Reinforcement Learning for Load-Balanced Parallel Particle Tracing
We explore an online reinforcement learning (RL) paradigm to dynamically optimize parallel particle tracing performance in distributed-memory systems. Our method combines three novel components: (1) a work donation algorithm, (2) a high-order workload estimation model, and (3) a communication cost m...
Saved in:
| Published in | IEEE transactions on visualization and computer graphics Vol. 29; no. 6; pp. 3052 - 3066 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1077-2626 1941-0506 1941-0506 |
| DOI | 10.1109/TVCG.2022.3148745 |
Cover
| Abstract | We explore an online reinforcement learning (RL) paradigm to dynamically optimize parallel particle tracing performance in distributed-memory systems. Our method combines three novel components: (1) a work donation algorithm, (2) a high-order workload estimation model, and (3) a communication cost model. First, we design an RL-based work donation algorithm. Our algorithm monitors workloads of processes and creates RL agents to donate data blocks and particles from high-workload processes to low-workload processes to minimize program execution time. The agents learn the donation strategy on the fly based on reward and cost functions designed to consider processes' workload changes and data transfer costs of donation actions. Second, we propose a workload estimation model, helping RL agents estimate the workload distribution of processes in future computations. Third, we design a communication cost model that considers both block and particle data exchange costs, helping RL agents make effective decisions with minimized communication costs. We demonstrate that our algorithm adapts to different flow behaviors in large-scale fluid dynamics, ocean, and weather simulation data. Our algorithm improves parallel particle tracing performance in terms of parallel efficiency, load balance, and costs of I/O and communication for evaluations with up to 16,384 processors. |
|---|---|
| AbstractList | We explore an online reinforcement learning (RL) paradigm to dynamically optimize parallel particle tracing performance in distributed-memory systems. Our method combines three novel components: (1) a work donation algorithm, (2) a high-order workload estimation model, and (3) a communication cost model. First, we design an RL-based work donation algorithm. Our algorithm monitors workloads of processes and creates RL agents to donate data blocks and particles from high-workload processes to low-workload processes to minimize program execution time. The agents learn the donation strategy on the fly based on reward and cost functions designed to consider processes' workload changes and data transfer costs of donation actions. Second, we propose a workload estimation model, helping RL agents estimate the workload distribution of processes in future computations. Third, we design a communication cost model that considers both block and particle data exchange costs, helping RL agents make effective decisions with minimized communication costs. We demonstrate that our algorithm adapts to different flow behaviors in large-scale fluid dynamics, ocean, and weather simulation data. Our algorithm improves parallel particle tracing performance in terms of parallel efficiency, load balance, and costs of I/O and communication for evaluations with up to 16,384 processors. We explore an online reinforcement learning (RL) paradigm to dynamically optimize parallel particle tracing performance in distributed-memory systems. Our method combines three novel components: (1) a work donation algorithm, (2) a high-order workload estimation model, and (3) a communication cost model. First, we design an RL-based work donation algorithm. Our algorithm monitors workloads of processes and creates RL agents to donate data blocks and particles from high-workload processes to low-workload processes to minimize program execution time. The agents learn the donation strategy on the fly based on reward and cost functions designed to consider processes' workload changes and data transfer costs of donation actions. Second, we propose a workload estimation model, helping RL agents estimate the workload distribution of processes in future computations. Third, we design a communication cost model that considers both block and particle data exchange costs, helping RL agents make effective decisions with minimized communication costs. We demonstrate that our algorithm adapts to different flow behaviors in large-scale fluid dynamics, ocean, and weather simulation data. Our algorithm improves parallel particle tracing performance in terms of parallel efficiency, load balance, and costs of I/O and communication for evaluations with up to 16,384 processors.We explore an online reinforcement learning (RL) paradigm to dynamically optimize parallel particle tracing performance in distributed-memory systems. Our method combines three novel components: (1) a work donation algorithm, (2) a high-order workload estimation model, and (3) a communication cost model. First, we design an RL-based work donation algorithm. Our algorithm monitors workloads of processes and creates RL agents to donate data blocks and particles from high-workload processes to low-workload processes to minimize program execution time. The agents learn the donation strategy on the fly based on reward and cost functions designed to consider processes' workload changes and data transfer costs of donation actions. Second, we propose a workload estimation model, helping RL agents estimate the workload distribution of processes in future computations. Third, we design a communication cost model that considers both block and particle data exchange costs, helping RL agents make effective decisions with minimized communication costs. We demonstrate that our algorithm adapts to different flow behaviors in large-scale fluid dynamics, ocean, and weather simulation data. Our algorithm improves parallel particle tracing performance in terms of parallel efficiency, load balance, and costs of I/O and communication for evaluations with up to 16,384 processors. |
| Author | Xu, Jiayi Guo, Hanqi Raj, Mukund Shen, Han-Wei Peterka, Tom Wurster, Skylar W. |
| Author_xml | – sequence: 1 givenname: Jiayi orcidid: 0000-0002-9091-6412 surname: Xu fullname: Xu, Jiayi email: xu.2205@osu.edu organization: Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA – sequence: 2 givenname: Hanqi orcidid: 0000-0001-7776-1834 surname: Guo fullname: Guo, Hanqi email: hguo@anl.gov organization: Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA – sequence: 3 givenname: Han-Wei orcidid: 0000-0002-1211-2320 surname: Shen fullname: Shen, Han-Wei email: shen.94@osu.edu organization: Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA – sequence: 4 givenname: Mukund surname: Raj fullname: Raj, Mukund email: mraj@broadinstitute.org organization: Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA – sequence: 5 givenname: Skylar W. orcidid: 0000-0001-6685-615X surname: Wurster fullname: Wurster, Skylar W. email: wurster.18@osu.edu organization: Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA – sequence: 6 givenname: Tom surname: Peterka fullname: Peterka, Tom email: tpeterka@anl.gov organization: Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35130159$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9rGzEQxUVJaBInH6AUykIuvayjkbT6c2xMmgYMCcHJVWi1s0VmrXW160O_fbTYziGHnGYYfm94M--CnMQ-IiHfgM4BqLlZvS7u54wyNucgtBLVF3IORkBJKypPck-VKplk8oxcDMOaUhBCm6_kjFfAKVTmnNw-Y4htnzxuMI7FEl2KIf4t8qhY9q4pb13nosemeHLJdR12UzMG32GxSs5n9pKctq4b8OpQZ-Tl991q8adcPt4_LH4tS8-FGUumfFvRGhrVOtdKcM5w6TkoKgHrxtXcVEZWMpvkQnujPTBtBKqmUbSuFZ-Rn_u929T_2-Ew2k0YPHbZH_a7wU6HagMALKPXH9B1v0sxu7NMU615pYTO1I8Dtas32NhtChuX_tvjdzKg9oBP_TAkbK0PoxtDH8fkQmeB2ikHO-VgpxzsIYeshA_K4_LPNN_3moCI77zJ_-FM8jfsY5B2 |
| CODEN | ITVGEA |
| CitedBy_id | crossref_primary_10_11834_jig_230034 crossref_primary_10_1155_2022_1533949 |
| Cites_doi | 10.1007/BF00992696 10.1002/cpe.1206 10.1109/VISUAL.2004.107 10.1109/SC.2012.93 10.1145/1654059.1654113 10.1109/ROBOT.1997.606886 10.1109/TVCG.2013.144 10.1109/LDAV.2012.6378984 10.1109/TVCG.2017.2744059 10.1145/324133.324234 10.1109/TPDS.2019.2899843 10.1109/LDAV.2011.6092326 10.1016/S0097-8493(02)00056-0 10.1109/PacificVis.2018.00018 10.1016/j.neuron.2010.04.016 10.1109/TC.1987.1676942 10.1145/1362622.1362655 10.1109/LDAV.2016.7874307 10.1109/HiPC.2014.7116900 10.1109/TASE.2015.2499244 10.1109/PVGS.2003.1249047 10.1109/PacificVis.2018.00019 10.1145/2063384.2063397 10.1109/VISUAL.1994.346311 10.1016/S0167-2789(00)00199-8 10.1109/TVCG.2010.259 10.1007/s10846-017-0468-y 10.1109/PACIFICVIS.2016.7465254 10.1016/j.ocemod.2003.12.001 10.1145/800119.803884 10.1145/2038037.1941582 10.1109/TVCG.2014.2346418 10.1088/1742-6596/125/1/012076 10.1109/LDAV.2011.6092324 10.1016/S0167-8191(01)00098-9 10.1016/B978-044482322-9/50093-1 10.1145/1654059.1654076 10.1017/jfm.2012.5 10.1109/MCSE.2010.118 10.1038/nature14236 10.1109/MCG.2011.102 10.1109/SC.2014.87 10.1109/ICSTCC50638.2020.9259716 10.1080/14685240802376389 10.1016/j.jpdc.2005.03.010 10.1145/166117.166151 10.1109/LDAV.2013.6675152 10.1007/s12650-017-0470-2 10.1109/IPDPS.2011.62 10.1109/LDAV48142.2019.8944355 10.1201/b12985-8 10.1109/TVCG.2011.219 10.1111/j.2517-6161.1985.tb01383.x |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TVCG.2022.3148745 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore (NTUSG) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0506 |
| EndPage | 3066 |
| ExternalDocumentID | 35130159 10_1109_TVCG_2022_3148745 9706326 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: UT-Battelle LLC grantid: 4000159447; 17-SC-20-SC – fundername: U.S. Department of Energy grantid: 47145 funderid: 10.13039/100000015 – fundername: U.S. Department of Energy grantid: DE-AC02-06CH11357 funderid: 10.13039/100000015 – fundername: National Science Foundation grantid: 1955764; 2112606 funderid: 10.13039/501100008982 – fundername: U.S. Department of Energy funderid: 10.13039/100000015 – fundername: National Nuclear Security Administration funderid: 10.13039/100006168 – fundername: Argonne National Laboratory funderid: 10.13039/100006224 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 AAYXX CITATION 5VS AAYOK AETIX AGSQL AI. AIBXA ALLEH H~9 IFJZH NPM RIG RNI RZB VH1 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-27cf50b1d7faaf61aa936c317061ebdab3959656014348c98c12894e7dd70bb73 |
| IEDL.DBID | RIE |
| ISSN | 1077-2626 1941-0506 |
| IngestDate | Thu Oct 02 11:45:48 EDT 2025 Mon Jun 30 02:35:44 EDT 2025 Thu Apr 03 07:07:38 EDT 2025 Wed Oct 01 02:54:53 EDT 2025 Thu Apr 24 22:54:20 EDT 2025 Wed Aug 27 02:18:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-27cf50b1d7faaf61aa936c317061ebdab3959656014348c98c12894e7dd70bb73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1211-2320 0000-0001-7776-1834 0000-0001-6685-615X 0000-0002-9091-6412 |
| PMID | 35130159 |
| PQID | 2808835748 |
| PQPubID | 75741 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_9706326 proquest_miscellaneous_2626891112 crossref_citationtrail_10_1109_TVCG_2022_3148745 crossref_primary_10_1109_TVCG_2022_3148745 proquest_journals_2808835748 pubmed_primary_35130159 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on visualization and computer graphics |
| PublicationTitleAbbrev | TVCG |
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref15 ref59 ref14 ref58 ref52 ref11 ref10 agarwal (ref53) 2019 agarwal (ref54) 2020 ref17 ref16 ref18 kingma (ref75) 2014 ref50 camp (ref26) 2013 xu (ref40) 2010; 7530 rumelhart (ref73) 1987 ref46 cabral (ref30) 1995 ref45 ref48 ref47 ref42 ref41 ref44 ritchie (ref64) 1988 ref43 ref8 ref7 mnih (ref76) 2013 ref9 chen (ref19) 2008 ref4 ref3 ref6 ref5 morozov (ref69) 0 sutton (ref13) 2018 ref35 ref34 ref37 ref36 ref31 mnih (ref78) 2016 ref77 guo (ref22) 2013; 19 ref2 ref1 ref39 gary (ref12) 1979 moerland (ref51) 2020 ref38 kaiser (ref49) 2019 paszke (ref72) 2017 ref70 van rossum (ref63) 2009 ref24 ref68 ref67 ref25 ref20 paszke (ref71) 2019 ref66 guo (ref23) 2014 ref21 ref28 pugmire (ref32) 2018 ref27 schwartz (ref33) 2021 behnel (ref65) 2010; 13 tieleman (ref74) 2012; 4 mei (ref55) 2020 ref60 ref62 ref61 lane (ref29) 1995 |
| References_xml | – ident: ref52 doi: 10.1007/BF00992696 – ident: ref15 doi: 10.1002/cpe.1206 – ident: ref46 doi: 10.1109/VISUAL.2004.107 – start-page: 6820 year: 2020 ident: ref55 article-title: On the global convergence rates of softmax policy gradient methods publication-title: Proc Int Conf Mach Learn – ident: ref4 doi: 10.1109/SC.2012.93 – year: 2014 ident: ref75 article-title: Adam: A method for stochastic optimization – ident: ref38 doi: 10.1145/1654059.1654113 – ident: ref47 doi: 10.1109/ROBOT.1997.606886 – start-page: 8026 year: 2019 ident: ref71 article-title: PyTorch: An imperative style, high-performance deep learning library publication-title: Proc 33rd Int Conf Neural Informat Process Syst – year: 2019 ident: ref53 article-title: On the theory of policy gradient methods: Optimality, approximation, and distribution shift – volume: 19 start-page: 2733 year: 2013 ident: ref22 article-title: Coupled ensemble flow line advection and analysis publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2013.144 – start-page: 318 year: 1987 ident: ref73 article-title: Learning internal representations by error propagation publication-title: Parallel Distributed Processing Explorations in the Microstructure of Cognition Foundations – ident: ref42 doi: 10.1109/LDAV.2012.6378984 – volume: 7530 year: 2010 ident: ref40 article-title: Flow Web: A graph based user interface for 3D flow field exploration publication-title: Vis Data Anal – ident: ref5 doi: 10.1109/TVCG.2017.2744059 – ident: ref37 doi: 10.1145/324133.324234 – ident: ref16 doi: 10.1109/TPDS.2019.2899843 – ident: ref41 doi: 10.1109/LDAV.2011.6092326 – ident: ref45 doi: 10.1016/S0097-8493(02)00056-0 – ident: ref44 doi: 10.1109/PacificVis.2018.00018 – ident: ref56 doi: 10.1016/j.neuron.2010.04.016 – ident: ref36 doi: 10.1109/TC.1987.1676942 – start-page: 33 year: 2014 ident: ref23 article-title: Scalable Lagrangian-based attribute space projection for multivariate unsteady flow data publication-title: Proc IEEE Pacific Vis Symp – ident: ref18 doi: 10.1145/1362622.1362655 – ident: ref68 doi: 10.1109/LDAV.2016.7874307 – ident: ref27 doi: 10.1109/HiPC.2014.7116900 – ident: ref57 doi: 10.1109/TASE.2015.2499244 – year: 2019 ident: ref49 article-title: Model-based reinforcement learning for atari – start-page: 802 year: 1995 ident: ref30 article-title: Highly parallel vector visualization using line integral convolution publication-title: Proc SIAM Conf Parallel Process Sci Comput – year: 0 ident: ref69 article-title: DIY: data-parallel out-of-core library – ident: ref2 doi: 10.1109/PVGS.2003.1249047 – ident: ref24 doi: 10.1109/PacificVis.2018.00019 – start-page: 64 year: 2020 ident: ref54 article-title: Optimality and approximation with policy gradient methods in Markov decision processes publication-title: Proc Conf Learn Theory – ident: ref7 doi: 10.1145/2063384.2063397 – start-page: 1 year: 2013 ident: ref26 article-title: GPU acceleration of particle advection workloads in a parallel, distributed memory setting publication-title: Proc Eurograph Symp Parallel Graph Vis – year: 2018 ident: ref13 publication-title: Reinforcement Learning An Introduction – ident: ref28 doi: 10.1109/VISUAL.1994.346311 – ident: ref3 doi: 10.1016/S0167-2789(00)00199-8 – year: 1979 ident: ref12 publication-title: Computers and Intractability A Guide to the Theory of NP-Completeness – ident: ref31 doi: 10.1109/TVCG.2010.259 – ident: ref48 doi: 10.1007/s10846-017-0468-y – ident: ref43 doi: 10.1109/PACIFICVIS.2016.7465254 – year: 2016 ident: ref78 article-title: Asynchronous methods for deep reinforcement learning – year: 2020 ident: ref51 article-title: Model-based reinforcement learning: A survey – ident: ref60 doi: 10.1016/j.ocemod.2003.12.001 – volume: 4 start-page: 26 year: 2012 ident: ref74 article-title: Lecture 6.5-RmsProp: Divide the gradient by a running average of its recent magnitude publication-title: COURSERA Neural Netw Mach Learn – ident: ref11 doi: 10.1145/800119.803884 – ident: ref39 doi: 10.1145/2038037.1941582 – ident: ref8 doi: 10.1109/TVCG.2014.2346418 – ident: ref59 doi: 10.1088/1742-6596/125/1/012076 – ident: ref67 doi: 10.1109/LDAV.2011.6092324 – ident: ref14 doi: 10.1016/S0167-8191(01)00098-9 – ident: ref17 doi: 10.1016/B978-044482322-9/50093-1 – year: 2009 ident: ref63 publication-title: Python Reference Manual – ident: ref9 doi: 10.1145/1654059.1654076 – year: 2013 ident: ref76 article-title: Playing atari with deep reinforcement learning – ident: ref61 doi: 10.1017/jfm.2012.5 – year: 1995 ident: ref29 article-title: Parallelizing a particle tracer for flow visualization – volume: 13 start-page: 31 year: 2010 ident: ref65 article-title: Cython: The best of both worlds publication-title: Comput Sci Eng doi: 10.1109/MCSE.2010.118 – ident: ref77 doi: 10.1038/nature14236 – year: 2017 ident: ref72 article-title: Automatic differentiation in PyTorch publication-title: Proc Neural Informat Process Syst Autodiff Workshop – start-page: 7 year: 2021 ident: ref33 article-title: Machine learning-based autotuning for parallel particle advection publication-title: Proc Eurograph Symp Parallel Graph Vis – ident: ref70 doi: 10.1109/MCG.2011.102 – ident: ref6 doi: 10.1109/SC.2014.87 – ident: ref50 doi: 10.1109/ICSTCC50638.2020.9259716 – start-page: 87 year: 2008 ident: ref19 article-title: Optimizing parallel performance of streamline visualization for large distributed flow datasets publication-title: Proc Pacific Vis Symp – year: 1988 ident: ref64 publication-title: The C Programming Language – ident: ref62 doi: 10.1080/14685240802376389 – ident: ref66 doi: 10.1016/j.jpdc.2005.03.010 – start-page: 45 year: 2018 ident: ref32 article-title: Performance-Portable Particle Advection with VTK-m publication-title: Proc Eurograph Symp Parallel Graph Vis – ident: ref1 doi: 10.1145/166117.166151 – ident: ref21 doi: 10.1109/LDAV.2013.6675152 – ident: ref35 doi: 10.1007/s12650-017-0470-2 – ident: ref10 doi: 10.1109/IPDPS.2011.62 – ident: ref25 doi: 10.1109/LDAV48142.2019.8944355 – ident: ref34 doi: 10.1201/b12985-8 – ident: ref20 doi: 10.1109/TVCG.2011.219 – ident: ref58 doi: 10.1111/j.2517-6161.1985.tb01383.x |
| SSID | ssj0014489 |
| Score | 2.5821612 |
| Snippet | We explore an online reinforcement learning (RL) paradigm to dynamically optimize parallel particle tracing performance in distributed-memory systems. Our... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3052 |
| SubjectTerms | Adaptation models Algorithms Communication Computational modeling Cost function Costs Data exchange Data models Data transfer (computers) Distributed and parallel particle tracing Distributed memory dynamic load balancing Estimation Fluid dynamics Heuristic algorithms Load balancing Load modeling reinforcement learning Tracing Workload Workloads |
| Title | Reinforcement Learning for Load-Balanced Parallel Particle Tracing |
| URI | https://ieeexplore.ieee.org/document/9706326 https://www.ncbi.nlm.nih.gov/pubmed/35130159 https://www.proquest.com/docview/2808835748 https://www.proquest.com/docview/2626891112 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT90wDLeAw8QOwMbHyhjqpJ0QfbRJ2jTHgQYIwTRNgLhV-fDjwNN7E7x34a_HTvsqhADtFrVu2sZObMfOzwA_SiO9kJY81SAwU8LZzISqzhwpK2NIYpTks8MXv6vTK3V2U94swH5_FgYRY_IZDrgZY_lh4me8VXZgNClUUS3Coq6r9qxWHzEgN8O0-YU6E2SldxHMIjcHl9dHJ-QJCkEOqmJ492X4IEtavAtGKH2mjmJ9lbdNzahyjlfhYv6xbabJ3WA2dQP_-ALH8X__Zg1WOtsz_dkKyydYwPFn-PgMkXAdDv9ihFL1cdcw7dBXb1O6lJ5PbMgOORXSY0j_2HsuwzLiRuwvJbXniXYDro5_XR6dZl2ZhcxLZaaZ0H5Y5q4IemjtsCqsNbLyknF1CnTBOmlKwxg9ZFqp2pvak04zCnUIOndOy01YGk_G-AVSckaHWCEZgTUqbQKxvVKeTC7tjfYaE8jno934DoOcS2GMmuiL5KZhXjXMq6bjVQJ7_SP_WgCO94jXeZx7wm6IE9iZs7TppuhDI2paYGWpVZ3A9_42TS6OmNgxTmZEQ4JUszoQCWy1otD3PZeg7dff-RWWuTJ9m1W2A0vT-xl-I_tl6naj4D4B_qHmjQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGJsF42ICN0TGgSDwhemuTtGke2bRxwN2E0A3trcqHj4dNd2jcvfDXY6e9akJs2lvUumkbO7EdOz8DvCuN9EJa8lSDwEwJZzMTqjpzpKyMIYlRks8Oj8-q4bn6clFerMGH_iwMIsbkMxxwM8byw9wveavs0GhSqKJ6ABulUqpsT2v1MQNyNEybYagzQXZ6F8MscnM4-XH8iXxBIchFVQzwvgkPZUnLd8EYpTcUUqywcruxGZXO6TaMV5_b5ppcDpYLN_B__kFyvO__PIGtzvpMP7bi8hTWcPYMHt_AJNyBo-8YwVR93DdMO_zVnyldSkdzG7IjTob0GNJv9poLsVxxI_aXkuLzRLsL56cnk-Nh1hVayLxUZpEJ7adl7oqgp9ZOq8JaIysvGVmnQBesk6Y0jNJDxpWqvak9aTWjUIegc-e0fA7rs_kMX0BK7ugUKyQzsEalTSDGV8qT0aW90V5jAvlqtBvfoZBzMYyrJnojuWmYVw3zqul4lcD7_pFfLQTHXcQ7PM49YTfECRysWNp0k_R3I2paYmWpVZ3A2_42TS-OmdgZzpdEQ4JUs0IQCey1otD3vZKg_f-_8w08Gk7Go2b0-ezrS9jkOvVtjtkBrC-ul_iKrJmFex2F-C88HOna |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning+for+Load-Balanced+Parallel+Particle+Tracing&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Xu%2C+Jiayi&rft.au=Guo%2C+Hanqi&rft.au=Shen%2C+Han-Wei&rft.au=Raj%2C+Mukund&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=1077-2626&rft.volume=29&rft.issue=6&rft.spage=3052&rft.epage=3066&rft_id=info:doi/10.1109%2FTVCG.2022.3148745&rft_id=info%3Apmid%2F35130159&rft.externalDocID=9706326 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |