, illumination changes, and motion discontinuities. Computer vision and deep learning are advancing to overcome these limitations encountered in the assessment of diseases and patient monitoring; however, they have not been investigated for seizure disorder scenarios. Here, we propose and compare two marker-free deep learning models, a landmark-based and a region-based model, both of which are capable of distinguishing between seizures from video recordings. We quantify semiology by using either a fusion of reference points and flow fields, or through the complete analysis of the body. Average leave-one-subject-out cross-validation accuracies for the landmark-based and region-based approaches of 68.1% and 79.6% in our dataset collected from 35 patients, reveal the benefit of video analytics to support automated identification of semiology in the challenging conditions of a hospital setting. | 
    
|---|---|
| AbstractList | A substantial proportion of patients with functional neurological disorders (FND) are being incorrectly diagnosed with epilepsy because their semiology resembles that of epileptic seizures (ES). Misdiagnosis may lead to unnecessary treatment and its associated complications. Diagnostic errors often result from an overreliance on specific clinical features. Furthermore, the lack of electrophysiological changes in patients with FND can also be seen in some forms of epilepsy, making diagnosis extremely challenging. Therefore, understanding semiology is an essential step for differentiating between ES and FND. Existing sensor-based and marker-based systems require physical contact with the body and are vulnerable to clinical situations such as patient positions, illumination changes, and motion discontinuities. Computer vision and deep learning are advancing to overcome these limitations encountered in the assessment of diseases and patient monitoring; however, they have not been investigated for seizure disorder scenarios. Here, we propose and compare two marker-free deep learning models, a landmark-based and a region-based model, both of which are capable of distinguishing between seizures from video recordings. We quantify semiology by using either a fusion of reference points and flow fields, or through the complete analysis of the body. Average leave-one-subject-out cross-validation accuracies for the landmark-based and region-based approaches of 68.1% and 79.6% in our dataset collected from 35 patients, reveal the benefit of video analytics to support automated identification of semiology in the challenging conditions of a hospital setting. A substantial proportion of patients with functional neurological disorders (FND) are being incorrectly diagnosed with epilepsy because their semiology resembles that of epileptic seizures (ES). Misdiagnosis may lead to unnecessary treatment and its associated complications. Diagnostic errors often result from an overreliance on specific clinical features. Furthermore, the lack of electrophysiological changes in patients with FND can also be seen in some forms of epilepsy, making diagnosis extremely challenging. Therefore, understanding semiology is an essential step for differentiating between ES and FND. Existing sensor-based and marker-based systems require physical contact with the body and are vulnerable to clinical situations such as patient positions, illumination changes, and motion discontinuities. Computer vision and deep learning are advancing to overcome these limitations encountered in the assessment of diseases and patient monitoring; however, they have not been investigated for seizure disorder scenarios. Here, we propose and compare two marker-free deep learning models, a landmark-based and a region-based model, both of which are capable of distinguishing between seizures from video recordings. We quantify semiology by using either a fusion of reference points and flow fields, or through the complete analysis of the body. Average leave-one-subject-out cross-validation accuracies for the landmark-based and region-based approaches of 68.1% and 79.6% in our dataset collected from 35 patients, reveal the benefit of video analytics to support automated identification of semiology in the challenging conditions of a hospital setting.A substantial proportion of patients with functional neurological disorders (FND) are being incorrectly diagnosed with epilepsy because their semiology resembles that of epileptic seizures (ES). Misdiagnosis may lead to unnecessary treatment and its associated complications. Diagnostic errors often result from an overreliance on specific clinical features. Furthermore, the lack of electrophysiological changes in patients with FND can also be seen in some forms of epilepsy, making diagnosis extremely challenging. Therefore, understanding semiology is an essential step for differentiating between ES and FND. Existing sensor-based and marker-based systems require physical contact with the body and are vulnerable to clinical situations such as patient positions, illumination changes, and motion discontinuities. Computer vision and deep learning are advancing to overcome these limitations encountered in the assessment of diseases and patient monitoring; however, they have not been investigated for seizure disorder scenarios. Here, we propose and compare two marker-free deep learning models, a landmark-based and a region-based model, both of which are capable of distinguishing between seizures from video recordings. We quantify semiology by using either a fusion of reference points and flow fields, or through the complete analysis of the body. Average leave-one-subject-out cross-validation accuracies for the landmark-based and region-based approaches of 68.1% and 79.6% in our dataset collected from 35 patients, reveal the benefit of video analytics to support automated identification of semiology in the challenging conditions of a hospital setting.  | 
    
| Author | Denman, Simon Sridharan, Sridha Ahmedt-Aristizabal, David Nguyen, Kien Fookes, Clinton Dionisio, Sasha  | 
    
| Author_xml | – sequence: 1 givenname: David orcidid: 0000-0003-1598-4930 surname: Ahmedt-Aristizabal fullname: Ahmedt-Aristizabal, David email: david.aristizabal@hdr.qut.edu.au organization: Image and Video Research Laboratory, SAIVT, Queensland University of Technology, Brisbane City, QLD, Australia – sequence: 2 givenname: Simon orcidid: 0000-0002-0983-5480 surname: Denman fullname: Denman, Simon email: s.denman@qut.edu.au organization: Image and Video Research Laboratory, SAIVT, Queensland University of Technology, Brisbane City, QLD, Australia – sequence: 3 givenname: Kien orcidid: 0000-0002-3466-9218 surname: Nguyen fullname: Nguyen, Kien email: k.nguyenthanh@qut.edu.au organization: Image and Video Research Laboratory, SAIVT, Queensland University of Technology, Brisbane City, QLD, Australia – sequence: 4 givenname: Sridha orcidid: 0000-0003-4316-9001 surname: Sridharan fullname: Sridharan, Sridha email: s.sridharan@qut.edu.au organization: Image and Video Research Laboratory, SAIVT, Queensland University of Technology, Brisbane City, QLD, Australia – sequence: 5 givenname: Sasha surname: Dionisio fullname: Dionisio, Sasha email: Sasha.Dionisio@mater.org.au organization: Department of Mater Advanced Epilepsy Unit, Mater Centre for Neurosciences, South Brisbane, QLD, Australia – sequence: 6 givenname: Clinton orcidid: 0000-0002-8515-6324 surname: Fookes fullname: Fookes, Clinton email: c.fookes@qut.edu.au organization: Image and Video Research Laboratory, SAIVT, Queensland University of Technology, Brisbane City, QLD, Australia  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30714935$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kUtLAzEUhYMovn-ACDLgQjdT85jMJO7a-qagoHUbMjO3GpkmNZkR9Neb0tZFF2aRhPCdc3Pv2UOb1llA6IjgHiFYXjwM7u57FBPZo0JywfkG2qUkFymlWGyu7kRmO-gwhA8cl4hPMt9GOwwXJJOM76LR2NbgQ6ttbexb8qRbA7YNZ8kA3vWXcf4yeTXBOJsOdIA66VvdfAcTEjdJnsH8dB6SKxOcn7scoK2JbgIcLs99NL65fhnepaPH2_thf5RWLJNtykpBs6wsyqImlda5FIRprGua64pIUTKSMxK_OGE4blDjsuRUaF5DQQQtgO2j84XvzLvPDkKrpiZU0DTaguuCoqSQPPZKeURP19AP1_nYRKRikUJQwWikTpZUV06hVjNvptp_q9WcIlAsgMq7EDxMVGXaOCtnW69NowhW81DUPBQ1D0UtQ4lKsqZcmf-nOV5oDAD88SKnEuec_QIcW5TW | 
    
| CODEN | IJBHA9 | 
    
| CitedBy_id | crossref_primary_10_1177_15357597241253426 crossref_primary_10_1109_JBHI_2024_3384453 crossref_primary_10_1111_epi_17605 crossref_primary_10_1016_j_cmpb_2022_107119 crossref_primary_10_1109_JBHI_2021_3049649 crossref_primary_10_1111_epi_17926 crossref_primary_10_1016_j_yebeh_2024_109735 crossref_primary_10_1109_JBHI_2020_2984238 crossref_primary_10_1109_ACCESS_2021_3091081 crossref_primary_10_1016_j_eswa_2022_119139 crossref_primary_10_1016_j_yebeh_2024_109736 crossref_primary_10_32604_cmc_2023_042869 crossref_primary_10_1155_2021_5531186 crossref_primary_10_1109_JIOT_2024_3367739 crossref_primary_10_1016_j_heliyon_2023_e16763 crossref_primary_10_1109_ACCESS_2021_3093469 crossref_primary_10_3390_s21144758  | 
    
| Cites_doi | 10.1016/j.yebeh.2018.07.028 10.1109/JBHI.2015.2446539 10.1371/journal.pone.0145669 10.1038/nrneurol.2011.24 10.1109/ICCV.2013.396 10.1109/WACV.2017.140 10.1046/j.1528-1157.43.s.3.14.x 10.1109/EMBC.2018.8513031 10.1109/ICCV.2017.322 10.1109/TPAMI.2016.2577031 10.1145/2647868.2654889 10.1016/S1567-4231(03)03015-6 10.1109/ICITEED.2016.7863293 10.21236/ADA623249 10.1109/CVPR.2016.511 10.1016/j.yebeh.2009.02.029 10.1109/CVPR.2018.00707 10.1056/NEJM200108023450501 10.1109/CVPR.2017.143 10.1109/ICCVW.2017.369 10.1109/RBME.2016.2543683 10.1109/CVPR.2017.590 10.1109/EMBC.2017.8037580 10.1016/j.yebeh.2008.11.007 10.1002/ana.22345 10.1145/3065386 10.1109/CVPR.2018.00044 10.1007/s10916-018-0932-7 10.1007/978-3-319-48881-3_34 10.1016/j.yebeh.2018.02.010 10.1109/CVPR.2017.638 10.1109/CVPR.2018.00546 10.1109/ICCV.2013.280 10.1109/TPAMI.2012.59 10.1214/12-AOS1063 10.1111/epi.13907 10.1053/seiz.2000.0409 10.1109/ICCV.2015.222  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 | 
    
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8  | 
    
| DOI | 10.1109/JBHI.2019.2895855 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2168-2208 | 
    
| EndPage | 2591 | 
    
| ExternalDocumentID | 30714935 10_1109_JBHI_2019_2895855 8629065  | 
    
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Mater Hospital Brisbane and Mater Centre for Neuroscience grantid: RG-17-008  | 
    
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 6IL ADZIZ CGR CHZPO CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8  | 
    
| ID | FETCH-LOGICAL-c349t-3b8244b7b7d1caa69813a0ad26ac198b31631307f3007fed0bb528a5de71827e3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2168-2194 2168-2208  | 
    
| IngestDate | Sun Sep 28 11:27:06 EDT 2025 Mon Jun 30 06:26:35 EDT 2025 Thu Jan 02 22:58:51 EST 2025 Wed Oct 01 03:39:57 EDT 2025 Thu Apr 24 22:55:14 EDT 2025 Wed Aug 27 02:40:12 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c349t-3b8244b7b7d1caa69813a0ad26ac198b31631307f3007fed0bb528a5de71827e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-1598-4930 0000-0003-4316-9001 0000-0002-0983-5480 0000-0002-8515-6324 0000-0002-3466-9218  | 
    
| PMID | 30714935 | 
    
| PQID | 2313782832 | 
    
| PQPubID | 85417 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | proquest_journals_2313782832 crossref_primary_10_1109_JBHI_2019_2895855 proquest_miscellaneous_2179516825 pubmed_primary_30714935 crossref_citationtrail_10_1109_JBHI_2019_2895855 ieee_primary_8629065  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-Nov. 2019-11-00 20191101  | 
    
| PublicationDateYYYYMMDD | 2019-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-Nov.  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Piscataway  | 
    
| PublicationTitle | IEEE journal of biomedical and health informatics | 
    
| PublicationTitleAbbrev | JBHI | 
    
| PublicationTitleAlternate | IEEE J Biomed Health Inform | 
    
| PublicationYear | 2019 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref12 ref14 chollet (ref40) 2015 gkioxari (ref31) 0 ref16 ref18 ng (ref44) 0 ref51 ref50 ref45 ref47 ref42 ref43 ref49 brox (ref38) 0 achilles (ref46) 2016; 6 ref8 ref7 simonyan (ref48) 2014 kingma (ref41) 2014 ref9 ref4 ref3 ref6 ref5 sirven (ref10) 1998; 11 cascino (ref13) 2002; 43 ref35 ahmedt-aristizabal (ref17) 2017; 58 ref34 ref37 ref36 ref30 ref33 ref32 soman (ref11) 0 ref2 ref1 ref39 kusmakar (ref15) 0 ref24 andriluka (ref27) 2017 ref26 ref25 ref20 ref22 ref21 pereira (ref19) 2018; 247 ref28 ref29 neverova (ref52) 0 lin (ref23) 0  | 
    
| References_xml | – ident: ref5 doi: 10.1016/j.yebeh.2018.07.028 – year: 2015 ident: ref40 article-title: Keras – ident: ref16 doi: 10.1109/JBHI.2015.2446539 – ident: ref7 doi: 10.1371/journal.pone.0145669 – ident: ref12 doi: 10.1038/nrneurol.2011.24 – ident: ref35 doi: 10.1109/ICCV.2013.396 – ident: ref43 doi: 10.1109/WACV.2017.140 – volume: 43 start-page: 80 year: 2002 ident: ref13 article-title: Video-EEG monitoring in adults publication-title: Epilepsia doi: 10.1046/j.1528-1157.43.s.3.14.x – ident: ref26 doi: 10.1109/EMBC.2018.8513031 – ident: ref21 doi: 10.1109/ICCV.2017.322 – ident: ref22 doi: 10.1109/TPAMI.2016.2577031 – start-page: 1006 year: 0 ident: ref15 article-title: Gaussian mixture model for the identification of psychogenic non-epileptic seizures using a wearable accelerometer sensor publication-title: Proc 38th Annu Int Conf IEEE Eng Med Biol Soc – ident: ref33 doi: 10.1145/2647868.2654889 – ident: ref6 doi: 10.1016/S1567-4231(03)03015-6 – start-page: 728 year: 0 ident: ref31 article-title: Chained predictions using convolutional neural networks publication-title: Proc Eur Conf Comput Vision – ident: ref49 doi: 10.1109/ICITEED.2016.7863293 – year: 2014 ident: ref41 article-title: ADAM: A method for stochastic optimization – start-page: 740 year: 0 ident: ref23 article-title: Microsoft COCO: Common objects in context publication-title: Proc Eur Conf Comput Vision – ident: ref20 doi: 10.21236/ADA623249 – ident: ref32 doi: 10.1109/CVPR.2016.511 – ident: ref51 doi: 10.1016/j.yebeh.2009.02.029 – ident: ref36 doi: 10.1109/CVPR.2018.00707 – ident: ref8 doi: 10.1056/NEJM200108023450501 – ident: ref25 doi: 10.1109/CVPR.2017.143 – ident: ref45 doi: 10.1109/ICCVW.2017.369 – volume: 247 start-page: 46 year: 2018 ident: ref19 article-title: Neurokinect 3.0: Multi-bed 3dvideo-EEG system for epilepsy clinical motion monitoring publication-title: Stud Health Technol Inform – ident: ref24 doi: 10.1109/RBME.2016.2543683 – year: 2014 ident: ref48 article-title: Very deep convolutional networks for large-scale image recognition – ident: ref29 doi: 10.1109/CVPR.2017.590 – ident: ref1 doi: 10.1109/EMBC.2017.8037580 – ident: ref18 doi: 10.1016/j.yebeh.2008.11.007 – year: 2017 ident: ref27 article-title: Posetrack: A benchmark for human pose estimation and tracking – ident: ref14 doi: 10.1002/ana.22345 – ident: ref47 doi: 10.1145/3065386 – volume: 11 start-page: 225 year: 1998 ident: ref10 article-title: Psychogenic nonepileptic seizures: Theoretic and clinical considerations publication-title: Neuropsychiatry Neuropsych Behavioral Neurol – ident: ref28 doi: 10.1109/CVPR.2018.00044 – ident: ref2 doi: 10.1007/s10916-018-0932-7 – start-page: 1665 year: 0 ident: ref11 article-title: Deep learning for health informatics: Recent trends and future directions publication-title: Porc Int Conf Adv Comput Commun Informat – ident: ref3 doi: 10.1007/978-3-319-48881-3_34 – ident: ref4 doi: 10.1016/j.yebeh.2018.02.010 – ident: ref39 doi: 10.1109/CVPR.2017.638 – ident: ref30 doi: 10.1109/CVPR.2018.00546 – volume: 6 start-page: 1 year: 2016 ident: ref46 article-title: Convolutional neural networks for real-time epileptic seizure detection publication-title: Computer Methods in Biomechanics and Biomedical Engineering Imaging & Visualization – ident: ref34 doi: 10.1109/ICCV.2013.280 – start-page: 4694 year: 0 ident: ref44 article-title: Beyond short snippets: Deep networks for video classification publication-title: Proc IEEE Conf Comput Vision Pattern Recognit – start-page: 25 year: 0 ident: ref38 article-title: High accuracy optical flow estimation based on a theory for warping publication-title: Proc Eur Conf Comput Vision – start-page: 474 year: 0 ident: ref52 article-title: Multi-scale deep learning for gesture detection and localization publication-title: Proc Eur Conf Comput Vis – ident: ref42 doi: 10.1109/TPAMI.2012.59 – ident: ref50 doi: 10.1214/12-AOS1063 – volume: 58 start-page: 1817 year: 2017 ident: ref17 article-title: Automated analysis of seizure semiology and brain electrical activity in presurgery evaluation of epilepsy: A focused survey publication-title: Epilepsia doi: 10.1111/epi.13907 – ident: ref9 doi: 10.1053/seiz.2000.0409 – ident: ref37 doi: 10.1109/ICCV.2015.222  | 
    
| SSID | ssj0000816896 | 
    
| Score | 2.4526803 | 
    
| Snippet | A substantial proportion of patients with functional neurological disorders (FND) are being incorrectly diagnosed with epilepsy because their semiology... | 
    
| SourceID | proquest pubmed crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 2583 | 
    
| SubjectTerms | Cameras Complications Computer architecture Computer vision Convulsions & seizures Deep Learning Diagnostic systems Disorders Epilepsy Epilepsy - diagnostic imaging Epileptic seizures Feature extraction functional neurological disorder Humans Image Interpretation, Computer-Assisted - methods Machine learning Markers Monitoring Monitoring, Physiologic - methods Neurological diseases Patients quantitative movement analysis Seizures Semiotics Video Recording - methods  | 
    
| Title | Understanding Patients' Behavior: Vision-Based Analysis of Seizure Disorders | 
    
| URI | https://ieeexplore.ieee.org/document/8629065 https://www.ncbi.nlm.nih.gov/pubmed/30714935 https://www.proquest.com/docview/2313782832 https://www.proquest.com/docview/2179516825  | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-QwEB_UB_Hl_Lo71y8iHAiHXdum2Ta-qSir3Iqge_hW8jELouzK7vbFv95JmpY78Q7fAk3TNDPJ_JLJ_Abgh3RZjZzyJtqIiEyAinRRZJEjt0KuMc2Ui0Ye3PT6w-z6QTwswFEbC4OI_vIZdl3R-_LtxFTuqOyY0Lckk7kIi3nRq2O12vMUn0DCp-NKqRDRRMyCEzOJ5fH1Wf_K3eOSXdpgEEIWf5khn1fl3xDTm5rLVRg0naxvmDx1q7numtd3_I2f_Ys1-BIwJzutlWQdFnC8AcuD4FXfhF_DPyNc2G1NtTo7ZIE8cXrCfvsQ9OiMbJ5lDZEJm4zYHT6-VlNkDYvn7CsMLy_uz_tRyLIQGZ7JecR1QSZe5zq3iVGqJ4uEq1hZEptJZKE5ITYydPmIE5wYoY21FmmhhEUya2mO_BssjSdj3AImFO14E6vsCOPMJloWxliTOsYq5ChFB-Jm0EsTKMhdJozn0m9FYlk6OZVOTmWQUwd-tq-81Pwb_6u86Ya7rRhGugO7jWTLMENnJeFaTuiIFrQOHLSPaW45h4ka46SiOrRaCdKmlJr4XmtE2zZ3kV-Si-2Pv7kDK65nddTiLizNpxXuEXyZ632vt2_N1uiQ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4BkwYvgw0G3WDzJKRJaClJbNOYN5iGCmvRpNGJt8g_rtIEalHbvPDX7-w4EUxs4s1SHMfxnX2ffb7vAPaVz2rklTczViZkAnRiikIkntwKucFcaB-NPLw86o_ExbW8XoIvbSwMIobLZ9j1xeDLd1Nb-aOyQ0LfikzmMryQQghZR2u1JyohhURIyJVTIaGpKKIbM0vV4cVp_9zf5FJd2mIQRpaPDFHIrPJvkBmMzdk6DJtu1ndMbrrVwnTt_V8Mjs_9jw14FVEnO6nV5DUs4eQNvBxGv_omDEYPY1zYj5psdf6ZRfrE2TH7FYLQk1Oyeo41VCZsOmY_8fd9NUPW8HjOt2B09u3qaz-JeRYSy4VaJNwUZORNz_RcZrU-UkXGdaodCc5mqjCcMBuZut6YE6AYo0uNkXmhpUMybHkP-VtYmUwnuANMatrzZk67MabCZUYV1jqbe84q5KhkB9Jm0EsbSch9LozbMmxGUlV6OZVeTmWUUwcO2lfuagaO_1Xe9MPdVowj3YHdRrJlnKPzkpAtJ3xES1oHPrWPaXZ5l4me4LSiOrReSdKmnJrYrjWibZv72C_F5bunv_kRVvtXw0E5OL_8_h7WfC_rGMZdWFnMKtwjMLMwH4IO_wEjIOvd | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+Patients%27+Behavior%3A+Vision-Based+Analysis+of+Seizure+Disorders&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Ahmedt-Aristizabal%2C+David&rft.au=Denman%2C+Simon&rft.au=Nguyen%2C+Kien&rft.au=Sridharan%2C+Sridha&rft.date=2019-11-01&rft.eissn=2168-2208&rft.volume=23&rft.issue=6&rft.spage=2583&rft_id=info:doi/10.1109%2FJBHI.2019.2895855&rft_id=info%3Apmid%2F30714935&rft.externalDocID=30714935 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |