Understanding Patients' Behavior: Vision-Based Analysis of Seizure Disorders

A substantial proportion of patients with functional neurological disorders (FND) are being incorrectly diagnosed with epilepsy because their semiology resembles that of epileptic seizures (ES). Misdiagnosis may lead to unnecessary treatment and its associated complications. Diagnostic errors often...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 23; no. 6; pp. 2583 - 2591
Main Authors Ahmedt-Aristizabal, David, Denman, Simon, Nguyen, Kien, Sridharan, Sridha, Dionisio, Sasha, Fookes, Clinton
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2019.2895855

Cover

Abstract A substantial proportion of patients with functional neurological disorders (FND) are being incorrectly diagnosed with epilepsy because their semiology resembles that of epileptic seizures (ES). Misdiagnosis may lead to unnecessary treatment and its associated complications. Diagnostic errors often result from an overreliance on specific clinical features. Furthermore, the lack of electrophysiological changes in patients with FND can also be seen in some forms of epilepsy, making diagnosis extremely challenging. Therefore, understanding semiology is an essential step for differentiating between ES and FND. Existing sensor-based and marker-based systems require physical contact with the body and are vulnerable to clinical situations such as patient positions, illumination changes, and motion discontinuities. Computer vision and deep learning are advancing to overcome these limitations encountered in the assessment of diseases and patient monitoring; however, they have not been investigated for seizure disorder scenarios. Here, we propose and compare two marker-free deep learning models, a landmark-based and a region-based model, both of which are capable of distinguishing between seizures from video recordings. We quantify semiology by using either a fusion of reference points and flow fields, or through the complete analysis of the body. Average leave-one-subject-out cross-validation accuracies for the landmark-based and region-based approaches of 68.1% and 79.6% in our dataset collected from 35 patients, reveal the benefit of video analytics to support automated identification of semiology in the challenging conditions of a hospital setting.
AbstractList A substantial proportion of patients with functional neurological disorders (FND) are being incorrectly diagnosed with epilepsy because their semiology resembles that of epileptic seizures (ES). Misdiagnosis may lead to unnecessary treatment and its associated complications. Diagnostic errors often result from an overreliance on specific clinical features. Furthermore, the lack of electrophysiological changes in patients with FND can also be seen in some forms of epilepsy, making diagnosis extremely challenging. Therefore, understanding semiology is an essential step for differentiating between ES and FND. Existing sensor-based and marker-based systems require physical contact with the body and are vulnerable to clinical situations such as patient positions, illumination changes, and motion discontinuities. Computer vision and deep learning are advancing to overcome these limitations encountered in the assessment of diseases and patient monitoring; however, they have not been investigated for seizure disorder scenarios. Here, we propose and compare two marker-free deep learning models, a landmark-based and a region-based model, both of which are capable of distinguishing between seizures from video recordings. We quantify semiology by using either a fusion of reference points and flow fields, or through the complete analysis of the body. Average leave-one-subject-out cross-validation accuracies for the landmark-based and region-based approaches of 68.1% and 79.6% in our dataset collected from 35 patients, reveal the benefit of video analytics to support automated identification of semiology in the challenging conditions of a hospital setting.
A substantial proportion of patients with functional neurological disorders (FND) are being incorrectly diagnosed with epilepsy because their semiology resembles that of epileptic seizures (ES). Misdiagnosis may lead to unnecessary treatment and its associated complications. Diagnostic errors often result from an overreliance on specific clinical features. Furthermore, the lack of electrophysiological changes in patients with FND can also be seen in some forms of epilepsy, making diagnosis extremely challenging. Therefore, understanding semiology is an essential step for differentiating between ES and FND. Existing sensor-based and marker-based systems require physical contact with the body and are vulnerable to clinical situations such as patient positions, illumination changes, and motion discontinuities. Computer vision and deep learning are advancing to overcome these limitations encountered in the assessment of diseases and patient monitoring; however, they have not been investigated for seizure disorder scenarios. Here, we propose and compare two marker-free deep learning models, a landmark-based and a region-based model, both of which are capable of distinguishing between seizures from video recordings. We quantify semiology by using either a fusion of reference points and flow fields, or through the complete analysis of the body. Average leave-one-subject-out cross-validation accuracies for the landmark-based and region-based approaches of 68.1% and 79.6% in our dataset collected from 35 patients, reveal the benefit of video analytics to support automated identification of semiology in the challenging conditions of a hospital setting.A substantial proportion of patients with functional neurological disorders (FND) are being incorrectly diagnosed with epilepsy because their semiology resembles that of epileptic seizures (ES). Misdiagnosis may lead to unnecessary treatment and its associated complications. Diagnostic errors often result from an overreliance on specific clinical features. Furthermore, the lack of electrophysiological changes in patients with FND can also be seen in some forms of epilepsy, making diagnosis extremely challenging. Therefore, understanding semiology is an essential step for differentiating between ES and FND. Existing sensor-based and marker-based systems require physical contact with the body and are vulnerable to clinical situations such as patient positions, illumination changes, and motion discontinuities. Computer vision and deep learning are advancing to overcome these limitations encountered in the assessment of diseases and patient monitoring; however, they have not been investigated for seizure disorder scenarios. Here, we propose and compare two marker-free deep learning models, a landmark-based and a region-based model, both of which are capable of distinguishing between seizures from video recordings. We quantify semiology by using either a fusion of reference points and flow fields, or through the complete analysis of the body. Average leave-one-subject-out cross-validation accuracies for the landmark-based and region-based approaches of 68.1% and 79.6% in our dataset collected from 35 patients, reveal the benefit of video analytics to support automated identification of semiology in the challenging conditions of a hospital setting.
Author Denman, Simon
Sridharan, Sridha
Ahmedt-Aristizabal, David
Nguyen, Kien
Fookes, Clinton
Dionisio, Sasha
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0003-1598-4930
  surname: Ahmedt-Aristizabal
  fullname: Ahmedt-Aristizabal, David
  email: david.aristizabal@hdr.qut.edu.au
  organization: Image and Video Research Laboratory, SAIVT, Queensland University of Technology, Brisbane City, QLD, Australia
– sequence: 2
  givenname: Simon
  orcidid: 0000-0002-0983-5480
  surname: Denman
  fullname: Denman, Simon
  email: s.denman@qut.edu.au
  organization: Image and Video Research Laboratory, SAIVT, Queensland University of Technology, Brisbane City, QLD, Australia
– sequence: 3
  givenname: Kien
  orcidid: 0000-0002-3466-9218
  surname: Nguyen
  fullname: Nguyen, Kien
  email: k.nguyenthanh@qut.edu.au
  organization: Image and Video Research Laboratory, SAIVT, Queensland University of Technology, Brisbane City, QLD, Australia
– sequence: 4
  givenname: Sridha
  orcidid: 0000-0003-4316-9001
  surname: Sridharan
  fullname: Sridharan, Sridha
  email: s.sridharan@qut.edu.au
  organization: Image and Video Research Laboratory, SAIVT, Queensland University of Technology, Brisbane City, QLD, Australia
– sequence: 5
  givenname: Sasha
  surname: Dionisio
  fullname: Dionisio, Sasha
  email: Sasha.Dionisio@mater.org.au
  organization: Department of Mater Advanced Epilepsy Unit, Mater Centre for Neurosciences, South Brisbane, QLD, Australia
– sequence: 6
  givenname: Clinton
  orcidid: 0000-0002-8515-6324
  surname: Fookes
  fullname: Fookes, Clinton
  email: c.fookes@qut.edu.au
  organization: Image and Video Research Laboratory, SAIVT, Queensland University of Technology, Brisbane City, QLD, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30714935$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLAzEUhYMovn-ACDLgQjdT85jMJO7a-qagoHUbMjO3GpkmNZkR9Neb0tZFF2aRhPCdc3Pv2UOb1llA6IjgHiFYXjwM7u57FBPZo0JywfkG2qUkFymlWGyu7kRmO-gwhA8cl4hPMt9GOwwXJJOM76LR2NbgQ6ttbexb8qRbA7YNZ8kA3vWXcf4yeTXBOJsOdIA66VvdfAcTEjdJnsH8dB6SKxOcn7scoK2JbgIcLs99NL65fhnepaPH2_thf5RWLJNtykpBs6wsyqImlda5FIRprGua64pIUTKSMxK_OGE4blDjsuRUaF5DQQQtgO2j84XvzLvPDkKrpiZU0DTaguuCoqSQPPZKeURP19AP1_nYRKRikUJQwWikTpZUV06hVjNvptp_q9WcIlAsgMq7EDxMVGXaOCtnW69NowhW81DUPBQ1D0UtQ4lKsqZcmf-nOV5oDAD88SKnEuec_QIcW5TW
CODEN IJBHA9
CitedBy_id crossref_primary_10_1177_15357597241253426
crossref_primary_10_1109_JBHI_2024_3384453
crossref_primary_10_1111_epi_17605
crossref_primary_10_1016_j_cmpb_2022_107119
crossref_primary_10_1109_JBHI_2021_3049649
crossref_primary_10_1111_epi_17926
crossref_primary_10_1016_j_yebeh_2024_109735
crossref_primary_10_1109_JBHI_2020_2984238
crossref_primary_10_1109_ACCESS_2021_3091081
crossref_primary_10_1016_j_eswa_2022_119139
crossref_primary_10_1016_j_yebeh_2024_109736
crossref_primary_10_32604_cmc_2023_042869
crossref_primary_10_1155_2021_5531186
crossref_primary_10_1109_JIOT_2024_3367739
crossref_primary_10_1016_j_heliyon_2023_e16763
crossref_primary_10_1109_ACCESS_2021_3093469
crossref_primary_10_3390_s21144758
Cites_doi 10.1016/j.yebeh.2018.07.028
10.1109/JBHI.2015.2446539
10.1371/journal.pone.0145669
10.1038/nrneurol.2011.24
10.1109/ICCV.2013.396
10.1109/WACV.2017.140
10.1046/j.1528-1157.43.s.3.14.x
10.1109/EMBC.2018.8513031
10.1109/ICCV.2017.322
10.1109/TPAMI.2016.2577031
10.1145/2647868.2654889
10.1016/S1567-4231(03)03015-6
10.1109/ICITEED.2016.7863293
10.21236/ADA623249
10.1109/CVPR.2016.511
10.1016/j.yebeh.2009.02.029
10.1109/CVPR.2018.00707
10.1056/NEJM200108023450501
10.1109/CVPR.2017.143
10.1109/ICCVW.2017.369
10.1109/RBME.2016.2543683
10.1109/CVPR.2017.590
10.1109/EMBC.2017.8037580
10.1016/j.yebeh.2008.11.007
10.1002/ana.22345
10.1145/3065386
10.1109/CVPR.2018.00044
10.1007/s10916-018-0932-7
10.1007/978-3-319-48881-3_34
10.1016/j.yebeh.2018.02.010
10.1109/CVPR.2017.638
10.1109/CVPR.2018.00546
10.1109/ICCV.2013.280
10.1109/TPAMI.2012.59
10.1214/12-AOS1063
10.1111/epi.13907
10.1053/seiz.2000.0409
10.1109/ICCV.2015.222
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2019.2895855
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 2591
ExternalDocumentID 30714935
10_1109_JBHI_2019_2895855
8629065
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Mater Hospital Brisbane and Mater Centre for Neuroscience
  grantid: RG-17-008
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
6IL
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c349t-3b8244b7b7d1caa69813a0ad26ac198b31631307f3007fed0bb528a5de71827e3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Sun Sep 28 11:27:06 EDT 2025
Mon Jun 30 06:26:35 EDT 2025
Thu Jan 02 22:58:51 EST 2025
Wed Oct 01 03:39:57 EDT 2025
Thu Apr 24 22:55:14 EDT 2025
Wed Aug 27 02:40:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-3b8244b7b7d1caa69813a0ad26ac198b31631307f3007fed0bb528a5de71827e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1598-4930
0000-0003-4316-9001
0000-0002-0983-5480
0000-0002-8515-6324
0000-0002-3466-9218
PMID 30714935
PQID 2313782832
PQPubID 85417
PageCount 9
ParticipantIDs proquest_journals_2313782832
crossref_primary_10_1109_JBHI_2019_2895855
proquest_miscellaneous_2179516825
pubmed_primary_30714935
crossref_citationtrail_10_1109_JBHI_2019_2895855
ieee_primary_8629065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Nov.
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref14
chollet (ref40) 2015
gkioxari (ref31) 0
ref16
ref18
ng (ref44) 0
ref51
ref50
ref45
ref47
ref42
ref43
ref49
brox (ref38) 0
achilles (ref46) 2016; 6
ref8
ref7
simonyan (ref48) 2014
kingma (ref41) 2014
ref9
ref4
ref3
ref6
ref5
sirven (ref10) 1998; 11
cascino (ref13) 2002; 43
ref35
ahmedt-aristizabal (ref17) 2017; 58
ref34
ref37
ref36
ref30
ref33
ref32
soman (ref11) 0
ref2
ref1
ref39
kusmakar (ref15) 0
ref24
andriluka (ref27) 2017
ref26
ref25
ref20
ref22
ref21
pereira (ref19) 2018; 247
ref28
ref29
neverova (ref52) 0
lin (ref23) 0
References_xml – ident: ref5
  doi: 10.1016/j.yebeh.2018.07.028
– year: 2015
  ident: ref40
  article-title: Keras
– ident: ref16
  doi: 10.1109/JBHI.2015.2446539
– ident: ref7
  doi: 10.1371/journal.pone.0145669
– ident: ref12
  doi: 10.1038/nrneurol.2011.24
– ident: ref35
  doi: 10.1109/ICCV.2013.396
– ident: ref43
  doi: 10.1109/WACV.2017.140
– volume: 43
  start-page: 80
  year: 2002
  ident: ref13
  article-title: Video-EEG monitoring in adults
  publication-title: Epilepsia
  doi: 10.1046/j.1528-1157.43.s.3.14.x
– ident: ref26
  doi: 10.1109/EMBC.2018.8513031
– ident: ref21
  doi: 10.1109/ICCV.2017.322
– ident: ref22
  doi: 10.1109/TPAMI.2016.2577031
– start-page: 1006
  year: 0
  ident: ref15
  article-title: Gaussian mixture model for the identification of psychogenic non-epileptic seizures using a wearable accelerometer sensor
  publication-title: Proc 38th Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref33
  doi: 10.1145/2647868.2654889
– ident: ref6
  doi: 10.1016/S1567-4231(03)03015-6
– start-page: 728
  year: 0
  ident: ref31
  article-title: Chained predictions using convolutional neural networks
  publication-title: Proc Eur Conf Comput Vision
– ident: ref49
  doi: 10.1109/ICITEED.2016.7863293
– year: 2014
  ident: ref41
  article-title: ADAM: A method for stochastic optimization
– start-page: 740
  year: 0
  ident: ref23
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proc Eur Conf Comput Vision
– ident: ref20
  doi: 10.21236/ADA623249
– ident: ref32
  doi: 10.1109/CVPR.2016.511
– ident: ref51
  doi: 10.1016/j.yebeh.2009.02.029
– ident: ref36
  doi: 10.1109/CVPR.2018.00707
– ident: ref8
  doi: 10.1056/NEJM200108023450501
– ident: ref25
  doi: 10.1109/CVPR.2017.143
– ident: ref45
  doi: 10.1109/ICCVW.2017.369
– volume: 247
  start-page: 46
  year: 2018
  ident: ref19
  article-title: Neurokinect 3.0: Multi-bed 3dvideo-EEG system for epilepsy clinical motion monitoring
  publication-title: Stud Health Technol Inform
– ident: ref24
  doi: 10.1109/RBME.2016.2543683
– year: 2014
  ident: ref48
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref29
  doi: 10.1109/CVPR.2017.590
– ident: ref1
  doi: 10.1109/EMBC.2017.8037580
– ident: ref18
  doi: 10.1016/j.yebeh.2008.11.007
– year: 2017
  ident: ref27
  article-title: Posetrack: A benchmark for human pose estimation and tracking
– ident: ref14
  doi: 10.1002/ana.22345
– ident: ref47
  doi: 10.1145/3065386
– volume: 11
  start-page: 225
  year: 1998
  ident: ref10
  article-title: Psychogenic nonepileptic seizures: Theoretic and clinical considerations
  publication-title: Neuropsychiatry Neuropsych Behavioral Neurol
– ident: ref28
  doi: 10.1109/CVPR.2018.00044
– ident: ref2
  doi: 10.1007/s10916-018-0932-7
– start-page: 1665
  year: 0
  ident: ref11
  article-title: Deep learning for health informatics: Recent trends and future directions
  publication-title: Porc Int Conf Adv Comput Commun Informat
– ident: ref3
  doi: 10.1007/978-3-319-48881-3_34
– ident: ref4
  doi: 10.1016/j.yebeh.2018.02.010
– ident: ref39
  doi: 10.1109/CVPR.2017.638
– ident: ref30
  doi: 10.1109/CVPR.2018.00546
– volume: 6
  start-page: 1
  year: 2016
  ident: ref46
  article-title: Convolutional neural networks for real-time epileptic seizure detection
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering Imaging & Visualization
– ident: ref34
  doi: 10.1109/ICCV.2013.280
– start-page: 4694
  year: 0
  ident: ref44
  article-title: Beyond short snippets: Deep networks for video classification
  publication-title: Proc IEEE Conf Comput Vision Pattern Recognit
– start-page: 25
  year: 0
  ident: ref38
  article-title: High accuracy optical flow estimation based on a theory for warping
  publication-title: Proc Eur Conf Comput Vision
– start-page: 474
  year: 0
  ident: ref52
  article-title: Multi-scale deep learning for gesture detection and localization
  publication-title: Proc Eur Conf Comput Vis
– ident: ref42
  doi: 10.1109/TPAMI.2012.59
– ident: ref50
  doi: 10.1214/12-AOS1063
– volume: 58
  start-page: 1817
  year: 2017
  ident: ref17
  article-title: Automated analysis of seizure semiology and brain electrical activity in presurgery evaluation of epilepsy: A focused survey
  publication-title: Epilepsia
  doi: 10.1111/epi.13907
– ident: ref9
  doi: 10.1053/seiz.2000.0409
– ident: ref37
  doi: 10.1109/ICCV.2015.222
SSID ssj0000816896
Score 2.4526803
Snippet A substantial proportion of patients with functional neurological disorders (FND) are being incorrectly diagnosed with epilepsy because their semiology...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2583
SubjectTerms Cameras
Complications
Computer architecture
Computer vision
Convulsions & seizures
Deep Learning
Diagnostic systems
Disorders
Epilepsy
Epilepsy - diagnostic imaging
Epileptic seizures
Feature extraction
functional neurological disorder
Humans
Image Interpretation, Computer-Assisted - methods
Machine learning
Markers
Monitoring
Monitoring, Physiologic - methods
Neurological diseases
Patients
quantitative movement analysis
Seizures
Semiotics
Video Recording - methods
Title Understanding Patients' Behavior: Vision-Based Analysis of Seizure Disorders
URI https://ieeexplore.ieee.org/document/8629065
https://www.ncbi.nlm.nih.gov/pubmed/30714935
https://www.proquest.com/docview/2313782832
https://www.proquest.com/docview/2179516825
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-QwEB_UB_Hl_Lo71y8iHAiHXdum2Ta-qSir3Iqge_hW8jELouzK7vbFv95JmpY78Q7fAk3TNDPJ_JLJ_Abgh3RZjZzyJtqIiEyAinRRZJEjt0KuMc2Ui0Ye3PT6w-z6QTwswFEbC4OI_vIZdl3R-_LtxFTuqOyY0Lckk7kIi3nRq2O12vMUn0DCp-NKqRDRRMyCEzOJ5fH1Wf_K3eOSXdpgEEIWf5khn1fl3xDTm5rLVRg0naxvmDx1q7numtd3_I2f_Ys1-BIwJzutlWQdFnC8AcuD4FXfhF_DPyNc2G1NtTo7ZIE8cXrCfvsQ9OiMbJ5lDZEJm4zYHT6-VlNkDYvn7CsMLy_uz_tRyLIQGZ7JecR1QSZe5zq3iVGqJ4uEq1hZEptJZKE5ITYydPmIE5wYoY21FmmhhEUya2mO_BssjSdj3AImFO14E6vsCOPMJloWxliTOsYq5ChFB-Jm0EsTKMhdJozn0m9FYlk6OZVOTmWQUwd-tq-81Pwb_6u86Ya7rRhGugO7jWTLMENnJeFaTuiIFrQOHLSPaW45h4ka46SiOrRaCdKmlJr4XmtE2zZ3kV-Si-2Pv7kDK65nddTiLizNpxXuEXyZ632vt2_N1uiQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4BkwYvgw0G3WDzJKRJaClJbNOYN5iGCmvRpNGJt8g_rtIEalHbvPDX7-w4EUxs4s1SHMfxnX2ffb7vAPaVz2rklTczViZkAnRiikIkntwKucFcaB-NPLw86o_ExbW8XoIvbSwMIobLZ9j1xeDLd1Nb-aOyQ0LfikzmMryQQghZR2u1JyohhURIyJVTIaGpKKIbM0vV4cVp_9zf5FJd2mIQRpaPDFHIrPJvkBmMzdk6DJtu1ndMbrrVwnTt_V8Mjs_9jw14FVEnO6nV5DUs4eQNvBxGv_omDEYPY1zYj5psdf6ZRfrE2TH7FYLQk1Oyeo41VCZsOmY_8fd9NUPW8HjOt2B09u3qaz-JeRYSy4VaJNwUZORNz_RcZrU-UkXGdaodCc5mqjCcMBuZut6YE6AYo0uNkXmhpUMybHkP-VtYmUwnuANMatrzZk67MabCZUYV1jqbe84q5KhkB9Jm0EsbSch9LozbMmxGUlV6OZVeTmWUUwcO2lfuagaO_1Xe9MPdVowj3YHdRrJlnKPzkpAtJ3xES1oHPrWPaXZ5l4me4LSiOrReSdKmnJrYrjWibZv72C_F5bunv_kRVvtXw0E5OL_8_h7WfC_rGMZdWFnMKtwjMLMwH4IO_wEjIOvd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+Patients%27+Behavior%3A+Vision-Based+Analysis+of+Seizure+Disorders&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Ahmedt-Aristizabal%2C+David&rft.au=Denman%2C+Simon&rft.au=Nguyen%2C+Kien&rft.au=Sridharan%2C+Sridha&rft.date=2019-11-01&rft.eissn=2168-2208&rft.volume=23&rft.issue=6&rft.spage=2583&rft_id=info:doi/10.1109%2FJBHI.2019.2895855&rft_id=info%3Apmid%2F30714935&rft.externalDocID=30714935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon