Reinforcement Learning for Load-Balanced Parallel Particle Tracing

We explore an online reinforcement learning (RL) paradigm to dynamically optimize parallel particle tracing performance in distributed-memory systems. Our method combines three novel components: (1) a work donation algorithm, (2) a high-order workload estimation model, and (3) a communication cost m...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 29; no. 6; pp. 3052 - 3066
Main Authors Xu, Jiayi, Guo, Hanqi, Shen, Han-Wei, Raj, Mukund, Wurster, Skylar W., Peterka, Tom
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1077-2626
1941-0506
1941-0506
DOI10.1109/TVCG.2022.3148745

Cover

Abstract We explore an online reinforcement learning (RL) paradigm to dynamically optimize parallel particle tracing performance in distributed-memory systems. Our method combines three novel components: (1) a work donation algorithm, (2) a high-order workload estimation model, and (3) a communication cost model. First, we design an RL-based work donation algorithm. Our algorithm monitors workloads of processes and creates RL agents to donate data blocks and particles from high-workload processes to low-workload processes to minimize program execution time. The agents learn the donation strategy on the fly based on reward and cost functions designed to consider processes' workload changes and data transfer costs of donation actions. Second, we propose a workload estimation model, helping RL agents estimate the workload distribution of processes in future computations. Third, we design a communication cost model that considers both block and particle data exchange costs, helping RL agents make effective decisions with minimized communication costs. We demonstrate that our algorithm adapts to different flow behaviors in large-scale fluid dynamics, ocean, and weather simulation data. Our algorithm improves parallel particle tracing performance in terms of parallel efficiency, load balance, and costs of I/O and communication for evaluations with up to 16,384 processors.
AbstractList We explore an online reinforcement learning (RL) paradigm to dynamically optimize parallel particle tracing performance in distributed-memory systems. Our method combines three novel components: (1) a work donation algorithm, (2) a high-order workload estimation model, and (3) a communication cost model. First, we design an RL-based work donation algorithm. Our algorithm monitors workloads of processes and creates RL agents to donate data blocks and particles from high-workload processes to low-workload processes to minimize program execution time. The agents learn the donation strategy on the fly based on reward and cost functions designed to consider processes' workload changes and data transfer costs of donation actions. Second, we propose a workload estimation model, helping RL agents estimate the workload distribution of processes in future computations. Third, we design a communication cost model that considers both block and particle data exchange costs, helping RL agents make effective decisions with minimized communication costs. We demonstrate that our algorithm adapts to different flow behaviors in large-scale fluid dynamics, ocean, and weather simulation data. Our algorithm improves parallel particle tracing performance in terms of parallel efficiency, load balance, and costs of I/O and communication for evaluations with up to 16,384 processors.
We explore an online reinforcement learning (RL) paradigm to dynamically optimize parallel particle tracing performance in distributed-memory systems. Our method combines three novel components: (1) a work donation algorithm, (2) a high-order workload estimation model, and (3) a communication cost model. First, we design an RL-based work donation algorithm. Our algorithm monitors workloads of processes and creates RL agents to donate data blocks and particles from high-workload processes to low-workload processes to minimize program execution time. The agents learn the donation strategy on the fly based on reward and cost functions designed to consider processes' workload changes and data transfer costs of donation actions. Second, we propose a workload estimation model, helping RL agents estimate the workload distribution of processes in future computations. Third, we design a communication cost model that considers both block and particle data exchange costs, helping RL agents make effective decisions with minimized communication costs. We demonstrate that our algorithm adapts to different flow behaviors in large-scale fluid dynamics, ocean, and weather simulation data. Our algorithm improves parallel particle tracing performance in terms of parallel efficiency, load balance, and costs of I/O and communication for evaluations with up to 16,384 processors.We explore an online reinforcement learning (RL) paradigm to dynamically optimize parallel particle tracing performance in distributed-memory systems. Our method combines three novel components: (1) a work donation algorithm, (2) a high-order workload estimation model, and (3) a communication cost model. First, we design an RL-based work donation algorithm. Our algorithm monitors workloads of processes and creates RL agents to donate data blocks and particles from high-workload processes to low-workload processes to minimize program execution time. The agents learn the donation strategy on the fly based on reward and cost functions designed to consider processes' workload changes and data transfer costs of donation actions. Second, we propose a workload estimation model, helping RL agents estimate the workload distribution of processes in future computations. Third, we design a communication cost model that considers both block and particle data exchange costs, helping RL agents make effective decisions with minimized communication costs. We demonstrate that our algorithm adapts to different flow behaviors in large-scale fluid dynamics, ocean, and weather simulation data. Our algorithm improves parallel particle tracing performance in terms of parallel efficiency, load balance, and costs of I/O and communication for evaluations with up to 16,384 processors.
Author Xu, Jiayi
Guo, Hanqi
Raj, Mukund
Shen, Han-Wei
Peterka, Tom
Wurster, Skylar W.
Author_xml – sequence: 1
  givenname: Jiayi
  orcidid: 0000-0002-9091-6412
  surname: Xu
  fullname: Xu, Jiayi
  email: xu.2205@osu.edu
  organization: Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
– sequence: 2
  givenname: Hanqi
  orcidid: 0000-0001-7776-1834
  surname: Guo
  fullname: Guo, Hanqi
  email: hguo@anl.gov
  organization: Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
– sequence: 3
  givenname: Han-Wei
  orcidid: 0000-0002-1211-2320
  surname: Shen
  fullname: Shen, Han-Wei
  email: shen.94@osu.edu
  organization: Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
– sequence: 4
  givenname: Mukund
  surname: Raj
  fullname: Raj, Mukund
  email: mraj@broadinstitute.org
  organization: Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
– sequence: 5
  givenname: Skylar W.
  orcidid: 0000-0001-6685-615X
  surname: Wurster
  fullname: Wurster, Skylar W.
  email: wurster.18@osu.edu
  organization: Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
– sequence: 6
  givenname: Tom
  surname: Peterka
  fullname: Peterka, Tom
  email: tpeterka@anl.gov
  organization: Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35130159$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rGzEQxUVJaBInH6AUykIuvayjkbT6c2xMmgYMCcHJVWi1s0VmrXW160O_fbTYziGHnGYYfm94M--CnMQ-IiHfgM4BqLlZvS7u54wyNucgtBLVF3IORkBJKypPck-VKplk8oxcDMOaUhBCm6_kjFfAKVTmnNw-Y4htnzxuMI7FEl2KIf4t8qhY9q4pb13nosemeHLJdR12UzMG32GxSs5n9pKctq4b8OpQZ-Tl991q8adcPt4_LH4tS8-FGUumfFvRGhrVOtdKcM5w6TkoKgHrxtXcVEZWMpvkQnujPTBtBKqmUbSuFZ-Rn_u929T_2-Ew2k0YPHbZH_a7wU6HagMALKPXH9B1v0sxu7NMU615pYTO1I8Dtas32NhtChuX_tvjdzKg9oBP_TAkbK0PoxtDH8fkQmeB2ikHO-VgpxzsIYeshA_K4_LPNN_3moCI77zJ_-FM8jfsY5B2
CODEN ITVGEA
CitedBy_id crossref_primary_10_11834_jig_230034
crossref_primary_10_1155_2022_1533949
Cites_doi 10.1007/BF00992696
10.1002/cpe.1206
10.1109/VISUAL.2004.107
10.1109/SC.2012.93
10.1145/1654059.1654113
10.1109/ROBOT.1997.606886
10.1109/TVCG.2013.144
10.1109/LDAV.2012.6378984
10.1109/TVCG.2017.2744059
10.1145/324133.324234
10.1109/TPDS.2019.2899843
10.1109/LDAV.2011.6092326
10.1016/S0097-8493(02)00056-0
10.1109/PacificVis.2018.00018
10.1016/j.neuron.2010.04.016
10.1109/TC.1987.1676942
10.1145/1362622.1362655
10.1109/LDAV.2016.7874307
10.1109/HiPC.2014.7116900
10.1109/TASE.2015.2499244
10.1109/PVGS.2003.1249047
10.1109/PacificVis.2018.00019
10.1145/2063384.2063397
10.1109/VISUAL.1994.346311
10.1016/S0167-2789(00)00199-8
10.1109/TVCG.2010.259
10.1007/s10846-017-0468-y
10.1109/PACIFICVIS.2016.7465254
10.1016/j.ocemod.2003.12.001
10.1145/800119.803884
10.1145/2038037.1941582
10.1109/TVCG.2014.2346418
10.1088/1742-6596/125/1/012076
10.1109/LDAV.2011.6092324
10.1016/S0167-8191(01)00098-9
10.1016/B978-044482322-9/50093-1
10.1145/1654059.1654076
10.1017/jfm.2012.5
10.1109/MCSE.2010.118
10.1038/nature14236
10.1109/MCG.2011.102
10.1109/SC.2014.87
10.1109/ICSTCC50638.2020.9259716
10.1080/14685240802376389
10.1016/j.jpdc.2005.03.010
10.1145/166117.166151
10.1109/LDAV.2013.6675152
10.1007/s12650-017-0470-2
10.1109/IPDPS.2011.62
10.1109/LDAV48142.2019.8944355
10.1201/b12985-8
10.1109/TVCG.2011.219
10.1111/j.2517-6161.1985.tb01383.x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2022.3148745
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore (NTUSG)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 3066
ExternalDocumentID 35130159
10_1109_TVCG_2022_3148745
9706326
Genre orig-research
Journal Article
GrantInformation_xml – fundername: UT-Battelle LLC
  grantid: 4000159447; 17-SC-20-SC
– fundername: U.S. Department of Energy
  grantid: 47145
  funderid: 10.13039/100000015
– fundername: U.S. Department of Energy
  grantid: DE-AC02-06CH11357
  funderid: 10.13039/100000015
– fundername: National Science Foundation
  grantid: 1955764; 2112606
  funderid: 10.13039/501100008982
– fundername: U.S. Department of Energy
  funderid: 10.13039/100000015
– fundername: National Nuclear Security Administration
  funderid: 10.13039/100006168
– fundername: Argonne National Laboratory
  funderid: 10.13039/100006224
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
AAYXX
CITATION
5VS
AAYOK
AETIX
AGSQL
AI.
AIBXA
ALLEH
H~9
IFJZH
NPM
RIG
RNI
RZB
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-27cf50b1d7faaf61aa936c317061ebdab3959656014348c98c12894e7dd70bb73
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Thu Oct 02 11:45:48 EDT 2025
Mon Jun 30 02:35:44 EDT 2025
Thu Apr 03 07:07:38 EDT 2025
Wed Oct 01 02:54:53 EDT 2025
Thu Apr 24 22:54:20 EDT 2025
Wed Aug 27 02:18:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-27cf50b1d7faaf61aa936c317061ebdab3959656014348c98c12894e7dd70bb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1211-2320
0000-0001-7776-1834
0000-0001-6685-615X
0000-0002-9091-6412
PMID 35130159
PQID 2808835748
PQPubID 75741
PageCount 15
ParticipantIDs ieee_primary_9706326
proquest_miscellaneous_2626891112
crossref_citationtrail_10_1109_TVCG_2022_3148745
crossref_primary_10_1109_TVCG_2022_3148745
proquest_journals_2808835748
pubmed_primary_35130159
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref15
ref59
ref14
ref58
ref52
ref11
ref10
agarwal (ref53) 2019
agarwal (ref54) 2020
ref17
ref16
ref18
kingma (ref75) 2014
ref50
camp (ref26) 2013
xu (ref40) 2010; 7530
rumelhart (ref73) 1987
ref46
cabral (ref30) 1995
ref45
ref48
ref47
ref42
ref41
ref44
ritchie (ref64) 1988
ref43
ref8
ref7
mnih (ref76) 2013
ref9
chen (ref19) 2008
ref4
ref3
ref6
ref5
morozov (ref69) 0
sutton (ref13) 2018
ref35
ref34
ref37
ref36
ref31
mnih (ref78) 2016
ref77
guo (ref22) 2013; 19
ref2
ref1
ref39
gary (ref12) 1979
moerland (ref51) 2020
ref38
kaiser (ref49) 2019
paszke (ref72) 2017
ref70
van rossum (ref63) 2009
ref24
ref68
ref67
ref25
ref20
paszke (ref71) 2019
ref66
guo (ref23) 2014
ref21
ref28
pugmire (ref32) 2018
ref27
schwartz (ref33) 2021
behnel (ref65) 2010; 13
tieleman (ref74) 2012; 4
mei (ref55) 2020
ref60
ref62
ref61
lane (ref29) 1995
References_xml – ident: ref52
  doi: 10.1007/BF00992696
– ident: ref15
  doi: 10.1002/cpe.1206
– ident: ref46
  doi: 10.1109/VISUAL.2004.107
– start-page: 6820
  year: 2020
  ident: ref55
  article-title: On the global convergence rates of softmax policy gradient methods
  publication-title: Proc Int Conf Mach Learn
– ident: ref4
  doi: 10.1109/SC.2012.93
– year: 2014
  ident: ref75
  article-title: Adam: A method for stochastic optimization
– ident: ref38
  doi: 10.1145/1654059.1654113
– ident: ref47
  doi: 10.1109/ROBOT.1997.606886
– start-page: 8026
  year: 2019
  ident: ref71
  article-title: PyTorch: An imperative style, high-performance deep learning library
  publication-title: Proc 33rd Int Conf Neural Informat Process Syst
– year: 2019
  ident: ref53
  article-title: On the theory of policy gradient methods: Optimality, approximation, and distribution shift
– volume: 19
  start-page: 2733
  year: 2013
  ident: ref22
  article-title: Coupled ensemble flow line advection and analysis
  publication-title: IEEE Trans Vis Comput Graphics
  doi: 10.1109/TVCG.2013.144
– start-page: 318
  year: 1987
  ident: ref73
  article-title: Learning internal representations by error propagation
  publication-title: Parallel Distributed Processing Explorations in the Microstructure of Cognition Foundations
– ident: ref42
  doi: 10.1109/LDAV.2012.6378984
– volume: 7530
  year: 2010
  ident: ref40
  article-title: Flow Web: A graph based user interface for 3D flow field exploration
  publication-title: Vis Data Anal
– ident: ref5
  doi: 10.1109/TVCG.2017.2744059
– ident: ref37
  doi: 10.1145/324133.324234
– ident: ref16
  doi: 10.1109/TPDS.2019.2899843
– ident: ref41
  doi: 10.1109/LDAV.2011.6092326
– ident: ref45
  doi: 10.1016/S0097-8493(02)00056-0
– ident: ref44
  doi: 10.1109/PacificVis.2018.00018
– ident: ref56
  doi: 10.1016/j.neuron.2010.04.016
– ident: ref36
  doi: 10.1109/TC.1987.1676942
– start-page: 33
  year: 2014
  ident: ref23
  article-title: Scalable Lagrangian-based attribute space projection for multivariate unsteady flow data
  publication-title: Proc IEEE Pacific Vis Symp
– ident: ref18
  doi: 10.1145/1362622.1362655
– ident: ref68
  doi: 10.1109/LDAV.2016.7874307
– ident: ref27
  doi: 10.1109/HiPC.2014.7116900
– ident: ref57
  doi: 10.1109/TASE.2015.2499244
– year: 2019
  ident: ref49
  article-title: Model-based reinforcement learning for atari
– start-page: 802
  year: 1995
  ident: ref30
  article-title: Highly parallel vector visualization using line integral convolution
  publication-title: Proc SIAM Conf Parallel Process Sci Comput
– year: 0
  ident: ref69
  article-title: DIY: data-parallel out-of-core library
– ident: ref2
  doi: 10.1109/PVGS.2003.1249047
– ident: ref24
  doi: 10.1109/PacificVis.2018.00019
– start-page: 64
  year: 2020
  ident: ref54
  article-title: Optimality and approximation with policy gradient methods in Markov decision processes
  publication-title: Proc Conf Learn Theory
– ident: ref7
  doi: 10.1145/2063384.2063397
– start-page: 1
  year: 2013
  ident: ref26
  article-title: GPU acceleration of particle advection workloads in a parallel, distributed memory setting
  publication-title: Proc Eurograph Symp Parallel Graph Vis
– year: 2018
  ident: ref13
  publication-title: Reinforcement Learning An Introduction
– ident: ref28
  doi: 10.1109/VISUAL.1994.346311
– ident: ref3
  doi: 10.1016/S0167-2789(00)00199-8
– year: 1979
  ident: ref12
  publication-title: Computers and Intractability A Guide to the Theory of NP-Completeness
– ident: ref31
  doi: 10.1109/TVCG.2010.259
– ident: ref48
  doi: 10.1007/s10846-017-0468-y
– ident: ref43
  doi: 10.1109/PACIFICVIS.2016.7465254
– year: 2016
  ident: ref78
  article-title: Asynchronous methods for deep reinforcement learning
– year: 2020
  ident: ref51
  article-title: Model-based reinforcement learning: A survey
– ident: ref60
  doi: 10.1016/j.ocemod.2003.12.001
– volume: 4
  start-page: 26
  year: 2012
  ident: ref74
  article-title: Lecture 6.5-RmsProp: Divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA Neural Netw Mach Learn
– ident: ref11
  doi: 10.1145/800119.803884
– ident: ref39
  doi: 10.1145/2038037.1941582
– ident: ref8
  doi: 10.1109/TVCG.2014.2346418
– ident: ref59
  doi: 10.1088/1742-6596/125/1/012076
– ident: ref67
  doi: 10.1109/LDAV.2011.6092324
– ident: ref14
  doi: 10.1016/S0167-8191(01)00098-9
– ident: ref17
  doi: 10.1016/B978-044482322-9/50093-1
– year: 2009
  ident: ref63
  publication-title: Python Reference Manual
– ident: ref9
  doi: 10.1145/1654059.1654076
– year: 2013
  ident: ref76
  article-title: Playing atari with deep reinforcement learning
– ident: ref61
  doi: 10.1017/jfm.2012.5
– year: 1995
  ident: ref29
  article-title: Parallelizing a particle tracer for flow visualization
– volume: 13
  start-page: 31
  year: 2010
  ident: ref65
  article-title: Cython: The best of both worlds
  publication-title: Comput Sci Eng
  doi: 10.1109/MCSE.2010.118
– ident: ref77
  doi: 10.1038/nature14236
– year: 2017
  ident: ref72
  article-title: Automatic differentiation in PyTorch
  publication-title: Proc Neural Informat Process Syst Autodiff Workshop
– start-page: 7
  year: 2021
  ident: ref33
  article-title: Machine learning-based autotuning for parallel particle advection
  publication-title: Proc Eurograph Symp Parallel Graph Vis
– ident: ref70
  doi: 10.1109/MCG.2011.102
– ident: ref6
  doi: 10.1109/SC.2014.87
– ident: ref50
  doi: 10.1109/ICSTCC50638.2020.9259716
– start-page: 87
  year: 2008
  ident: ref19
  article-title: Optimizing parallel performance of streamline visualization for large distributed flow datasets
  publication-title: Proc Pacific Vis Symp
– year: 1988
  ident: ref64
  publication-title: The C Programming Language
– ident: ref62
  doi: 10.1080/14685240802376389
– ident: ref66
  doi: 10.1016/j.jpdc.2005.03.010
– start-page: 45
  year: 2018
  ident: ref32
  article-title: Performance-Portable Particle Advection with VTK-m
  publication-title: Proc Eurograph Symp Parallel Graph Vis
– ident: ref1
  doi: 10.1145/166117.166151
– ident: ref21
  doi: 10.1109/LDAV.2013.6675152
– ident: ref35
  doi: 10.1007/s12650-017-0470-2
– ident: ref10
  doi: 10.1109/IPDPS.2011.62
– ident: ref25
  doi: 10.1109/LDAV48142.2019.8944355
– ident: ref34
  doi: 10.1201/b12985-8
– ident: ref20
  doi: 10.1109/TVCG.2011.219
– ident: ref58
  doi: 10.1111/j.2517-6161.1985.tb01383.x
SSID ssj0014489
Score 2.5821612
Snippet We explore an online reinforcement learning (RL) paradigm to dynamically optimize parallel particle tracing performance in distributed-memory systems. Our...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3052
SubjectTerms Adaptation models
Algorithms
Communication
Computational modeling
Cost function
Costs
Data exchange
Data models
Data transfer (computers)
Distributed and parallel particle tracing
Distributed memory
dynamic load balancing
Estimation
Fluid dynamics
Heuristic algorithms
Load balancing
Load modeling
reinforcement learning
Tracing
Workload
Workloads
Title Reinforcement Learning for Load-Balanced Parallel Particle Tracing
URI https://ieeexplore.ieee.org/document/9706326
https://www.ncbi.nlm.nih.gov/pubmed/35130159
https://www.proquest.com/docview/2808835748
https://www.proquest.com/docview/2626891112
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT90wDLeAw8QOwMbHyhjqpJ0QfbRJ2jTHgQYIwTRNgLhV-fDjwNN7E7x34a_HTvsqhADtFrVu2sZObMfOzwA_SiO9kJY81SAwU8LZzISqzhwpK2NIYpTks8MXv6vTK3V2U94swH5_FgYRY_IZDrgZY_lh4me8VXZgNClUUS3Coq6r9qxWHzEgN8O0-YU6E2SldxHMIjcHl9dHJ-QJCkEOqmJ492X4IEtavAtGKH2mjmJ9lbdNzahyjlfhYv6xbabJ3WA2dQP_-ALH8X__Zg1WOtsz_dkKyydYwPFn-PgMkXAdDv9ihFL1cdcw7dBXb1O6lJ5PbMgOORXSY0j_2HsuwzLiRuwvJbXniXYDro5_XR6dZl2ZhcxLZaaZ0H5Y5q4IemjtsCqsNbLyknF1CnTBOmlKwxg9ZFqp2pvak04zCnUIOndOy01YGk_G-AVSckaHWCEZgTUqbQKxvVKeTC7tjfYaE8jno934DoOcS2GMmuiL5KZhXjXMq6bjVQJ7_SP_WgCO94jXeZx7wm6IE9iZs7TppuhDI2paYGWpVZ3A9_42TS6OmNgxTmZEQ4JUszoQCWy1otD3PZeg7dff-RWWuTJ9m1W2A0vT-xl-I_tl6naj4D4B_qHmjQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGJsF42ICN0TGgSDwhemuTtGke2bRxwN2E0A3trcqHj4dNd2jcvfDXY6e9akJs2lvUumkbO7EdOz8DvCuN9EJa8lSDwEwJZzMTqjpzpKyMIYlRks8Oj8-q4bn6clFerMGH_iwMIsbkMxxwM8byw9wveavs0GhSqKJ6ABulUqpsT2v1MQNyNEybYagzQXZ6F8MscnM4-XH8iXxBIchFVQzwvgkPZUnLd8EYpTcUUqywcruxGZXO6TaMV5_b5ppcDpYLN_B__kFyvO__PIGtzvpMP7bi8hTWcPYMHt_AJNyBo-8YwVR93DdMO_zVnyldSkdzG7IjTob0GNJv9poLsVxxI_aXkuLzRLsL56cnk-Nh1hVayLxUZpEJ7adl7oqgp9ZOq8JaIysvGVmnQBesk6Y0jNJDxpWqvak9aTWjUIegc-e0fA7rs_kMX0BK7ugUKyQzsEalTSDGV8qT0aW90V5jAvlqtBvfoZBzMYyrJnojuWmYVw3zqul4lcD7_pFfLQTHXcQ7PM49YTfECRysWNp0k_R3I2paYmWpVZ3A2_42TS-OmdgZzpdEQ4JUs0IQCey1otD3vZKg_f-_8w08Gk7Go2b0-ezrS9jkOvVtjtkBrC-ul_iKrJmFex2F-C88HOna
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning+for+Load-Balanced+Parallel+Particle+Tracing&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Xu%2C+Jiayi&rft.au=Guo%2C+Hanqi&rft.au=Shen%2C+Han-Wei&rft.au=Raj%2C+Mukund&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=1077-2626&rft.volume=29&rft.issue=6&rft.spage=3052&rft.epage=3066&rft_id=info:doi/10.1109%2FTVCG.2022.3148745&rft_id=info%3Apmid%2F35130159&rft.externalDocID=9706326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon