Multiclass Classification of Word Imagination Speech With Hybrid Connectivity Features

Objective: In this study, electroencephalography data of imagined words were classified using four different feature extraction approaches. Eight subjects were recruited for the recording of imagination with five different words, namely; "go," "back," "left," "righ...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 65; no. 10; pp. 2168 - 2177
Main Authors Qureshi, Muhammad Naveed Iqbal, Min, Beomjun, Park, Hyeong-Jun, Cho, Dongrae, Choi, Woosu, Lee, Boreom
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2017.2786251

Cover

Abstract Objective: In this study, electroencephalography data of imagined words were classified using four different feature extraction approaches. Eight subjects were recruited for the recording of imagination with five different words, namely; "go," "back," "left," "right," and "stop." Methods: One hundred trials for each word were recorded for both imagination and perception, although this study utilized only imagination data. Two different connectivity methods were applied, namely; a covariance-based and a maximum linear cross-correlation-based connectivity measure. These connectivity measures were further computed to extract the phase-only data as an additional method of feature extraction. In addition, four different channel selections were used. The final connectivity matrix from each of the four methods was vectorized and used as the feature vector for the classifier. To classify EEG data, a sigmoid activation function-based linear extreme learning machine was used. Result and Significance: We achieved a maximum classification rate of 40.30% (p <; 0.007) and 87.90% (p <; 0.003) in multiclass (five classes) and binary settings, respectively. Thus, our results suggested that EEG responses to imagined speech could be successfully classified using an extreme learning machine. Conclusion: This study involving the classification of imagined words can be a milestone contribution toward the development of practical brain-computer interface systems using silent speech.
AbstractList In this study, electroencephalography data of imagined words were classified using four different feature extraction approaches. Eight subjects were recruited for the recording of imagination with five different words, namely; 'go', 'back', 'left', 'right', and 'stop'.OBJECTIVEIn this study, electroencephalography data of imagined words were classified using four different feature extraction approaches. Eight subjects were recruited for the recording of imagination with five different words, namely; 'go', 'back', 'left', 'right', and 'stop'.
In this study, electroencephalography data of imagined words were classified using four different feature extraction approaches. Eight subjects were recruited for the recording of imagination with five different words, namely; 'go', 'back', 'left', 'right', and 'stop'.
Objective: In this study, electroencephalography data of imagined words were classified using four different feature extraction approaches. Eight subjects were recruited for the recording of imagination with five different words, namely; "go," "back," "left," "right," and "stop." Methods: One hundred trials for each word were recorded for both imagination and perception, although this study utilized only imagination data. Two different connectivity methods were applied, namely; a covariance-based and a maximum linear cross-correlation-based connectivity measure. These connectivity measures were further computed to extract the phase-only data as an additional method of feature extraction. In addition, four different channel selections were used. The final connectivity matrix from each of the four methods was vectorized and used as the feature vector for the classifier. To classify EEG data, a sigmoid activation function-based linear extreme learning machine was used. Result and Significance: We achieved a maximum classification rate of 40.30% (p <; 0.007) and 87.90% (p <; 0.003) in multiclass (five classes) and binary settings, respectively. Thus, our results suggested that EEG responses to imagined speech could be successfully classified using an extreme learning machine. Conclusion: This study involving the classification of imagined words can be a milestone contribution toward the development of practical brain-computer interface systems using silent speech.
Author Qureshi, Muhammad Naveed Iqbal
Cho, Dongrae
Min, Beomjun
Choi, Woosu
Lee, Boreom
Park, Hyeong-Jun
Author_xml – sequence: 1
  givenname: Muhammad Naveed Iqbal
  orcidid: 0000-0001-5338-2354
  surname: Qureshi
  fullname: Qureshi, Muhammad Naveed Iqbal
  organization: Department of Biomedical Science and EngineeringInstitute of Integrated Technology, Gwangju Institute of Science and Technology
– sequence: 2
  givenname: Beomjun
  surname: Min
  fullname: Min, Beomjun
  organization: Department of NeuropsychiatrySeoul National University Hospital
– sequence: 3
  givenname: Hyeong-Jun
  surname: Park
  fullname: Park, Hyeong-Jun
  organization: Department of Biomedical Science and EngineeringInstitute of Integrated Technology, Gwangju Institute of Science and Technology
– sequence: 4
  givenname: Dongrae
  surname: Cho
  fullname: Cho, Dongrae
  organization: Department of Biomedical Science and EngineeringInstitute of Integrated Technology, Gwangju Institute of Science and Technology
– sequence: 5
  givenname: Woosu
  orcidid: 0000-0003-3924-8225
  surname: Choi
  fullname: Choi, Woosu
  organization: Korean Medicine Fundamental Research DivisionKorea Institute of Oriental Medicine
– sequence: 6
  givenname: Boreom
  orcidid: 0000-0002-7233-5833
  surname: Lee
  fullname: Lee, Boreom
  email: leebr@gist.ac.kr
  organization: Gwangju, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29989953$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rGzEQxUVJaJy0H6AUykIuuayr0Z_d1bE1SRNI6KGmOQpJHjUK65UraQv-9lnHTg855DLDDL83DO-dkqMhDkjIJ6BzAKq-Lr_fXc4ZhXbO2q5hEt6RGUjZ1UxyOCIzSqGrFVPihJzm_DiNohPNe3LClOqUknxGft-NfQmuNzlXi10NPjhTQhyq6Kv7mFbVzdr8CcN-92uD6B6q-1AequutTWFVLeIwoCvhXyjb6gpNGRPmD-TYmz7jx0M_I8ury-Xiur79-eNm8e22dlyoUnPVKouWGcEtVRIVeMmRM-qd6qh1K-eYN7YTXjIhfAOCWQSJRnjrKedn5GJ_dpPi3xFz0euQHfa9GTCOWTPadFxy2rQTev4KfYxjGqbnNANooVECYKK-HKjRrnGlNymsTdrqF8MmoN0DLsWcE3rtQnn2piQTeg1U76LRu2j0Lhp9iGZSwivly_G3NJ_3moCI__mOcdGA5E8SxJkM
CODEN IEBEAX
CitedBy_id crossref_primary_10_1049_sil2_12059
crossref_primary_10_1109_LSENS_2022_3142349
crossref_primary_10_1109_TCDS_2024_3431224
crossref_primary_10_1016_j_neuri_2022_100091
crossref_primary_10_1007_s11571_022_09819_w
crossref_primary_10_1109_ACCESS_2019_2946264
crossref_primary_10_1109_TIM_2023_3300473
crossref_primary_10_1007_s13246_024_01417_w
crossref_primary_10_1016_j_bspc_2022_104055
crossref_primary_10_1109_TIM_2023_3241973
crossref_primary_10_1088_1741_2552_acc976
crossref_primary_10_1016_j_dsp_2022_103435
crossref_primary_10_1109_ACCESS_2020_3015292
crossref_primary_10_1002_ima_22655
crossref_primary_10_1007_s10548_025_01100_7
crossref_primary_10_1016_j_bspc_2022_104379
crossref_primary_10_1088_1741_2552_ac13c0
crossref_primary_10_1088_1741_2552_ac9a01
crossref_primary_10_1016_j_cmpb_2022_107022
crossref_primary_10_1088_1741_2552_abd10e
crossref_primary_10_1007_s13198_021_01283_9
crossref_primary_10_1109_LSENS_2024_3354288
crossref_primary_10_1088_2399_6528_ad0197
crossref_primary_10_1109_TIM_2022_3216673
crossref_primary_10_1109_TIM_2023_3277930
crossref_primary_10_4218_etrij_2021_0118
crossref_primary_10_1016_j_bbr_2024_115295
crossref_primary_10_3390_s22186975
crossref_primary_10_3389_fnhum_2023_1186594
crossref_primary_10_1109_TNSRE_2021_3096874
crossref_primary_10_2139_ssrn_4045844
crossref_primary_10_1007_s11042_023_15664_8
crossref_primary_10_1088_2631_8695_ad9ceb
crossref_primary_10_1007_s42979_024_03402_2
crossref_primary_10_1134_S0362119722320019
crossref_primary_10_1016_j_bspc_2021_103224
crossref_primary_10_1016_j_bspc_2023_104933
crossref_primary_10_1109_TBME_2024_3376603
crossref_primary_10_1088_1741_2552_ac9e1d
crossref_primary_10_1109_TNSRE_2020_3040289
crossref_primary_10_1016_j_bspc_2022_103526
crossref_primary_10_34014_2227_1848_2022_2_81_91
crossref_primary_10_1016_j_imu_2024_101491
crossref_primary_10_1109_ACCESS_2020_3016756
crossref_primary_10_1155_2024_8742261
Cites_doi 10.1371/journal.pone.0030371
10.1088/1741-2560/8/4/046028
10.1016/j.measurement.2016.05.054
10.1155/2011/156869
10.1038/srep25803
10.1038/nrneurol.2016.113
10.1016/j.clinph.2008.11.015
10.1016/j.specom.2010.01.001
10.1016/j.neucom.2005.12.126
10.1063/1.4959983
10.1038/nrn3158
10.1093/gigascience/gix034
10.1109/TIM.2015.2418684
10.1088/1741-2560/7/4/046006
10.1109/TNN.2006.875977
10.1088/1741-2552/aa69d1
10.1006/nimg.1997.0286
10.1115/1.4028165
10.3389/fninf.2017.00059
10.1016/j.bspc.2016.10.012
10.1007/s41133-016-0001-z
10.1371/journal.pone.0160697
10.1007/978-3-642-02574-7_5
10.1016/j.neuroimage.2012.04.062
10.1016/j.neuroimage.2005.12.003
10.1088/1741-2560/4/2/R01
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2017.2786251
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2177
ExternalDocumentID 29989953
10_1109_TBME_2017_2786251
8234615
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
– fundername: Ministry of Science and ICT
  grantid: 2017009068
– fundername: Basic Science Research Program
– fundername: GIST Research Institute
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-3979beb2a43b095e91f53e320fc980bcdcc2fab84f5244f6142be15ea4fbf033
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Sun Sep 28 01:13:42 EDT 2025
Mon Jun 30 08:30:41 EDT 2025
Thu Apr 03 07:05:09 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
Tue Jul 01 03:28:30 EDT 2025
Wed Aug 27 02:52:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-3979beb2a43b095e91f53e320fc980bcdcc2fab84f5244f6142be15ea4fbf033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5338-2354
0000-0002-7233-5833
0000-0003-3924-8225
PMID 29989953
PQID 2117169411
PQPubID 85474
PageCount 10
ParticipantIDs proquest_miscellaneous_2068353067
proquest_journals_2117169411
pubmed_primary_29989953
ieee_primary_8234615
crossref_citationtrail_10_1109_TBME_2017_2786251
crossref_primary_10_1109_TBME_2017_2786251
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References brigham (ref12) 0
ref13
ref15
ref14
ref31
ref30
bellman (ref22) 2015
ref11
ref32
ref2
ref1
ref17
qureshi (ref10) 0
ref16
ref18
qureshi (ref28) 0
makeig (ref23) 1996; 2
radüntz (ref24) 2017; 14
ref26
qureshi (ref19) 2017; 11
ref25
ref20
ref21
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref25
  doi: 10.1371/journal.pone.0030371
– ident: ref13
  doi: 10.1088/1741-2560/8/4/046028
– volume: 11
  year: 2017
  ident: ref19
  article-title: Multi-modal, multi-measure, and multi-class discrimination of ADHD with hierarchical feature extraction and extreme learning machine using structural and functional brain MRI
  publication-title: Frontiers Human Neurosci
– ident: ref17
  doi: 10.1016/j.measurement.2016.05.054
– ident: ref21
  doi: 10.1155/2011/156869
– ident: ref14
  doi: 10.1038/srep25803
– ident: ref4
  doi: 10.1038/nrneurol.2016.113
– ident: ref8
  doi: 10.1016/j.clinph.2008.11.015
– ident: ref3
  doi: 10.1016/j.specom.2010.01.001
– ident: ref26
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref6
  doi: 10.1063/1.4959983
– ident: ref1
  doi: 10.1038/nrn3158
– volume: 2
  start-page: 145
  year: 1996
  ident: ref23
  article-title: Independent component analysis of electroencephalographic data
  publication-title: Adv Neural Inf Process Syst
– ident: ref32
  doi: 10.1093/gigascience/gix034
– ident: ref30
  doi: 10.1109/TIM.2015.2418684
– ident: ref11
  doi: 10.1088/1741-2560/7/4/046006
– ident: ref27
  doi: 10.1109/TNN.2006.875977
– volume: 14
  year: 2017
  ident: ref24
  article-title: Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aa69d1
– start-page: 1
  year: 0
  ident: ref12
  article-title: Imagined speech classification with EEG signals for silent communication: A preliminary investigation into synthetic telepathy
  publication-title: Proc of Int Conf on Bioinformatics and Biomedical Engineering
– ident: ref31
  doi: 10.1006/nimg.1997.0286
– ident: ref29
  doi: 10.1115/1.4028165
– start-page: 2097
  year: 0
  ident: ref10
  article-title: EEG classification for motor imagery BCI using phase-only features extracted by independent component analysis
  publication-title: Proc Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref20
  doi: 10.3389/fninf.2017.00059
– ident: ref16
  doi: 10.1016/j.bspc.2016.10.012
– ident: ref15
  doi: 10.1007/s41133-016-0001-z
– ident: ref18
  doi: 10.1371/journal.pone.0160697
– ident: ref7
  doi: 10.1007/978-3-642-02574-7_5
– ident: ref2
  doi: 10.1016/j.neuroimage.2012.04.062
– start-page: 529
  year: 0
  ident: ref28
  article-title: ADHD subgroup discrimination with global connectivity features using hierarchical extreme learning machine: Resting-state fMRI study
  publication-title: Proc IEEE Int Symp Biomed Imag
– ident: ref9
  doi: 10.1016/j.neuroimage.2005.12.003
– ident: ref5
  doi: 10.1088/1741-2560/4/2/R01
– year: 2015
  ident: ref22
  publication-title: Adaptive Control Processes A Guided Tour
SSID ssj0014846
Score 2.5243692
Snippet Objective: In this study, electroencephalography data of imagined words were classified using four different feature extraction approaches. Eight subjects were...
In this study, electroencephalography data of imagined words were classified using four different feature extraction approaches. Eight subjects were recruited...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2168
SubjectTerms Adult
Algorithms
Brain
Broca Area - physiology
Broca's and Wernicke's area
Classification
Connectivity
Correlation analysis
Covariance
Covariance matrices
Data mining
EEG
Electroencephalography
Electroencephalography - methods
Feature extraction
Female
Humans
Image Processing, Computer-Assisted
Image reconstruction
Imagination
Imagination - classification
Imagination - physiology
Learning algorithms
Male
Mathematical analysis
Matrix methods
Mental task performance
multiclass classification
Neural networks
phase-only feature extraction
Recording
Signal Processing, Computer-Assisted
Speech
Speech - physiology
Speech perception
Time series analysis
Wernicke Area - physiology
Word imagination
Young Adult
Title Multiclass Classification of Word Imagination Speech With Hybrid Connectivity Features
URI https://ieeexplore.ieee.org/document/8234615
https://www.ncbi.nlm.nih.gov/pubmed/29989953
https://www.proquest.com/docview/2117169411
https://www.proquest.com/docview/2068353067
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61PSB6aKEBGlrQVuKEcLr2rh97LChVQEovhCY3y7uZVSogqcA-wK9nZu1YpQLEzbJ3_dDM7nyf5wXwSiqbS4dZZDN0kV4WGFWm0FHlC4laocGQxT-9yiaf9IdFutiBN30uDCKG4DMc8WHw5S83ruFfZedFonTGGeW7eW7aXK3eY6CLNilHxrSAE6M7D2Yszfns7XTMQVz5KMkJwKfcHYZ2YWIaqfrNHIX-Kn-HmsHkXB7CdPuybaTJ51FT25H7ea-O4_9-zSM46LCnuGiV5THs4PoI9u9UJDyCB9PO1z6A65Cb6xhdi9A6k4OKghzFxos5kVbx_iv3OGrPfbxFdCsxv6lXYvKD88BECKJxbXsKwVizIW7_BGaX49m7SdR1YYic0qaO2PFniX9XWlnCY2hinypUifTOFNK6pXOJr2yhfUpQwZO5TyzGKVbaWy-Vegp7680aj0Eob5V1GdfAJ1aa5TZm84lep0vakuNkCHIri9J1Fcq5UcaXMjAVaUqWZMmSLDtJDuF1P-W2Lc_xr8EDlkI_sBPAEE63Ai-7Bfy9JF7MdYR0TLPO-su09NifUq1x09AYmRF-Zc41hGetovT33urX8z8_8wQeJqypISrwFPbqbw2-IHRT25dBrX8Bx8_ywQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hkPo4QAst3UJbV-KEyOLEzutIK9DSEi4sj1sUe8eiot1FkBzg13fGyUYUtai3KLHz0Iw935d5AWxJZVJpMQlMgjbQkwyDKs90ULlMolaYo8_iL46T0an-dhFfLMBOnwuDiD74DId86H35k5lt-FfZbhYpnXBG-VJMrCJts7V6n4HO2rQcGdISjnLd-TBDme-OvxT7HMaVDqOUIHzM_WFoHyauEas_DJLvsPJvsOmNzsEKFPPXbWNNroZNbYb2_lElx__9nlew3KFPsdeqy2tYwOkqvHxQk3AVnhWdt30Nznx2rmV8LXzzTA4r8pIUMyfOibaKw1_c5ag9d3KNaC_F-Y_6UozuOBNM-DAa2zaoEIw2G2L3b2B8sD_-Ogq6PgyBVTqvA3b9GWLglVaGEBnmoYsVqkg6m2fS2Im1katMpl1MYMGRwY8MhjFW2hknlXoLi9PZFN-BUM4oYxOugk-8NElNyAYUnY4ntCmH0QDkXBal7WqUc6uMn6XnKjIvWZIlS7LsJDmA7X7KdVug46nBayyFfmAngAFszgVedkv4tiRmzJWEdEizPveXafGxR6Wa4qyhMTIhBMusawDrraL0957r1_u_P_MTPB-Ni6Py6PD4-wa8iFhrfYzgJizWNw1-IKxTm49exX8DsPP2Eg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiclass+Classification+of+Word+Imagination+Speech+With+Hybrid+Connectivity+Features&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Muhammad+Naveed+Iqbal+Qureshi&rft.au=Beomjun+Min&rft.au=Park%2C+Hyeong-Jun&rft.au=Cho%2C+Dongrae&rft.date=2018-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=65&rft.issue=10&rft.spage=2168&rft_id=info:doi/10.1109%2FTBME.2017.2786251&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon