Delay and Packet-Drop Tolerant Multistage Distributed Average Tracking in Mean Square

This article studies the distributed average tracking (DAT) problem pertaining to a discrete-time linear time-invariant multiagent network, which is subject to, concurrently, input delays, random packet drops, and reference noise. The problem amounts to an integrated design of delay and a packet-dro...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 9; pp. 9535 - 9545
Main Authors Chen, Fei, Chen, Changjiang, Guo, Ge, Hua, Changchun, Chen, Guanrong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2021.3062035

Cover

Abstract This article studies the distributed average tracking (DAT) problem pertaining to a discrete-time linear time-invariant multiagent network, which is subject to, concurrently, input delays, random packet drops, and reference noise. The problem amounts to an integrated design of delay and a packet-drop-tolerant algorithm and determining the ultimate upper bound of the tracking error between agents' states and the average of the reference signals. The investigation is driven by the goal of devising a practically more attainable average tracking algorithm, thereby extending the existing work in the literature, which largely ignored the aforementioned uncertainties. For this purpose, a blend of techniques from Kalman filtering, multistage consensus filtering, and predictive control is employed, which gives rise to a simple yet comepelling DAT algorithm that is robust to the initialization error and allows the tradeoff between communication/computation cost and stationary-state tracking error. Due to the inherent coupling among different control components, convergence analysis is significantly challenging. Nevertheless, it is revealed that the allowable values of the algorithm parameters rely upon the maximal degree of an expected network, while the convergence speed depends upon the second smallest eigenvalue of the same network's topology. The effectiveness of the theoretical results is verified by a numerical example.
AbstractList This article studies the distributed average tracking (DAT) problem pertaining to a discrete-time linear time-invariant multiagent network, which is subject to, concurrently, input delays, random packet drops, and reference noise. The problem amounts to an integrated design of delay and a packet-drop-tolerant algorithm and determining the ultimate upper bound of the tracking error between agents' states and the average of the reference signals. The investigation is driven by the goal of devising a practically more attainable average tracking algorithm, thereby extending the existing work in the literature, which largely ignored the aforementioned uncertainties. For this purpose, a blend of techniques from Kalman filtering, multistage consensus filtering, and predictive control is employed, which gives rise to a simple yet comepelling DAT algorithm that is robust to the initialization error and allows the tradeoff between communication/computation cost and stationary-state tracking error. Due to the inherent coupling among different control components, convergence analysis is significantly challenging. Nevertheless, it is revealed that the allowable values of the algorithm parameters rely upon the maximal degree of an expected network, while the convergence speed depends upon the second smallest eigenvalue of the same network's topology. The effectiveness of the theoretical results is verified by a numerical example.
This article studies the distributed average tracking (DAT) problem pertaining to a discrete-time linear time-invariant multiagent network, which is subject to, concurrently, input delays, random packet drops, and reference noise. The problem amounts to an integrated design of delay and a packet-drop-tolerant algorithm and determining the ultimate upper bound of the tracking error between agents' states and the average of the reference signals. The investigation is driven by the goal of devising a practically more attainable average tracking algorithm, thereby extending the existing work in the literature, which largely ignored the aforementioned uncertainties. For this purpose, a blend of techniques from Kalman filtering, multistage consensus filtering, and predictive control is employed, which gives rise to a simple yet comepelling DAT algorithm that is robust to the initialization error and allows the tradeoff between communication/computation cost and stationary-state tracking error. Due to the inherent coupling among different control components, convergence analysis is significantly challenging. Nevertheless, it is revealed that the allowable values of the algorithm parameters rely upon the maximal degree of an expected network, while the convergence speed depends upon the second smallest eigenvalue of the same network's topology. The effectiveness of the theoretical results is verified by a numerical example.This article studies the distributed average tracking (DAT) problem pertaining to a discrete-time linear time-invariant multiagent network, which is subject to, concurrently, input delays, random packet drops, and reference noise. The problem amounts to an integrated design of delay and a packet-drop-tolerant algorithm and determining the ultimate upper bound of the tracking error between agents' states and the average of the reference signals. The investigation is driven by the goal of devising a practically more attainable average tracking algorithm, thereby extending the existing work in the literature, which largely ignored the aforementioned uncertainties. For this purpose, a blend of techniques from Kalman filtering, multistage consensus filtering, and predictive control is employed, which gives rise to a simple yet comepelling DAT algorithm that is robust to the initialization error and allows the tradeoff between communication/computation cost and stationary-state tracking error. Due to the inherent coupling among different control components, convergence analysis is significantly challenging. Nevertheless, it is revealed that the allowable values of the algorithm parameters rely upon the maximal degree of an expected network, while the convergence speed depends upon the second smallest eigenvalue of the same network's topology. The effectiveness of the theoretical results is verified by a numerical example.
Author Chen, Fei
Guo, Ge
Chen, Changjiang
Hua, Changchun
Chen, Guanrong
Author_xml – sequence: 1
  givenname: Fei
  orcidid: 0000-0003-1350-7081
  surname: Chen
  fullname: Chen, Fei
  email: fei.chen@ieee.org
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Changjiang
  orcidid: 0000-0002-6295-944X
  surname: Chen
  fullname: Chen, Changjiang
  organization: Department of Automation, Xiamen University, Xiamen, China
– sequence: 3
  givenname: Ge
  orcidid: 0000-0003-4752-4920
  surname: Guo
  fullname: Guo, Ge
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 4
  givenname: Changchun
  orcidid: 0000-0001-6311-2112
  surname: Hua
  fullname: Hua, Changchun
  organization: Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
– sequence: 5
  givenname: Guanrong
  orcidid: 0000-0003-1381-7418
  surname: Chen
  fullname: Chen, Guanrong
  organization: Department of Electrical Engineering, City University of Hong Kong, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33729980$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r3DAQhkVJaT5_QCkEQS65eDuSbFk6Jrv9goQGujn0JGR7HJR45V1JDuTfV8tucsihuow087wvYt5jcuBHj4R8ZjBjDPTX5fzv9YwDZzMBkoOoPpAjzqQqOK-rg7e7rA_JWYyPkI_KLa0-kUMhaq61giNyv8DBvlDrO3pn2ydMxSKMa7ocBwzWJ3o7DcnFZB-QLnINrpkSdvTqOY9zbxmyyPkH6jy9Revpn81kA56Sj70dIp7t6wm5__5tOf9Z3Pz-8Wt-dVO0otSpEBraBnoOvah0y4VsFMeGyTK_O6g6wXmvVCOUFbYvrSxVXUOJTFcKhOC9OCGXO991GDcTxmRWLrY4DNbjOEXDK-AKaqlZRi_eoY_jFHz-neHZFLQSpcrU-Z6amhV2Zh3cyoYX87qwDNQ7oA1jjAF707pkkxt9CtYNhoHZpmO26ZhtOmafTlayd8pX8_9pvuw0DhHfeC0USC3FPwmolxI
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_JSYST_2021_3112720
crossref_primary_10_1016_j_physa_2024_129547
crossref_primary_10_1109_TCYB_2023_3267145
crossref_primary_10_1007_s11424_021_1218_6
crossref_primary_10_1109_TSMC_2023_3261347
crossref_primary_10_1016_j_sysconle_2024_105858
crossref_primary_10_1016_j_neucom_2023_127130
Cites_doi 10.1002/rnc.3178
10.1109/TSMC.2018.2870290
10.1109/ACC.2012.6315298
10.1155/2013/412189
10.23919/ChiCC.2019.8865546
10.1109/ALLERTON.2015.7447013
10.1109/CDC.2016.7798249
10.1109/CDC.2010.5717485
10.1109/ACC.2014.6859059
10.1109/TAC.2008.2006925
10.1137/060676866
10.1109/ACC.2015.7172171
10.1109/CDC.2005.1583486
10.1109/ACC.2015.7170712
10.1109/TCYB.2017.2714688
10.1002/rnc.4534
10.1002/asjc.2365
10.1109/TAC.2014.2337451
10.1109/TAC.2010.2041612
10.1109/TCNS.2018.2863568
10.1109/TAC.2012.2199176
10.1016/S0005-1098(01)00260-6
10.1109/CDC.2005.1583238
10.1109/JSYST.2017.2657765
10.1016/j.automatica.2016.09.005
10.1016/j.automatica.2014.10.005
10.1016/j.automatica.2017.02.043
10.1109/CDC.2010.5718134
10.1109/TAC.2016.2593899
10.1109/TAC.2015.2480336
10.1109/TAC.2014.2365684
10.1016/j.automatica.2018.10.009
10.1109/TAC.2014.2343111
10.1109/TCYB.2018.2859352
10.1007/978-1-4612-0949-2_2
10.1080/00207721.2013.837541
10.1109/TCYB.2016.2582802
10.1109/CDC.2016.7798918
10.1109/CDC.2006.377078
10.1109/JSYST.2017.2685465
10.1109/ALLERTON.2009.5394486
10.1109/ACC.2007.4282370
10.1109/TSMC.2020.2980184
10.1109/TAC.2019.2917279
10.1109/ACC.2011.5991484
10.1109/TCYB.2020.3011448
10.1109/MCS.2019.2900783
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2021.3062035
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Aerospace Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 9545
ExternalDocumentID 33729980
10_1109_TCYB_2021_3062035
9380696
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Liaoning Province of China
  grantid: 2020-KF-11-03
  funderid: 10.13039/501100005047
– fundername: National Science Foundation of China
  grantid: 61973061; 61973064
  funderid: 10.13039/501100001809
– fundername: Hong Kong Research Grants Council
  grantid: CityU 11206320
  funderid: 10.13039/501100002920
– fundername: Natural Science Foundation of Hebei Province of China
  grantid: F2019501043; F2019501126
  funderid: 10.13039/501100003787
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-390cb0f20f359c236b82eb164f35d05d322f88b38a3af4a6487704e19580332f3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 06:37:10 EDT 2025
Sun Jun 29 15:54:16 EDT 2025
Mon Jul 21 06:03:28 EDT 2025
Thu Apr 24 22:59:51 EDT 2025
Wed Oct 01 01:36:41 EDT 2025
Wed Aug 27 02:22:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-390cb0f20f359c236b82eb164f35d05d322f88b38a3af4a6487704e19580332f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1350-7081
0000-0001-6311-2112
0000-0002-6295-944X
0000-0003-4752-4920
0000-0003-1381-7418
PMID 33729980
PQID 2704098348
PQPubID 85422
PageCount 11
ParticipantIDs pubmed_primary_33729980
proquest_journals_2704098348
crossref_citationtrail_10_1109_TCYB_2021_3062035
proquest_miscellaneous_2502807691
crossref_primary_10_1109_TCYB_2021_3062035
ieee_primary_9380696
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Spanos (ref12)
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
Spanos (ref2)
ref1
ref39
ref38
Karvonen (ref50) 2014
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – volume-title: Proc. 16th IFAC World Congr.
  ident: ref12
  article-title: Dynamic consensus for mobile networks
– ident: ref25
  doi: 10.1002/rnc.3178
– ident: ref38
  doi: 10.1109/TSMC.2018.2870290
– ident: ref24
  doi: 10.1109/ACC.2012.6315298
– ident: ref49
  doi: 10.1155/2013/412189
– ident: ref1
  doi: 10.23919/ChiCC.2019.8865546
– ident: ref23
  doi: 10.1109/ALLERTON.2015.7447013
– ident: ref15
  doi: 10.1109/CDC.2016.7798249
– ident: ref14
  doi: 10.1109/CDC.2010.5717485
– ident: ref31
  doi: 10.1109/ACC.2014.6859059
– ident: ref7
  doi: 10.1109/TAC.2008.2006925
– ident: ref44
  doi: 10.1137/060676866
– ident: ref22
  doi: 10.1109/ACC.2015.7172171
– ident: ref40
  doi: 10.1109/CDC.2005.1583486
– ident: ref34
  doi: 10.1109/ACC.2015.7170712
– ident: ref9
  doi: 10.1109/TCYB.2017.2714688
– ident: ref26
  doi: 10.1002/rnc.4534
– ident: ref33
  doi: 10.1002/asjc.2365
– ident: ref18
  doi: 10.1109/TAC.2014.2337451
– ident: ref45
  doi: 10.1109/TAC.2010.2041612
– ident: ref36
  doi: 10.1109/TCNS.2018.2863568
– ident: ref16
  doi: 10.1109/TAC.2012.2199176
– ident: ref37
  doi: 10.1016/S0005-1098(01)00260-6
– ident: ref3
  doi: 10.1109/CDC.2005.1583238
– ident: ref41
  doi: 10.1109/JSYST.2017.2657765
– volume-title: Proc. 16th IFAC World Congr.
  ident: ref2
  article-title: Distributed sensor fusion using dynamic consensus
– ident: ref19
  doi: 10.1016/j.automatica.2016.09.005
– year: 2014
  ident: ref50
  article-title: Stability of linear and non-linear Kalman filters
– ident: ref28
  doi: 10.1016/j.automatica.2014.10.005
– ident: ref17
  doi: 10.1016/j.automatica.2017.02.043
– ident: ref43
  doi: 10.1109/CDC.2010.5718134
– ident: ref6
  doi: 10.1109/TAC.2016.2593899
– ident: ref11
  doi: 10.1109/TAC.2015.2480336
– ident: ref48
  doi: 10.1109/TAC.2014.2365684
– ident: ref29
  doi: 10.1016/j.automatica.2018.10.009
– ident: ref20
  doi: 10.1109/TAC.2014.2343111
– ident: ref21
  doi: 10.1109/TCYB.2018.2859352
– ident: ref47
  doi: 10.1007/978-1-4612-0949-2_2
– ident: ref27
  doi: 10.1080/00207721.2013.837541
– ident: ref46
  doi: 10.1109/TCYB.2016.2582802
– ident: ref32
  doi: 10.1109/CDC.2016.7798918
– ident: ref13
  doi: 10.1109/CDC.2006.377078
– ident: ref30
  doi: 10.1109/JSYST.2017.2685465
– ident: ref42
  doi: 10.1109/ALLERTON.2009.5394486
– ident: ref8
  doi: 10.1109/ACC.2007.4282370
– ident: ref39
  doi: 10.1109/TSMC.2020.2980184
– ident: ref10
  doi: 10.1109/TAC.2019.2917279
– ident: ref4
  doi: 10.1109/ACC.2011.5991484
– ident: ref5
  doi: 10.1109/TCYB.2020.3011448
– ident: ref35
  doi: 10.1109/MCS.2019.2900783
SSID ssj0000816898
Score 2.3974411
Snippet This article studies the distributed average tracking (DAT) problem pertaining to a discrete-time linear time-invariant multiagent network, which is subject...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9535
SubjectTerms Algorithms
Convergence
Delays
Distributed average tracking (DAT)
Eigenvalues
Heuristic algorithms
input delay
Kalman filters
multiagent system
Multiagent systems
Network topology
packet drop
Prediction algorithms
Predictive control
reference noise
Reference signals
Robustness
Robustness (mathematics)
Topology
Tracking errors
Upper bounds
Title Delay and Packet-Drop Tolerant Multistage Distributed Average Tracking in Mean Square
URI https://ieeexplore.ieee.org/document/9380696
https://www.ncbi.nlm.nih.gov/pubmed/33729980
https://www.proquest.com/docview/2704098348
https://www.proquest.com/docview/2502807691
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXEBSnmEFmQkDoDI1rEdxz6WLlWFtAiJXamcItuxK8Qq6SN7gF_P2MlGCAHi5iSThzMz9jzsbwBeOq5CYMahW1KkaJXJra1CbmRVWC1cYRKU0uKjPF-JDxflxQ68nfbCeO_T4jM_i82Uy286t4mhsmPNFZVa7sJupeSwV2uKp6QCEqn0LcNGjlZFNSYxC6qPl6df3qEzyIoZmsiM8liwhseMlY54kL_MSKnEyt-tzTTrnN2DxfZ7h8Um32ab3s7cj9-gHP-3Q_fh7mh-kpNBXvZhx7cPYH9U8FvyakShfn0Aq7lfm-_EtA35ZFDV-3x-012RZbdGgrYnaecumpaXnswj-G6sm-UbcoKqEc_hHOhiFJ58bcnCm5Z8vkZh9A9hdfZ-eXqejzUYcseF7nOuqbM0MBp4qR3j0iqGw7sUeNzQssHxIChluTLcBGEk-j8VFT5C2FDOWeCPYK_tWv8ECCp7aaRtHA9OiKayQngVi2UpLbyveAZ0y4fajQDlsU7Guk6OCtV15GIduViPXMzgzXTL1YDO8S_ig8iBiXD8-RkcbZldj_p7WzPsBNWKC5XBi-kyal5Mp5jWdxukKWNaupK6yODxICTTs7ey9fTP7zyEOyxuo0hr1Y5gr7_Z-Gdo3PT2eZLqn0Dt8AU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALUMojUMBIHACRrWM7iX0sXaoFuhUSu1I5RbZjo6qrpLTZA_x6xk42QggQNyeZPJyZsedhfwPwwnLpPdMW3ZIsRqt0akzpU12UmVHCZjpCKc1PitlSfDjNT7fgzbgXxjkXF5-5SWjGXH7d2nUIle0rLmmhimtwPRdC5P1urTGiEktIxOK3DBsp2hXlkMbMqNpfHH55i-4gyyZoJDPKQ8kaHnJWKiBC_jInxSIrf7c347xzdBvmmy_ul5ucT9admdgfv4E5_m-X7sCtwQAlB73E7MCWa-7CzqDiV-TlgEP9aheWU7fS34luavJJo7J36fSyvSCLdoUETUfi3l00Lr86Mg3wu6FylqvJASpHOIezoA1xeHLWkLnTDfn8DcXR3YPl0bvF4SwdqjCklgvVpVxRa6hn1PNcWcYLIxkO8IXA45rmNY4IXkrDpebaC12gB1RS4QKIDeWceX4ftpu2cQ-BoLrnujC15d4KUZdGCCdDuSyphHMlT4Bu-FDZAaI8VMpYVdFVoaoKXKwCF6uBiwm8Hm-56PE5_kW8GzgwEg4_P4G9DbOrQYOvKoadoEpyIRN4Pl5G3QsJFd24do00eUhMl4XKEnjQC8n47I1sPfrzO5_Bjdliflwdvz_5-BhusrCpIq5c24Pt7nLtnqCp05mnUcJ_AvyQ81I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delay+and+Packet-Drop+Tolerant+Multistage+Distributed+Average+Tracking+in+Mean+Square&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Chen%2C+Fei&rft.au=Chen%2C+Changjiang&rft.au=Guo%2C+Ge&rft.au=Hua%2C+Changchun&rft.date=2022-09-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=52&rft.issue=9&rft.spage=9535&rft_id=info:doi/10.1109%2FTCYB.2021.3062035&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon