DeepBBWAE-Net: A CNN-RNN Based Deep SuperLearner for Estimating Lower Extremity Sagittal Plane Joint Kinematics Using Shoe-Mounted IMU Sensors in Daily Living

Measurement of human body movement is an essential step in biomechanical analysis. The current standard for human motion capture systems uses infrared cameras to track reflective markers placed on a subject. While these systems can accurately track joint kinematics, the analyses are spatially limite...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 26; no. 8; pp. 3906 - 3917
Main Authors Hossain, Md Sanzid Bin, Dranetz, Joseph, Choi, Hwan, Guo, Zhishan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2022.3165383

Cover

Abstract Measurement of human body movement is an essential step in biomechanical analysis. The current standard for human motion capture systems uses infrared cameras to track reflective markers placed on a subject. While these systems can accurately track joint kinematics, the analyses are spatially limited to the lab environment. Though Inertial Measurement Units (IMUs) can eliminate these spatial limitations, those systems are impractical for use in daily living due to the need for many sensors, typically one per body segment. Due to the need for practical and accurate estimation of joint kinematics, this study implements a reduced number of IMU sensors and employs a machine learning algorithm to map sensor data to joint angles. Our developed algorithm estimates hip, knee, and ankle angles in the sagittal plane using two shoe-mounted IMU sensors in different practical walking conditions: treadmill, overground, stair, and slope conditions. Specifically, we propose five deep learning networks that use combinations of Convolutional Neural Networks (CNN) and Gated Recurrent Unit (GRU) based Recurrent Neural Networks (RNN) as base learners for our framework. Using those five baseline models, we propose a novel framework, DeepBBWAE-Net, that implements ensemble techniques such as bagging, boosting, and weighted averaging to improve kinematic predictions. DeepBBWAE-Net predicts joint kinematics for the three joint angles for each of the walking conditions with a Root Mean Square Error (RMSE) 6.93-29.0% lower than the base models individually. This is the first study that uses a reduced number of IMU sensors to estimate kinematics in multiple walking environments.
AbstractList Measurement of human body movement is an essential step in biomechanical analysis. The current standard for human motion capture systems uses infrared cameras to track reflective markers placed on a subject. While these systems can accurately track joint kinematics, the analyses are spatially limited to the lab environment. Though Inertial Measurement Units (IMUs) can eliminate these spatial limitations, those systems are impractical for use in daily living due to the need for many sensors, typically one per body segment. Due to the need for practical and accurate estimation of joint kinematics, this study implements a reduced number of IMU sensors and employs a machine learning algorithm to map sensor data to joint angles. Our developed algorithm estimates hip, knee, and ankle angles in the sagittal plane using two shoe-mounted IMU sensors in different practical walking conditions: treadmill, overground, stair, and slope conditions. Specifically, we propose five deep learning networks that use combinations of Convolutional Neural Networks (CNN) and Gated Recurrent Unit (GRU) based Recurrent Neural Networks (RNN) as base learners for our framework. Using those five baseline models, we propose a novel framework, DeepBBWAE-Net, that implements ensemble techniques such as bagging, boosting, and weighted averaging to improve kinematic predictions. DeepBBWAE-Net predicts joint kinematics for the three joint angles for each of the walking conditions with a Root Mean Square Error (RMSE) 6.93-29.0% lower than the base models individually. This is the first study that uses a reduced number of IMU sensors to estimate kinematics in multiple walking environments.Measurement of human body movement is an essential step in biomechanical analysis. The current standard for human motion capture systems uses infrared cameras to track reflective markers placed on a subject. While these systems can accurately track joint kinematics, the analyses are spatially limited to the lab environment. Though Inertial Measurement Units (IMUs) can eliminate these spatial limitations, those systems are impractical for use in daily living due to the need for many sensors, typically one per body segment. Due to the need for practical and accurate estimation of joint kinematics, this study implements a reduced number of IMU sensors and employs a machine learning algorithm to map sensor data to joint angles. Our developed algorithm estimates hip, knee, and ankle angles in the sagittal plane using two shoe-mounted IMU sensors in different practical walking conditions: treadmill, overground, stair, and slope conditions. Specifically, we propose five deep learning networks that use combinations of Convolutional Neural Networks (CNN) and Gated Recurrent Unit (GRU) based Recurrent Neural Networks (RNN) as base learners for our framework. Using those five baseline models, we propose a novel framework, DeepBBWAE-Net, that implements ensemble techniques such as bagging, boosting, and weighted averaging to improve kinematic predictions. DeepBBWAE-Net predicts joint kinematics for the three joint angles for each of the walking conditions with a Root Mean Square Error (RMSE) 6.93-29.0% lower than the base models individually. This is the first study that uses a reduced number of IMU sensors to estimate kinematics in multiple walking environments.
Measurement of human body movement is an essential step in biomechanical analysis. The current standard for human motion capture systems uses infrared cameras to track reflective markers placed on the subject. While these systems can accurately track joint kinematics, the analyses are spatially limited to the lab environment. Though Inertial Measurement Unit (IMU) can eliminate the spatial limitations of the motion capture system, those systems are impractical for use in daily living due to the need for many sensors, typically one per body segment. Due to the need for practical and accurate estimation of joint kinematics, this study implements a reduced number of IMU sensors and employs machine learning algorithm to map sensor data to joint angles. Our developed algorithm estimates hip, knee, and ankle angles in the sagittal plane using two shoe-mounted IMU sensors in different practical walking conditions: treadmill, level overground, stair, and slope conditions. Specifically, we proposed five deep learning networks that use combinations of Convolutional Neural Networks (CNN) and Gated Recurrent Unit (GRU) based Recurrent Neural Networks (RNN) as base learners for our framework. Using those five baseline models, we proposed a novel framework, DeepBBWAE-Net, that implements ensemble techniques such as bagging, boosting, and weighted averaging to improve kinematic predictions. DeepBBWAE-Net predicts joint kinematics for the three joint angles under all the walking conditions with a Root Mean Square Error (RMSE) 6.93-29.0% lower than base models individually. This is the first study that uses a reduced number of IMU sensors to estimate kinematics in multiple walking environments.
Measurement of human body movement is an essential step in biomechanical analysis. The current standard for human motion capture systems uses infrared cameras to track reflective markers placed on a subject. While these systems can accurately track joint kinematics, the analyses are spatially limited to the lab environment. Though Inertial Measurement Units (IMUs) can eliminate these spatial limitations, those systems are impractical for use in daily living due to the need for many sensors, typically one per body segment. Due to the need for practical and accurate estimation of joint kinematics, this study implements a reduced number of IMU sensors and employs a machine learning algorithm to map sensor data to joint angles. Our developed algorithm estimates hip, knee, and ankle angles in the sagittal plane using two shoe-mounted IMU sensors in different practical walking conditions: treadmill, overground, stair, and slope conditions. Specifically, we propose five deep learning networks that use combinations of Convolutional Neural Networks (CNN) and Gated Recurrent Unit (GRU) based Recurrent Neural Networks (RNN) as base learners for our framework. Using those five baseline models, we propose a novel framework, DeepBBWAE-Net, that implements ensemble techniques such as bagging, boosting, and weighted averaging to improve kinematic predictions. DeepBBWAE-Net predicts joint kinematics for the three joint angles for each of the walking conditions with a Root Mean Square Error (RMSE) 6.93-29.0% lower than the base models individually. This is the first study that uses a reduced number of IMU sensors to estimate kinematics in multiple walking environments.
Author Guo, Zhishan
Dranetz, Joseph
Hossain, Md Sanzid Bin
Choi, Hwan
Author_xml – sequence: 1
  givenname: Md Sanzid Bin
  orcidid: 0000-0002-7984-7380
  surname: Hossain
  fullname: Hossain, Md Sanzid Bin
  email: sanzid@knights.ucf.edu
  organization: Electrical and Computer Engineering Department, University of Central Florida, Orlando, FL, USA
– sequence: 2
  givenname: Joseph
  surname: Dranetz
  fullname: Dranetz, Joseph
  email: jmdranetz@knights.ucf.edu
  organization: Mechanical and Aerospace Engineering Department, University of Central Florida, Orlando, FL, USA
– sequence: 3
  givenname: Hwan
  orcidid: 0000-0002-3592-5762
  surname: Choi
  fullname: Choi, Hwan
  email: hwan.choi@ucf.edu
  organization: Mechanical and Aerospace Engineering Department, University of Central Florida, Orlando, FL, USA
– sequence: 4
  givenname: Zhishan
  orcidid: 0000-0002-5967-1058
  surname: Guo
  fullname: Guo, Zhishan
  email: zsguo@ucf.edu
  organization: Electrical and Computer Engineering Department, University of Central Florida, Orlando, FL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35385394$$D View this record in MEDLINE/PubMed
BookMark eNp9kd9u0zAUxiM0xMbYAyAkZGk33KT4T-LE3LVdYR1dQISJS8tNToan1C62A_RleFYcteViF_jG1vHvO_b5vufJibEGkuQlwRNCsHh7M7teTiimdMIIz1nJniRnlPAypRSXJ8czEdlpcuH9A46rjCXBnyWnLPI5E9lZ8ucKYDubfZsu0grCOzRF86pKv1QVmikPLRqvUT1swa1AOQMOddahhQ96o4I292hlf8Xi4ndwsNFhh2p1r0NQPfrcKwPoxmoT0EdtYOQbj-78qKq_W0hv7WBCfGN5e4dqMN46j7RBV0r3O7TSPyP4Innaqd7DxWE_T-r3i6_z63T16cNyPl2lDctESBlbc6Ey3ApQHS6hoF0OuWhylWOyFphQwSlugQle0CKyZceLsgXcEI5Ldp682XfdOvtjAB_kRvsG-nECO3hJeVZinkU2opeP0Ac7OBP_JmmBWUYZFjxSrw_UsN5AK7cu2uV28uh7BIo90DjrvYNONjpEg6wJLo4vCZZjyHIMWY4hy0PIUUkeKY_N_6d5tddoAPjHiyLHec7YX4fCrx4
CODEN IJBHA9
CitedBy_id crossref_primary_10_1109_TIM_2023_3276528
crossref_primary_10_1016_j_bspc_2023_105372
crossref_primary_10_1109_ACCESS_2024_3434513
crossref_primary_10_1109_TNSRE_2024_3495530
crossref_primary_10_1016_j_clinbiomech_2024_106188
crossref_primary_10_1016_j_engappai_2024_108954
crossref_primary_10_3390_s23229040
crossref_primary_10_7717_peerj_16131
crossref_primary_10_1007_s11276_023_03574_4
crossref_primary_10_1109_JBHI_2023_3311448
crossref_primary_10_1080_02640414_2024_2312481
crossref_primary_10_46604_aiti_2023_12682
crossref_primary_10_7736_JKSPE_022_112
crossref_primary_10_1109_TBME_2023_3275775
crossref_primary_10_1007_s11241_023_09395_0
crossref_primary_10_3390_s23135778
crossref_primary_10_1109_JBHI_2024_3512546
crossref_primary_10_3390_s23229039
crossref_primary_10_1049_cit2_12223
crossref_primary_10_1109_JBHI_2023_3262164
Cites_doi 10.1186/1743-0003-3-4
10.1016/j.measurement.2014.03.004
10.23919/EUSIPCO.2019.8903143
10.1093/gerona/gln014
10.1109/JSEN.2018.2817228
10.1109/TBME.2007.901024
10.1002/cplx.20151
10.1016/j.jbiomech.2021.110229
10.1186/s13634-020-00715-1
10.1159/000322194
10.1371/journal.pone.0168566
10.1007/s11517-019-02061-3
10.1007/s00508-016-1096-4
10.1038/s41597-019-0323-z
10.3390/s20102939
10.1109/TBME.2012.2223465
10.3390/s20010130
10.3115/v1/D14-1179
10.1109/TNSRE.2017.2786269
10.3390/s18010302
10.3390/s20154271
10.3389/fbioe.2020.00041
10.1162/neco.1997.9.8.1735
10.3389/fbioe.2020.00604
10.2307/2699986
10.1007/s10439-008-9624-7
10.1016/j.gaitpost.2010.12.022
10.3390/app10051672
10.1007/978-3-642-15825-4_10
10.1109/TIM.2015.2504078
10.3390/s20030673
10.1016/j.jbiomech.2008.07.031
10.1109/78.650093
10.1002/jor.1100080310
10.1109/TIM.2019.2911756
10.1016/j.gaitpost.2020.10.026
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2022.3165383
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 3917
ExternalDocumentID 35385394
10_1109_JBHI_2022_3165383
9750553
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c349t-33b69a40d9eaf08e72f5e59c5a501b90129620de396727b698f678de0c16083
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Thu Oct 02 07:36:43 EDT 2025
Mon Jun 30 07:10:04 EDT 2025
Mon Jul 21 05:46:12 EDT 2025
Wed Oct 01 03:40:03 EDT 2025
Thu Apr 24 22:50:58 EDT 2025
Wed Aug 27 02:22:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-33b69a40d9eaf08e72f5e59c5a501b90129620de396727b698f678de0c16083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5967-1058
0000-0002-7984-7380
0000-0002-3592-5762
PMID 35385394
PQID 2703423096
PQPubID 85417
PageCount 12
ParticipantIDs proquest_miscellaneous_2648064160
pubmed_primary_35385394
proquest_journals_2703423096
crossref_citationtrail_10_1109_JBHI_2022_3165383
crossref_primary_10_1109_JBHI_2022_3165383
ieee_primary_9750553
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref36
ref30
ref11
ref10
ref32
ref2
ref1
Mundt (ref14) 2020; 20
ref17
ref39
ref16
ref38
ref19
ref18
Chollet (ref33) 2015
Ioffe (ref34) 2015
Breiman (ref29) 1996; 24
ref24
ref23
ref26
ref25
Kingma (ref41) 2017
ref20
ref22
ref21
Schwartz (ref42) 2008; 41
ref43
Kraft (ref31) 1989
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref10
  doi: 10.1186/1743-0003-3-4
– ident: ref12
  doi: 10.1016/j.measurement.2014.03.004
– ident: ref16
  doi: 10.23919/EUSIPCO.2019.8903143
– ident: ref1
  doi: 10.1093/gerona/gln014
– volume: 41
  start-page: 1639
  issue: 8
  volume-title: J. Biomech.
  year: 2008
  ident: ref42
  article-title: The effect of walking speed on the gait of typically developing children
– year: 2015
  ident: ref33
  article-title: Keras
– ident: ref17
  doi: 10.1109/JSEN.2018.2817228
– ident: ref9
  doi: 10.1109/TBME.2007.901024
– ident: ref15
  doi: 10.1002/cplx.20151
– ident: ref25
  doi: 10.1016/j.jbiomech.2021.110229
– ident: ref26
  doi: 10.1186/s13634-020-00715-1
– ident: ref2
  doi: 10.1159/000322194
– ident: ref38
  doi: 10.1371/journal.pone.0168566
– ident: ref23
  doi: 10.1007/s11517-019-02061-3
– ident: ref3
  doi: 10.1007/s00508-016-1096-4
– ident: ref43
  doi: 10.1038/s41597-019-0323-z
– ident: ref22
  doi: 10.3390/s20102939
– volume-title: Int. conf. mach. learn.
  year: 2015
  ident: ref34
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– ident: ref18
  doi: 10.1109/TBME.2012.2223465
– ident: ref21
  doi: 10.3390/s20010130
– ident: ref28
  doi: 10.3115/v1/D14-1179
– ident: ref7
  doi: 10.1109/TNSRE.2017.2786269
– ident: ref13
  doi: 10.3390/s18010302
– ident: ref32
  doi: 10.3390/s20154271
– ident: ref19
  doi: 10.3389/fbioe.2020.00041
– ident: ref27
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref20
  doi: 10.3389/fbioe.2020.00604
– volume: 24
  start-page: 123
  issue: 2
  volume-title: Mach. Learn.
  year: 1996
  ident: ref29
  article-title: Bagging predictors
– ident: ref30
  doi: 10.2307/2699986
– ident: ref37
  doi: 10.1007/s10439-008-9624-7
– ident: ref4
  doi: 10.1016/j.gaitpost.2010.12.022
– ident: ref5
  doi: 10.3390/app10051672
– ident: ref35
  doi: 10.1007/978-3-642-15825-4_10
– ident: ref6
  doi: 10.1109/TIM.2015.2504078
– volume: 20
  issue: 16
  volume-title: Sensors
  year: 2020
  ident: ref14
  article-title: Artificial neural networks in motion analysis-applications of unsupervised and heuristic feature selection techniques
– ident: ref11
  doi: 10.3390/s20030673
– ident: ref39
  doi: 10.1016/j.jbiomech.2008.07.031
– ident: ref36
  doi: 10.1109/78.650093
– start-page: 1
  year: 2017
  ident: ref41
  article-title: Adam: A method for stochastic optimization
– year: 1989
  ident: ref31
  article-title: SLSQP-A nonlinear programming method with quadratic programming subproblems
  publication-title: DLR, Oberpfaffenhofen
– ident: ref40
  doi: 10.1002/jor.1100080310
– ident: ref8
  doi: 10.1109/TIM.2019.2911756
– ident: ref24
  doi: 10.1016/j.gaitpost.2020.10.026
SSID ssj0000816896
Score 2.5137749
Snippet Measurement of human body movement is an essential step in biomechanical analysis. The current standard for human motion capture systems uses infrared cameras...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3906
SubjectTerms Algorithms
Ankle
Artificial neural networks
Biomechanical engineering
Biomechanics
Cameras
Data models
Deep learning
ensemble learning
Estimation
Human motion
Inertial platforms
Infrared analysis
Infrared cameras
Infrared tracking
Joints (anatomy)
Kinematics
kinematics estimation
Knee
Legged locomotion
Machine learning
Motion capture
Neural networks
Predictive models
Recurrent neural networks
Root-mean-square errors
Sensors
Treadmills
Walking
wearable IMU sensors
Title DeepBBWAE-Net: A CNN-RNN Based Deep SuperLearner for Estimating Lower Extremity Sagittal Plane Joint Kinematics Using Shoe-Mounted IMU Sensors in Daily Living
URI https://ieeexplore.ieee.org/document/9750553
https://www.ncbi.nlm.nih.gov/pubmed/35385394
https://www.proquest.com/docview/2703423096
https://www.proquest.com/docview/2648064160
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaHhAXXuURKGiQOCG8zcN5mNtuu9V2aXIgVPQW5TEpESVZZRMJ-DH8VsZONhIIEKdEihMn8Yznmxl7PsZe-UhW0PcLnpalCt04Ps_cIuOWKFw7F6WLjtooHEbe6lKsr9yrPfZm2guDiHrxGc7Uqc7lF03eq1DZsSTz5rrOPtv3A2_YqzXFUzSBhKbjsumEkyKKMYlpmfJ4vVidkzNo2-SjeqTjij7HoaPrSPGLRdIUK39Hm9rqnN1l4e59h8Umn2d9l83y77-VcvzfD7rH7ozwE-aDvNxne1g_YLfCMcF-yH6cIm4Wi4_zJY-wewtzOIki_j6KYEHmrgB1GeJ-g60uzIotEOiFJc0TCvnW13ChWNdg-bVr8QsBfIjT66ojgA-KHQlh3VR1B--oL10qdgt6yQLEnxrkoaKtoD7Ow0uIybtu2i1UNZym1c03uKhU5OMhi8-WH05WfKRw4LkjZMcdJ_NkKsxCYlqaAfo2jb4rczd1TSuTKgrm2WaBjlQZYWoblGQ9CzRzyyNw-Igd1E2NTxhIKygL4dN9uSoZKDPHRo-gFc2PpaBZy2DmbhCTfKxurkg2bhLt5ZgyUSKQKBFIRhEw2Ovpls1Q2uNfjQ_V8E0Nx5Ez2NFOUpJR-beJ7eu6iuQcGuzldJnUVuVi6F83PbXxREBokL7SYI8HCZuevRPMp3_u8xm7rd5sWIV4xA66tsfnhIy67IVWiZ8k3wQs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6VIgEXXuVhKDBInBBO_di1s9ySNlWSxj7gVvRm-TEuFsWOElsCfgy_ldm1YwkEiJMtee21vTM738zszsfYGx_JCvp-biZFoUI3rm-mIk9Nm-fCyXgh0FUbhYPQm1_w5aW43GPvhr0wiKgXn-FInepcfl5nrQqVHUkyb0K4N9hNwTkX3W6tIaKiKSQ0IZdDJyapIu_TmLYlj5bT-YLcQcchL9UjLVcEOi4dhSv5LzZJk6z8HW9qu3N6jwW7N-6Wm3wetU06yr7_Vszxfz_pPrvbA1CYdBLzgO1h9ZDdCvoU-wH7cYK4nk4_TmZmiM17mMBxGJofwhCmZPByUJchate40aVZcQMEe2FGM4XCvtUVrBTvGsy-Nhv8QhAfouSqbAjig-JHQljWZdXAGfWli8VuQS9agOhTjWagiCuoj0VwARH51_VmC2UFJ0l5_Q1WpYp9PGLR6ez8eG72JA5m5nLZmK6bejLhVi4xKawx-g6Nv5CZSIRlp1LFwTzHytGVKidMbccF2c8crcz2CB4-ZvtVXeFTBtIeFzn36b5MFQ2UqeugR-CKZsiC07xlMGs3iHHW1zdXNBvXsfZzLBkrEYiVCMS9CBjs7XDLuivu8a_GB2r4hob9yBnscCcpca_-29jxdWVFcg8N9nq4TIqrsjH0r-uW2nh8THiQvtJgTzoJG569E8xnf-7zFbs9Pw9W8WoRnj1nd9RbdmsSD9l-s2nxBeGkJn2p1eMn6YAHeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepBBWAE-Net%3A+A+CNN-RNN+Based+Deep+SuperLearner+for+Estimating+Lower+Extremity+Sagittal+Plane+Joint+Kinematics+Using+Shoe-Mounted+IMU+Sensors+in+Daily+Living&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Hossain%2C+Md+Sanzid+Bin&rft.au=Dranetz%2C+Joseph&rft.au=Choi%2C+Hwan&rft.au=Guo%2C+Zhishan&rft.date=2022-08-01&rft.issn=2168-2208&rft.eissn=2168-2208&rft.volume=26&rft.issue=8&rft.spage=3906&rft_id=info:doi/10.1109%2FJBHI.2022.3165383&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon