Delay and Packet-Drop Tolerant Multistage Distributed Average Tracking in Mean Square
This article studies the distributed average tracking (DAT) problem pertaining to a discrete-time linear time-invariant multiagent network, which is subject to, concurrently, input delays, random packet drops, and reference noise. The problem amounts to an integrated design of delay and a packet-dro...
Saved in:
| Published in | IEEE transactions on cybernetics Vol. 52; no. 9; pp. 9535 - 9545 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2267 2168-2275 2168-2275 |
| DOI | 10.1109/TCYB.2021.3062035 |
Cover
| Abstract | This article studies the distributed average tracking (DAT) problem pertaining to a discrete-time linear time-invariant multiagent network, which is subject to, concurrently, input delays, random packet drops, and reference noise. The problem amounts to an integrated design of delay and a packet-drop-tolerant algorithm and determining the ultimate upper bound of the tracking error between agents' states and the average of the reference signals. The investigation is driven by the goal of devising a practically more attainable average tracking algorithm, thereby extending the existing work in the literature, which largely ignored the aforementioned uncertainties. For this purpose, a blend of techniques from Kalman filtering, multistage consensus filtering, and predictive control is employed, which gives rise to a simple yet comepelling DAT algorithm that is robust to the initialization error and allows the tradeoff between communication/computation cost and stationary-state tracking error. Due to the inherent coupling among different control components, convergence analysis is significantly challenging. Nevertheless, it is revealed that the allowable values of the algorithm parameters rely upon the maximal degree of an expected network, while the convergence speed depends upon the second smallest eigenvalue of the same network's topology. The effectiveness of the theoretical results is verified by a numerical example. |
|---|---|
| AbstractList | This article studies the distributed average tracking (DAT) problem pertaining to a discrete-time linear time-invariant multiagent network, which is subject to, concurrently, input delays, random packet drops, and reference noise. The problem amounts to an integrated design of delay and a packet-drop-tolerant algorithm and determining the ultimate upper bound of the tracking error between agents' states and the average of the reference signals. The investigation is driven by the goal of devising a practically more attainable average tracking algorithm, thereby extending the existing work in the literature, which largely ignored the aforementioned uncertainties. For this purpose, a blend of techniques from Kalman filtering, multistage consensus filtering, and predictive control is employed, which gives rise to a simple yet comepelling DAT algorithm that is robust to the initialization error and allows the tradeoff between communication/computation cost and stationary-state tracking error. Due to the inherent coupling among different control components, convergence analysis is significantly challenging. Nevertheless, it is revealed that the allowable values of the algorithm parameters rely upon the maximal degree of an expected network, while the convergence speed depends upon the second smallest eigenvalue of the same network's topology. The effectiveness of the theoretical results is verified by a numerical example. This article studies the distributed average tracking (DAT) problem pertaining to a discrete-time linear time-invariant multiagent network, which is subject to, concurrently, input delays, random packet drops, and reference noise. The problem amounts to an integrated design of delay and a packet-drop-tolerant algorithm and determining the ultimate upper bound of the tracking error between agents' states and the average of the reference signals. The investigation is driven by the goal of devising a practically more attainable average tracking algorithm, thereby extending the existing work in the literature, which largely ignored the aforementioned uncertainties. For this purpose, a blend of techniques from Kalman filtering, multistage consensus filtering, and predictive control is employed, which gives rise to a simple yet comepelling DAT algorithm that is robust to the initialization error and allows the tradeoff between communication/computation cost and stationary-state tracking error. Due to the inherent coupling among different control components, convergence analysis is significantly challenging. Nevertheless, it is revealed that the allowable values of the algorithm parameters rely upon the maximal degree of an expected network, while the convergence speed depends upon the second smallest eigenvalue of the same network's topology. The effectiveness of the theoretical results is verified by a numerical example.This article studies the distributed average tracking (DAT) problem pertaining to a discrete-time linear time-invariant multiagent network, which is subject to, concurrently, input delays, random packet drops, and reference noise. The problem amounts to an integrated design of delay and a packet-drop-tolerant algorithm and determining the ultimate upper bound of the tracking error between agents' states and the average of the reference signals. The investigation is driven by the goal of devising a practically more attainable average tracking algorithm, thereby extending the existing work in the literature, which largely ignored the aforementioned uncertainties. For this purpose, a blend of techniques from Kalman filtering, multistage consensus filtering, and predictive control is employed, which gives rise to a simple yet comepelling DAT algorithm that is robust to the initialization error and allows the tradeoff between communication/computation cost and stationary-state tracking error. Due to the inherent coupling among different control components, convergence analysis is significantly challenging. Nevertheless, it is revealed that the allowable values of the algorithm parameters rely upon the maximal degree of an expected network, while the convergence speed depends upon the second smallest eigenvalue of the same network's topology. The effectiveness of the theoretical results is verified by a numerical example. |
| Author | Chen, Fei Guo, Ge Chen, Changjiang Hua, Changchun Chen, Guanrong |
| Author_xml | – sequence: 1 givenname: Fei orcidid: 0000-0003-1350-7081 surname: Chen fullname: Chen, Fei email: fei.chen@ieee.org organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China – sequence: 2 givenname: Changjiang orcidid: 0000-0002-6295-944X surname: Chen fullname: Chen, Changjiang organization: Department of Automation, Xiamen University, Xiamen, China – sequence: 3 givenname: Ge orcidid: 0000-0003-4752-4920 surname: Guo fullname: Guo, Ge organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China – sequence: 4 givenname: Changchun orcidid: 0000-0001-6311-2112 surname: Hua fullname: Hua, Changchun organization: Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China – sequence: 5 givenname: Guanrong orcidid: 0000-0003-1381-7418 surname: Chen fullname: Chen, Guanrong organization: Department of Electrical Engineering, City University of Hong Kong, Hong Kong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33729980$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1r3DAQhkVJaT5_QCkEQS65eDuSbFk6Jrv9goQGujn0JGR7HJR45V1JDuTfV8tucsihuow087wvYt5jcuBHj4R8ZjBjDPTX5fzv9YwDZzMBkoOoPpAjzqQqOK-rg7e7rA_JWYyPkI_KLa0-kUMhaq61giNyv8DBvlDrO3pn2ydMxSKMa7ocBwzWJ3o7DcnFZB-QLnINrpkSdvTqOY9zbxmyyPkH6jy9Revpn81kA56Sj70dIp7t6wm5__5tOf9Z3Pz-8Wt-dVO0otSpEBraBnoOvah0y4VsFMeGyTK_O6g6wXmvVCOUFbYvrSxVXUOJTFcKhOC9OCGXO991GDcTxmRWLrY4DNbjOEXDK-AKaqlZRi_eoY_jFHz-neHZFLQSpcrU-Z6amhV2Zh3cyoYX87qwDNQ7oA1jjAF707pkkxt9CtYNhoHZpmO26ZhtOmafTlayd8pX8_9pvuw0DhHfeC0USC3FPwmolxI |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1109_JSYST_2021_3112720 crossref_primary_10_1016_j_physa_2024_129547 crossref_primary_10_1109_TCYB_2023_3267145 crossref_primary_10_1007_s11424_021_1218_6 crossref_primary_10_1109_TSMC_2023_3261347 crossref_primary_10_1016_j_sysconle_2024_105858 crossref_primary_10_1016_j_neucom_2023_127130 |
| Cites_doi | 10.1002/rnc.3178 10.1109/TSMC.2018.2870290 10.1109/ACC.2012.6315298 10.1155/2013/412189 10.23919/ChiCC.2019.8865546 10.1109/ALLERTON.2015.7447013 10.1109/CDC.2016.7798249 10.1109/CDC.2010.5717485 10.1109/ACC.2014.6859059 10.1109/TAC.2008.2006925 10.1137/060676866 10.1109/ACC.2015.7172171 10.1109/CDC.2005.1583486 10.1109/ACC.2015.7170712 10.1109/TCYB.2017.2714688 10.1002/rnc.4534 10.1002/asjc.2365 10.1109/TAC.2014.2337451 10.1109/TAC.2010.2041612 10.1109/TCNS.2018.2863568 10.1109/TAC.2012.2199176 10.1016/S0005-1098(01)00260-6 10.1109/CDC.2005.1583238 10.1109/JSYST.2017.2657765 10.1016/j.automatica.2016.09.005 10.1016/j.automatica.2014.10.005 10.1016/j.automatica.2017.02.043 10.1109/CDC.2010.5718134 10.1109/TAC.2016.2593899 10.1109/TAC.2015.2480336 10.1109/TAC.2014.2365684 10.1016/j.automatica.2018.10.009 10.1109/TAC.2014.2343111 10.1109/TCYB.2018.2859352 10.1007/978-1-4612-0949-2_2 10.1080/00207721.2013.837541 10.1109/TCYB.2016.2582802 10.1109/CDC.2016.7798918 10.1109/CDC.2006.377078 10.1109/JSYST.2017.2685465 10.1109/ALLERTON.2009.5394486 10.1109/ACC.2007.4282370 10.1109/TSMC.2020.2980184 10.1109/TAC.2019.2917279 10.1109/ACC.2011.5991484 10.1109/TCYB.2020.3011448 10.1109/MCS.2019.2900783 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2021.3062035 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 9545 |
| ExternalDocumentID | 33729980 10_1109_TCYB_2021_3062035 9380696 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Liaoning Province of China grantid: 2020-KF-11-03 funderid: 10.13039/501100005047 – fundername: National Science Foundation of China grantid: 61973061; 61973064 funderid: 10.13039/501100001809 – fundername: Hong Kong Research Grants Council grantid: CityU 11206320 funderid: 10.13039/501100002920 – fundername: Natural Science Foundation of Hebei Province of China grantid: F2019501043; F2019501126 funderid: 10.13039/501100003787 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-390cb0f20f359c236b82eb164f35d05d322f88b38a3af4a6487704e19580332f3 |
| IEDL.DBID | RIE |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sun Sep 28 06:37:10 EDT 2025 Sun Jun 29 15:54:16 EDT 2025 Mon Jul 21 06:03:28 EDT 2025 Thu Apr 24 22:59:51 EDT 2025 Wed Oct 01 01:36:41 EDT 2025 Wed Aug 27 02:22:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-390cb0f20f359c236b82eb164f35d05d322f88b38a3af4a6487704e19580332f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1350-7081 0000-0001-6311-2112 0000-0002-6295-944X 0000-0003-4752-4920 0000-0003-1381-7418 |
| PMID | 33729980 |
| PQID | 2704098348 |
| PQPubID | 85422 |
| PageCount | 11 |
| ParticipantIDs | pubmed_primary_33729980 proquest_journals_2704098348 crossref_citationtrail_10_1109_TCYB_2021_3062035 proquest_miscellaneous_2502807691 crossref_primary_10_1109_TCYB_2021_3062035 ieee_primary_9380696 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Spanos (ref12) ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 Spanos (ref2) ref1 ref39 ref38 Karvonen (ref50) 2014 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – volume-title: Proc. 16th IFAC World Congr. ident: ref12 article-title: Dynamic consensus for mobile networks – ident: ref25 doi: 10.1002/rnc.3178 – ident: ref38 doi: 10.1109/TSMC.2018.2870290 – ident: ref24 doi: 10.1109/ACC.2012.6315298 – ident: ref49 doi: 10.1155/2013/412189 – ident: ref1 doi: 10.23919/ChiCC.2019.8865546 – ident: ref23 doi: 10.1109/ALLERTON.2015.7447013 – ident: ref15 doi: 10.1109/CDC.2016.7798249 – ident: ref14 doi: 10.1109/CDC.2010.5717485 – ident: ref31 doi: 10.1109/ACC.2014.6859059 – ident: ref7 doi: 10.1109/TAC.2008.2006925 – ident: ref44 doi: 10.1137/060676866 – ident: ref22 doi: 10.1109/ACC.2015.7172171 – ident: ref40 doi: 10.1109/CDC.2005.1583486 – ident: ref34 doi: 10.1109/ACC.2015.7170712 – ident: ref9 doi: 10.1109/TCYB.2017.2714688 – ident: ref26 doi: 10.1002/rnc.4534 – ident: ref33 doi: 10.1002/asjc.2365 – ident: ref18 doi: 10.1109/TAC.2014.2337451 – ident: ref45 doi: 10.1109/TAC.2010.2041612 – ident: ref36 doi: 10.1109/TCNS.2018.2863568 – ident: ref16 doi: 10.1109/TAC.2012.2199176 – ident: ref37 doi: 10.1016/S0005-1098(01)00260-6 – ident: ref3 doi: 10.1109/CDC.2005.1583238 – ident: ref41 doi: 10.1109/JSYST.2017.2657765 – volume-title: Proc. 16th IFAC World Congr. ident: ref2 article-title: Distributed sensor fusion using dynamic consensus – ident: ref19 doi: 10.1016/j.automatica.2016.09.005 – year: 2014 ident: ref50 article-title: Stability of linear and non-linear Kalman filters – ident: ref28 doi: 10.1016/j.automatica.2014.10.005 – ident: ref17 doi: 10.1016/j.automatica.2017.02.043 – ident: ref43 doi: 10.1109/CDC.2010.5718134 – ident: ref6 doi: 10.1109/TAC.2016.2593899 – ident: ref11 doi: 10.1109/TAC.2015.2480336 – ident: ref48 doi: 10.1109/TAC.2014.2365684 – ident: ref29 doi: 10.1016/j.automatica.2018.10.009 – ident: ref20 doi: 10.1109/TAC.2014.2343111 – ident: ref21 doi: 10.1109/TCYB.2018.2859352 – ident: ref47 doi: 10.1007/978-1-4612-0949-2_2 – ident: ref27 doi: 10.1080/00207721.2013.837541 – ident: ref46 doi: 10.1109/TCYB.2016.2582802 – ident: ref32 doi: 10.1109/CDC.2016.7798918 – ident: ref13 doi: 10.1109/CDC.2006.377078 – ident: ref30 doi: 10.1109/JSYST.2017.2685465 – ident: ref42 doi: 10.1109/ALLERTON.2009.5394486 – ident: ref8 doi: 10.1109/ACC.2007.4282370 – ident: ref39 doi: 10.1109/TSMC.2020.2980184 – ident: ref10 doi: 10.1109/TAC.2019.2917279 – ident: ref4 doi: 10.1109/ACC.2011.5991484 – ident: ref5 doi: 10.1109/TCYB.2020.3011448 – ident: ref35 doi: 10.1109/MCS.2019.2900783 |
| SSID | ssj0000816898 |
| Score | 2.3974411 |
| Snippet | This article studies the distributed average tracking (DAT) problem pertaining to a discrete-time linear time-invariant multiagent network, which is subject... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 9535 |
| SubjectTerms | Algorithms Convergence Delays Distributed average tracking (DAT) Eigenvalues Heuristic algorithms input delay Kalman filters multiagent system Multiagent systems Network topology packet drop Prediction algorithms Predictive control reference noise Reference signals Robustness Robustness (mathematics) Topology Tracking errors Upper bounds |
| Title | Delay and Packet-Drop Tolerant Multistage Distributed Average Tracking in Mean Square |
| URI | https://ieeexplore.ieee.org/document/9380696 https://www.ncbi.nlm.nih.gov/pubmed/33729980 https://www.proquest.com/docview/2704098348 https://www.proquest.com/docview/2502807691 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXEBSnmEFmQkDoDI1rEdxz6WLlWFtAiJXamcItuxK8Qq6SN7gF_P2MlGCAHi5iSThzMz9jzsbwBeOq5CYMahW1KkaJXJra1CbmRVWC1cYRKU0uKjPF-JDxflxQ68nfbCeO_T4jM_i82Uy286t4mhsmPNFZVa7sJupeSwV2uKp6QCEqn0LcNGjlZFNSYxC6qPl6df3qEzyIoZmsiM8liwhseMlY54kL_MSKnEyt-tzTTrnN2DxfZ7h8Um32ab3s7cj9-gHP-3Q_fh7mh-kpNBXvZhx7cPYH9U8FvyakShfn0Aq7lfm-_EtA35ZFDV-3x-012RZbdGgrYnaecumpaXnswj-G6sm-UbcoKqEc_hHOhiFJ58bcnCm5Z8vkZh9A9hdfZ-eXqejzUYcseF7nOuqbM0MBp4qR3j0iqGw7sUeNzQssHxIChluTLcBGEk-j8VFT5C2FDOWeCPYK_tWv8ECCp7aaRtHA9OiKayQngVi2UpLbyveAZ0y4fajQDlsU7Guk6OCtV15GIduViPXMzgzXTL1YDO8S_ig8iBiXD8-RkcbZldj_p7WzPsBNWKC5XBi-kyal5Mp5jWdxukKWNaupK6yODxICTTs7ey9fTP7zyEOyxuo0hr1Y5gr7_Z-Gdo3PT2eZLqn0Dt8AU |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALUMojUMBIHACRrWM7iX0sXaoFuhUSu1I5RbZjo6qrpLTZA_x6xk42QggQNyeZPJyZsedhfwPwwnLpPdMW3ZIsRqt0akzpU12UmVHCZjpCKc1PitlSfDjNT7fgzbgXxjkXF5-5SWjGXH7d2nUIle0rLmmhimtwPRdC5P1urTGiEktIxOK3DBsp2hXlkMbMqNpfHH55i-4gyyZoJDPKQ8kaHnJWKiBC_jInxSIrf7c347xzdBvmmy_ul5ucT9admdgfv4E5_m-X7sCtwQAlB73E7MCWa-7CzqDiV-TlgEP9aheWU7fS34luavJJo7J36fSyvSCLdoUETUfi3l00Lr86Mg3wu6FylqvJASpHOIezoA1xeHLWkLnTDfn8DcXR3YPl0bvF4SwdqjCklgvVpVxRa6hn1PNcWcYLIxkO8IXA45rmNY4IXkrDpebaC12gB1RS4QKIDeWceX4ftpu2cQ-BoLrnujC15d4KUZdGCCdDuSyphHMlT4Bu-FDZAaI8VMpYVdFVoaoKXKwCF6uBiwm8Hm-56PE5_kW8GzgwEg4_P4G9DbOrQYOvKoadoEpyIRN4Pl5G3QsJFd24do00eUhMl4XKEnjQC8n47I1sPfrzO5_Bjdliflwdvz_5-BhusrCpIq5c24Pt7nLtnqCp05mnUcJ_AvyQ81I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delay+and+Packet-Drop+Tolerant+Multistage+Distributed+Average+Tracking+in+Mean+Square&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Chen%2C+Fei&rft.au=Chen%2C+Changjiang&rft.au=Guo%2C+Ge&rft.au=Hua%2C+Changchun&rft.date=2022-09-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=52&rft.issue=9&rft.spage=9535&rft_id=info:doi/10.1109%2FTCYB.2021.3062035&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |