Multiclass Classification of Word Imagination Speech With Hybrid Connectivity Features
Objective: In this study, electroencephalography data of imagined words were classified using four different feature extraction approaches. Eight subjects were recruited for the recording of imagination with five different words, namely; "go," "back," "left," "righ...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 65; no. 10; pp. 2168 - 2177 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2017.2786251 |
Cover
Abstract | Objective: In this study, electroencephalography data of imagined words were classified using four different feature extraction approaches. Eight subjects were recruited for the recording of imagination with five different words, namely; "go," "back," "left," "right," and "stop." Methods: One hundred trials for each word were recorded for both imagination and perception, although this study utilized only imagination data. Two different connectivity methods were applied, namely; a covariance-based and a maximum linear cross-correlation-based connectivity measure. These connectivity measures were further computed to extract the phase-only data as an additional method of feature extraction. In addition, four different channel selections were used. The final connectivity matrix from each of the four methods was vectorized and used as the feature vector for the classifier. To classify EEG data, a sigmoid activation function-based linear extreme learning machine was used. Result and Significance: We achieved a maximum classification rate of 40.30% (p <; 0.007) and 87.90% (p <; 0.003) in multiclass (five classes) and binary settings, respectively. Thus, our results suggested that EEG responses to imagined speech could be successfully classified using an extreme learning machine. Conclusion: This study involving the classification of imagined words can be a milestone contribution toward the development of practical brain-computer interface systems using silent speech. |
---|---|
AbstractList | In this study, electroencephalography data of imagined words were classified using four different feature extraction approaches. Eight subjects were recruited for the recording of imagination with five different words, namely; 'go', 'back', 'left', 'right', and 'stop'.OBJECTIVEIn this study, electroencephalography data of imagined words were classified using four different feature extraction approaches. Eight subjects were recruited for the recording of imagination with five different words, namely; 'go', 'back', 'left', 'right', and 'stop'. In this study, electroencephalography data of imagined words were classified using four different feature extraction approaches. Eight subjects were recruited for the recording of imagination with five different words, namely; 'go', 'back', 'left', 'right', and 'stop'. Objective: In this study, electroencephalography data of imagined words were classified using four different feature extraction approaches. Eight subjects were recruited for the recording of imagination with five different words, namely; "go," "back," "left," "right," and "stop." Methods: One hundred trials for each word were recorded for both imagination and perception, although this study utilized only imagination data. Two different connectivity methods were applied, namely; a covariance-based and a maximum linear cross-correlation-based connectivity measure. These connectivity measures were further computed to extract the phase-only data as an additional method of feature extraction. In addition, four different channel selections were used. The final connectivity matrix from each of the four methods was vectorized and used as the feature vector for the classifier. To classify EEG data, a sigmoid activation function-based linear extreme learning machine was used. Result and Significance: We achieved a maximum classification rate of 40.30% (p <; 0.007) and 87.90% (p <; 0.003) in multiclass (five classes) and binary settings, respectively. Thus, our results suggested that EEG responses to imagined speech could be successfully classified using an extreme learning machine. Conclusion: This study involving the classification of imagined words can be a milestone contribution toward the development of practical brain-computer interface systems using silent speech. |
Author | Qureshi, Muhammad Naveed Iqbal Cho, Dongrae Min, Beomjun Choi, Woosu Lee, Boreom Park, Hyeong-Jun |
Author_xml | – sequence: 1 givenname: Muhammad Naveed Iqbal orcidid: 0000-0001-5338-2354 surname: Qureshi fullname: Qureshi, Muhammad Naveed Iqbal organization: Department of Biomedical Science and EngineeringInstitute of Integrated Technology, Gwangju Institute of Science and Technology – sequence: 2 givenname: Beomjun surname: Min fullname: Min, Beomjun organization: Department of NeuropsychiatrySeoul National University Hospital – sequence: 3 givenname: Hyeong-Jun surname: Park fullname: Park, Hyeong-Jun organization: Department of Biomedical Science and EngineeringInstitute of Integrated Technology, Gwangju Institute of Science and Technology – sequence: 4 givenname: Dongrae surname: Cho fullname: Cho, Dongrae organization: Department of Biomedical Science and EngineeringInstitute of Integrated Technology, Gwangju Institute of Science and Technology – sequence: 5 givenname: Woosu orcidid: 0000-0003-3924-8225 surname: Choi fullname: Choi, Woosu organization: Korean Medicine Fundamental Research DivisionKorea Institute of Oriental Medicine – sequence: 6 givenname: Boreom orcidid: 0000-0002-7233-5833 surname: Lee fullname: Lee, Boreom email: leebr@gist.ac.kr organization: Gwangju, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29989953$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9rGzEQxUVJaJy0H6AUykIuuayr0Z_d1bE1SRNI6KGmOQpJHjUK65UraQv-9lnHTg855DLDDL83DO-dkqMhDkjIJ6BzAKq-Lr_fXc4ZhXbO2q5hEt6RGUjZ1UxyOCIzSqGrFVPihJzm_DiNohPNe3LClOqUknxGft-NfQmuNzlXi10NPjhTQhyq6Kv7mFbVzdr8CcN-92uD6B6q-1AequutTWFVLeIwoCvhXyjb6gpNGRPmD-TYmz7jx0M_I8ury-Xiur79-eNm8e22dlyoUnPVKouWGcEtVRIVeMmRM-qd6qh1K-eYN7YTXjIhfAOCWQSJRnjrKedn5GJ_dpPi3xFz0euQHfa9GTCOWTPadFxy2rQTev4KfYxjGqbnNANooVECYKK-HKjRrnGlNymsTdrqF8MmoN0DLsWcE3rtQnn2piQTeg1U76LRu2j0Lhp9iGZSwivly_G3NJ_3moCI__mOcdGA5E8SxJkM |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1049_sil2_12059 crossref_primary_10_1109_LSENS_2022_3142349 crossref_primary_10_1109_TCDS_2024_3431224 crossref_primary_10_1016_j_neuri_2022_100091 crossref_primary_10_1007_s11571_022_09819_w crossref_primary_10_1109_ACCESS_2019_2946264 crossref_primary_10_1109_TIM_2023_3300473 crossref_primary_10_1007_s13246_024_01417_w crossref_primary_10_1016_j_bspc_2022_104055 crossref_primary_10_1109_TIM_2023_3241973 crossref_primary_10_1088_1741_2552_acc976 crossref_primary_10_1016_j_dsp_2022_103435 crossref_primary_10_1109_ACCESS_2020_3015292 crossref_primary_10_1002_ima_22655 crossref_primary_10_1007_s10548_025_01100_7 crossref_primary_10_1016_j_bspc_2022_104379 crossref_primary_10_1088_1741_2552_ac13c0 crossref_primary_10_1088_1741_2552_ac9a01 crossref_primary_10_1016_j_cmpb_2022_107022 crossref_primary_10_1088_1741_2552_abd10e crossref_primary_10_1007_s13198_021_01283_9 crossref_primary_10_1109_LSENS_2024_3354288 crossref_primary_10_1088_2399_6528_ad0197 crossref_primary_10_1109_TIM_2022_3216673 crossref_primary_10_1109_TIM_2023_3277930 crossref_primary_10_4218_etrij_2021_0118 crossref_primary_10_1016_j_bbr_2024_115295 crossref_primary_10_3390_s22186975 crossref_primary_10_3389_fnhum_2023_1186594 crossref_primary_10_1109_TNSRE_2021_3096874 crossref_primary_10_2139_ssrn_4045844 crossref_primary_10_1007_s11042_023_15664_8 crossref_primary_10_1088_2631_8695_ad9ceb crossref_primary_10_1007_s42979_024_03402_2 crossref_primary_10_1134_S0362119722320019 crossref_primary_10_1016_j_bspc_2021_103224 crossref_primary_10_1016_j_bspc_2023_104933 crossref_primary_10_1109_TBME_2024_3376603 crossref_primary_10_1088_1741_2552_ac9e1d crossref_primary_10_1109_TNSRE_2020_3040289 crossref_primary_10_1016_j_bspc_2022_103526 crossref_primary_10_34014_2227_1848_2022_2_81_91 crossref_primary_10_1016_j_imu_2024_101491 crossref_primary_10_1109_ACCESS_2020_3016756 crossref_primary_10_1155_2024_8742261 |
Cites_doi | 10.1371/journal.pone.0030371 10.1088/1741-2560/8/4/046028 10.1016/j.measurement.2016.05.054 10.1155/2011/156869 10.1038/srep25803 10.1038/nrneurol.2016.113 10.1016/j.clinph.2008.11.015 10.1016/j.specom.2010.01.001 10.1016/j.neucom.2005.12.126 10.1063/1.4959983 10.1038/nrn3158 10.1093/gigascience/gix034 10.1109/TIM.2015.2418684 10.1088/1741-2560/7/4/046006 10.1109/TNN.2006.875977 10.1088/1741-2552/aa69d1 10.1006/nimg.1997.0286 10.1115/1.4028165 10.3389/fninf.2017.00059 10.1016/j.bspc.2016.10.012 10.1007/s41133-016-0001-z 10.1371/journal.pone.0160697 10.1007/978-3-642-02574-7_5 10.1016/j.neuroimage.2012.04.062 10.1016/j.neuroimage.2005.12.003 10.1088/1741-2560/4/2/R01 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2017.2786251 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 2177 |
ExternalDocumentID | 29989953 10_1109_TBME_2017_2786251 8234615 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea – fundername: Ministry of Science and ICT grantid: 2017009068 – fundername: Basic Science Research Program – fundername: GIST Research Institute |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c349t-3979beb2a43b095e91f53e320fc980bcdcc2fab84f5244f6142be15ea4fbf033 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Sun Sep 28 01:13:42 EDT 2025 Mon Jun 30 08:30:41 EDT 2025 Thu Apr 03 07:05:09 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 Tue Jul 01 03:28:30 EDT 2025 Wed Aug 27 02:52:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-3979beb2a43b095e91f53e320fc980bcdcc2fab84f5244f6142be15ea4fbf033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5338-2354 0000-0002-7233-5833 0000-0003-3924-8225 |
PMID | 29989953 |
PQID | 2117169411 |
PQPubID | 85474 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2068353067 proquest_journals_2117169411 pubmed_primary_29989953 ieee_primary_8234615 crossref_citationtrail_10_1109_TBME_2017_2786251 crossref_primary_10_1109_TBME_2017_2786251 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | brigham (ref12) 0 ref13 ref15 ref14 ref31 ref30 bellman (ref22) 2015 ref11 ref32 ref2 ref1 ref17 qureshi (ref10) 0 ref16 ref18 qureshi (ref28) 0 makeig (ref23) 1996; 2 radüntz (ref24) 2017; 14 ref26 qureshi (ref19) 2017; 11 ref25 ref20 ref21 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref25 doi: 10.1371/journal.pone.0030371 – ident: ref13 doi: 10.1088/1741-2560/8/4/046028 – volume: 11 year: 2017 ident: ref19 article-title: Multi-modal, multi-measure, and multi-class discrimination of ADHD with hierarchical feature extraction and extreme learning machine using structural and functional brain MRI publication-title: Frontiers Human Neurosci – ident: ref17 doi: 10.1016/j.measurement.2016.05.054 – ident: ref21 doi: 10.1155/2011/156869 – ident: ref14 doi: 10.1038/srep25803 – ident: ref4 doi: 10.1038/nrneurol.2016.113 – ident: ref8 doi: 10.1016/j.clinph.2008.11.015 – ident: ref3 doi: 10.1016/j.specom.2010.01.001 – ident: ref26 doi: 10.1016/j.neucom.2005.12.126 – ident: ref6 doi: 10.1063/1.4959983 – ident: ref1 doi: 10.1038/nrn3158 – volume: 2 start-page: 145 year: 1996 ident: ref23 article-title: Independent component analysis of electroencephalographic data publication-title: Adv Neural Inf Process Syst – ident: ref32 doi: 10.1093/gigascience/gix034 – ident: ref30 doi: 10.1109/TIM.2015.2418684 – ident: ref11 doi: 10.1088/1741-2560/7/4/046006 – ident: ref27 doi: 10.1109/TNN.2006.875977 – volume: 14 year: 2017 ident: ref24 article-title: Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features publication-title: J Neural Eng doi: 10.1088/1741-2552/aa69d1 – start-page: 1 year: 0 ident: ref12 article-title: Imagined speech classification with EEG signals for silent communication: A preliminary investigation into synthetic telepathy publication-title: Proc of Int Conf on Bioinformatics and Biomedical Engineering – ident: ref31 doi: 10.1006/nimg.1997.0286 – ident: ref29 doi: 10.1115/1.4028165 – start-page: 2097 year: 0 ident: ref10 article-title: EEG classification for motor imagery BCI using phase-only features extracted by independent component analysis publication-title: Proc Annu Int Conf IEEE Eng Med Biol Soc – ident: ref20 doi: 10.3389/fninf.2017.00059 – ident: ref16 doi: 10.1016/j.bspc.2016.10.012 – ident: ref15 doi: 10.1007/s41133-016-0001-z – ident: ref18 doi: 10.1371/journal.pone.0160697 – ident: ref7 doi: 10.1007/978-3-642-02574-7_5 – ident: ref2 doi: 10.1016/j.neuroimage.2012.04.062 – start-page: 529 year: 0 ident: ref28 article-title: ADHD subgroup discrimination with global connectivity features using hierarchical extreme learning machine: Resting-state fMRI study publication-title: Proc IEEE Int Symp Biomed Imag – ident: ref9 doi: 10.1016/j.neuroimage.2005.12.003 – ident: ref5 doi: 10.1088/1741-2560/4/2/R01 – year: 2015 ident: ref22 publication-title: Adaptive Control Processes A Guided Tour |
SSID | ssj0014846 |
Score | 2.5243692 |
Snippet | Objective: In this study, electroencephalography data of imagined words were classified using four different feature extraction approaches. Eight subjects were... In this study, electroencephalography data of imagined words were classified using four different feature extraction approaches. Eight subjects were recruited... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2168 |
SubjectTerms | Adult Algorithms Brain Broca Area - physiology Broca's and Wernicke's area Classification Connectivity Correlation analysis Covariance Covariance matrices Data mining EEG Electroencephalography Electroencephalography - methods Feature extraction Female Humans Image Processing, Computer-Assisted Image reconstruction Imagination Imagination - classification Imagination - physiology Learning algorithms Male Mathematical analysis Matrix methods Mental task performance multiclass classification Neural networks phase-only feature extraction Recording Signal Processing, Computer-Assisted Speech Speech - physiology Speech perception Time series analysis Wernicke Area - physiology Word imagination Young Adult |
Title | Multiclass Classification of Word Imagination Speech With Hybrid Connectivity Features |
URI | https://ieeexplore.ieee.org/document/8234615 https://www.ncbi.nlm.nih.gov/pubmed/29989953 https://www.proquest.com/docview/2117169411 https://www.proquest.com/docview/2068353067 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61PSB6aKEBGlrQVuKEcLr2rh97LChVQEovhCY3y7uZVSogqcA-wK9nZu1YpQLEzbJ3_dDM7nyf5wXwSiqbS4dZZDN0kV4WGFWm0FHlC4laocGQxT-9yiaf9IdFutiBN30uDCKG4DMc8WHw5S83ruFfZedFonTGGeW7eW7aXK3eY6CLNilHxrSAE6M7D2Yszfns7XTMQVz5KMkJwKfcHYZ2YWIaqfrNHIX-Kn-HmsHkXB7CdPuybaTJ51FT25H7ea-O4_9-zSM46LCnuGiV5THs4PoI9u9UJDyCB9PO1z6A65Cb6xhdi9A6k4OKghzFxos5kVbx_iv3OGrPfbxFdCsxv6lXYvKD88BECKJxbXsKwVizIW7_BGaX49m7SdR1YYic0qaO2PFniX9XWlnCY2hinypUifTOFNK6pXOJr2yhfUpQwZO5TyzGKVbaWy-Vegp7680aj0Eob5V1GdfAJ1aa5TZm84lep0vakuNkCHIri9J1Fcq5UcaXMjAVaUqWZMmSLDtJDuF1P-W2Lc_xr8EDlkI_sBPAEE63Ai-7Bfy9JF7MdYR0TLPO-su09NifUq1x09AYmRF-Zc41hGetovT33urX8z8_8wQeJqypISrwFPbqbw2-IHRT25dBrX8Bx8_ywQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hkPo4QAst3UJbV-KEyOLEzutIK9DSEi4sj1sUe8eiot1FkBzg13fGyUYUtai3KLHz0Iw935d5AWxJZVJpMQlMgjbQkwyDKs90ULlMolaYo8_iL46T0an-dhFfLMBOnwuDiD74DId86H35k5lt-FfZbhYpnXBG-VJMrCJts7V6n4HO2rQcGdISjnLd-TBDme-OvxT7HMaVDqOUIHzM_WFoHyauEas_DJLvsPJvsOmNzsEKFPPXbWNNroZNbYb2_lElx__9nlew3KFPsdeqy2tYwOkqvHxQk3AVnhWdt30Nznx2rmV8LXzzTA4r8pIUMyfOibaKw1_c5ag9d3KNaC_F-Y_6UozuOBNM-DAa2zaoEIw2G2L3b2B8sD_-Ogq6PgyBVTqvA3b9GWLglVaGEBnmoYsVqkg6m2fS2Im1katMpl1MYMGRwY8MhjFW2hknlXoLi9PZFN-BUM4oYxOugk-8NElNyAYUnY4ntCmH0QDkXBal7WqUc6uMn6XnKjIvWZIlS7LsJDmA7X7KdVug46nBayyFfmAngAFszgVedkv4tiRmzJWEdEizPveXafGxR6Wa4qyhMTIhBMusawDrraL0957r1_u_P_MTPB-Ni6Py6PD4-wa8iFhrfYzgJizWNw1-IKxTm49exX8DsPP2Eg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiclass+Classification+of+Word+Imagination+Speech+With+Hybrid+Connectivity+Features&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Muhammad+Naveed+Iqbal+Qureshi&rft.au=Beomjun+Min&rft.au=Park%2C+Hyeong-Jun&rft.au=Cho%2C+Dongrae&rft.date=2018-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=65&rft.issue=10&rft.spage=2168&rft_id=info:doi/10.1109%2FTBME.2017.2786251&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |