Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review
With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for advancing clinical practice. One of the key objectives in healthcare is the early detection and prediction of disease to timely provide preventiv...
Saved in:
Published in | IEEE reviews in biomedical engineering Vol. 14; pp. 139 - 155 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1937-3333 1941-1189 1941-1189 |
DOI | 10.1109/RBME.2020.3008792 |
Cover
Abstract | With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for advancing clinical practice. One of the key objectives in healthcare is the early detection and prediction of disease to timely provide preventive interventions. This is especially the case for epilepsy, which is characterized by recurrent and unpredictable seizures. Patients can be relieved from the adverse consequences of epileptic seizures if it could somehow be predicted in advance. Despite decades of research, seizure prediction remains an unsolved problem. This is likely to remain at least partly because of the inadequate amount of data to resolve the problem. There have been exciting new developments in ML-based algorithms that have the potential to deliver a paradigm shift in the early and accurate prediction of epileptic seizures. Here we provide a comprehensive review of state-of-the-art ML techniques in early prediction of seizures using EEG signals. We will identify the gaps, challenges, and pitfalls in the current research and recommend future directions. |
---|---|
AbstractList | With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for advancing clinical practice. One of the key objectives in healthcare is the early detection and prediction of disease to timely provide preventive interventions. This is especially the case for epilepsy, which is characterized by recurrent and unpredictable seizures. Patients can be relieved from the adverse consequences of epileptic seizures if it could somehow be predicted in advance. Despite decades of research, seizure prediction remains an unsolved problem. This is likely to remain at least partly because of the inadequate amount of data to resolve the problem. There have been exciting new developments in ML-based algorithms that have the potential to deliver a paradigm shift in the early and accurate prediction of epileptic seizures. Here we provide a comprehensive review of state-of-the-art ML techniques in early prediction of seizures using EEG signals. We will identify the gaps, challenges, and pitfalls in the current research and recommend future directions. With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for advancing clinical practice. One of the key objectives in healthcare is the early detection and prediction of disease to timely provide preventive interventions. This is especially the case for epilepsy, which is characterized by recurrent and unpredictable seizures. Patients can be relieved from the adverse consequences of epileptic seizures if it could somehow be predicted in advance. Despite decades of research, seizure prediction remains an unsolved problem. This is likely to remain at least partly because of the inadequate amount of data to resolve the problem. There have been exciting new developments in ML-based algorithms that have the potential to deliver a paradigm shift in the early and accurate prediction of epileptic seizures. Here we provide a comprehensive review of state-of-the-art ML techniques in early prediction of seizures using EEG signals. We will identify the gaps, challenges, and pitfalls in the current research and recommend future directions.With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for advancing clinical practice. One of the key objectives in healthcare is the early detection and prediction of disease to timely provide preventive interventions. This is especially the case for epilepsy, which is characterized by recurrent and unpredictable seizures. Patients can be relieved from the adverse consequences of epileptic seizures if it could somehow be predicted in advance. Despite decades of research, seizure prediction remains an unsolved problem. This is likely to remain at least partly because of the inadequate amount of data to resolve the problem. There have been exciting new developments in ML-based algorithms that have the potential to deliver a paradigm shift in the early and accurate prediction of epileptic seizures. Here we provide a comprehensive review of state-of-the-art ML techniques in early prediction of seizures using EEG signals. We will identify the gaps, challenges, and pitfalls in the current research and recommend future directions. |
Author | Sivathamboo, Shobi Qadir, Junaid Kwan, Patrick Qayyum, Adnan Kuhlmann, Levin Rasheed, Khansa Razi, Adeel O'Brien, Terence |
Author_xml | – sequence: 1 givenname: Khansa orcidid: 0000-0002-3513-1786 surname: Rasheed fullname: Rasheed, Khansa email: msee18016@itu.edu.pk organization: Information Technology University (ITU)-Punjab, Lahore, Pakistan – sequence: 2 givenname: Adnan orcidid: 0000-0002-6732-7601 surname: Qayyum fullname: Qayyum, Adnan email: adnan.qayyum@itu.edu.pk organization: Information Technology University (ITU)-Punjab, Lahore, Pakistan – sequence: 3 givenname: Junaid orcidid: 0000-0001-9466-2475 surname: Qadir fullname: Qadir, Junaid email: junaid.qadir@itu.edu.pk organization: Information Technology University (ITU)-Punjab, Lahore, Pakistan – sequence: 4 givenname: Shobi surname: Sivathamboo fullname: Sivathamboo, Shobi email: shobi.sivathamboo@monash.edu organization: Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia – sequence: 5 givenname: Patrick surname: Kwan fullname: Kwan, Patrick email: patrick.kwan@monash.edu organization: Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia – sequence: 6 givenname: Levin orcidid: 0000-0002-5108-6348 surname: Kuhlmann fullname: Kuhlmann, Levin email: levin.kuhlmann@monash.edu organization: Faculty of Information Technology, Monash University, Clayton, VIC, Australia – sequence: 7 givenname: Terence surname: O'Brien fullname: O'Brien, Terence email: te.obrien@alfred.org.au organization: Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia – sequence: 8 givenname: Adeel orcidid: 0000-0002-0779-9439 surname: Razi fullname: Razi, Adeel email: adeel.razi@monash.edu organization: Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32746369$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctOwzAQRS0Eorw-ACGhSGzYpNixG8fsAJWHVB5q6dpy4nExSpNiJyD4ehxaWHTBbOyxzx2P5-6izaquAKFDgvuEYHE2vrwf9hOc4D7FOOMi2UA7RDASE5KJzW5PeUxD9NCB9684xIBxkuFt1KMJZylNxQ56uFfFi60gGoFyla1mkald9ORA26Lp0uHClrBobBFNwH61Dnw09T8Xw5toYmeVKv15dBGN4d3Cxz7aMuEADlbrHppeD5-vbuPR483d1cUoLigTTZwwqrhOBoTq1HDDFFO5MDobZGkhQosKc21yo3ma5BllOvxIU2JUzjKitUrpHjpd1l24-q0F38i59QWUpaqgbr0MD2Aa1CkO6Mka-lq3rms7UFmYXJhDV_B4RbX5HLRcODtX7lP-TioAfAkUrvbegZGFbVRj66pxypaSYNnZIjtbZGeLXNkSlGRN-Vv8P83RUmMB4I8XhIpkwOk3sPSVLw |
CODEN | IRBECO |
CitedBy_id | crossref_primary_10_3389_fpsyg_2023_1126994 crossref_primary_10_3389_fpsyt_2023_1137704 crossref_primary_10_1109_ACCESS_2023_3251105 crossref_primary_10_1016_j_bspc_2023_104798 crossref_primary_10_1109_JIOT_2024_3373616 crossref_primary_10_1111_exsy_13374 crossref_primary_10_1186_s42494_025_00205_7 crossref_primary_10_1016_j_eswa_2023_120986 crossref_primary_10_48084_etasr_8270 crossref_primary_10_3390_bioengineering8030035 crossref_primary_10_1007_s10462_024_10799_y crossref_primary_10_1007_s11831_023_10055_6 crossref_primary_10_1016_j_neunet_2023_03_040 crossref_primary_10_1016_j_procs_2023_08_138 crossref_primary_10_1109_JTEHM_2023_3308196 crossref_primary_10_1007_s40747_024_01592_z crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_32604_cmc_2024_055910 crossref_primary_10_1007_s11036_023_02112_y crossref_primary_10_1007_s10548_025_01111_4 crossref_primary_10_1007_s00034_024_02715_0 crossref_primary_10_1093_braincomms_fcac218 crossref_primary_10_3390_app14020534 crossref_primary_10_1109_TIM_2022_3217515 crossref_primary_10_3390_e24010102 crossref_primary_10_1109_TNSRE_2025_3547616 crossref_primary_10_3390_brainsci11050615 crossref_primary_10_1007_s11042_024_20049_6 crossref_primary_10_1007_s11265_021_01659_x crossref_primary_10_1038_s41598_023_30864_w crossref_primary_10_1109_TFUZZ_2024_3363623 crossref_primary_10_3390_s20195716 crossref_primary_10_1142_S0129065724500412 crossref_primary_10_1155_2022_7751263 crossref_primary_10_1016_j_eswa_2024_123991 crossref_primary_10_3390_data9050061 crossref_primary_10_1007_s11045_022_00839_7 crossref_primary_10_1038_s41598_022_09429_w crossref_primary_10_1142_S0129065723500545 crossref_primary_10_1016_j_heliyon_2023_e22431 crossref_primary_10_1088_2057_1976_ad9155 crossref_primary_10_1016_j_neuri_2023_100152 crossref_primary_10_1038_s41582_024_00965_9 crossref_primary_10_1016_j_bspc_2022_104449 crossref_primary_10_1016_j_mejo_2023_105810 crossref_primary_10_1038_s41598_024_67855_4 crossref_primary_10_3390_app13042703 crossref_primary_10_1109_TNSRE_2021_3103210 crossref_primary_10_3390_app132111631 crossref_primary_10_3390_s23042312 crossref_primary_10_3390_app10238662 crossref_primary_10_1016_j_neuri_2024_100168 crossref_primary_10_1088_1741_2552_ac0d60 crossref_primary_10_3390_app12146967 crossref_primary_10_1186_s42490_023_00073_7 crossref_primary_10_1007_s44258_024_00043_1 crossref_primary_10_1016_j_measen_2022_100465 crossref_primary_10_1088_1741_2552_adb455 crossref_primary_10_1152_jn_00055_2024 crossref_primary_10_1136_bmjopen_2023_079785 crossref_primary_10_1146_annurev_bioeng_110220_030247 crossref_primary_10_1109_ACCESS_2024_3457018 crossref_primary_10_3389_fneur_2024_1374443 crossref_primary_10_1109_LSP_2024_3400037 crossref_primary_10_3934_publichealth_2024004 crossref_primary_10_3389_fncom_2022_1059565 crossref_primary_10_3390_biomedinformatics3010014 crossref_primary_10_1155_2022_1573076 crossref_primary_10_3390_s23249871 crossref_primary_10_1109_JBHI_2021_3100297 crossref_primary_10_3390_app14167398 crossref_primary_10_1002_brb3_3139 crossref_primary_10_3389_fneur_2021_675728 crossref_primary_10_1038_s41598_022_23656_1 crossref_primary_10_1109_JBHI_2024_3509959 crossref_primary_10_3390_bioengineering9110690 crossref_primary_10_1016_j_clinph_2022_09_017 crossref_primary_10_1016_j_jneumeth_2022_109483 crossref_primary_10_3390_biology13040203 crossref_primary_10_3390_biomedinformatics3040065 crossref_primary_10_1109_TNSRE_2021_3125023 crossref_primary_10_1016_j_neuroscience_2021_11_017 crossref_primary_10_1038_s41598_023_44763_7 crossref_primary_10_3389_fncom_2023_1294770 crossref_primary_10_1016_j_compbiomed_2024_108510 crossref_primary_10_1007_s11571_023_10026_4 crossref_primary_10_1109_JBHI_2024_3366341 crossref_primary_10_1007_s11227_023_05299_9 crossref_primary_10_3390_diagnostics12112879 crossref_primary_10_3389_fncom_2023_1195334 crossref_primary_10_1007_s11042_023_14928_7 crossref_primary_10_1002_cpe_7099 crossref_primary_10_1016_j_bspc_2021_103099 crossref_primary_10_3390_e23111424 crossref_primary_10_1080_03007995_2022_2043654 crossref_primary_10_3389_fneur_2021_705119 crossref_primary_10_1038_s41746_024_01008_9 crossref_primary_10_1080_21681163_2024_2304574 crossref_primary_10_1007_s12559_023_10142_7 crossref_primary_10_1155_2022_5430528 crossref_primary_10_1038_s41598_021_02798_8 crossref_primary_10_1038_s41598_025_92490_y crossref_primary_10_3390_app13158747 crossref_primary_10_3390_brainsci14040306 crossref_primary_10_1111_epi_17546 crossref_primary_10_1088_1741_2552_ad9682 crossref_primary_10_1109_ACCESS_2024_3462772 crossref_primary_10_3390_biomedinformatics5010014 crossref_primary_10_1109_TBME_2021_3095848 crossref_primary_10_3390_ijerph18115780 crossref_primary_10_1002_acn3_51320 crossref_primary_10_3390_s24030877 crossref_primary_10_1016_j_seizure_2024_08_024 crossref_primary_10_1016_j_brainres_2022_148131 crossref_primary_10_4018_IJACI_300791 crossref_primary_10_1016_j_bspc_2021_102741 crossref_primary_10_1109_JBHI_2024_3460533 crossref_primary_10_3390_bioengineering9070283 crossref_primary_10_1186_s42494_021_00055_z crossref_primary_10_1016_j_compbiomed_2022_106053 crossref_primary_10_1016_j_neunet_2024_106792 crossref_primary_10_3389_fncom_2023_1172987 crossref_primary_10_1109_TBME_2022_3171982 crossref_primary_10_1109_JBHI_2022_3203454 crossref_primary_10_1007_s11571_024_10216_8 crossref_primary_10_3390_diagnostics13213382 crossref_primary_10_1007_s42979_023_01741_0 crossref_primary_10_1016_j_seizure_2024_03_013 crossref_primary_10_1007_s42979_024_03488_8 crossref_primary_10_1007_s13246_023_01340_6 crossref_primary_10_1109_JSEN_2021_3057076 crossref_primary_10_1007_s10489_023_04582_9 crossref_primary_10_1136_bmjopen_2022_066932 crossref_primary_10_1016_j_cmpb_2023_107856 crossref_primary_10_1109_JBHI_2022_3159531 crossref_primary_10_1039_D2TB00618A crossref_primary_10_1016_j_bspc_2022_104026 crossref_primary_10_1016_j_ebr_2023_100600 crossref_primary_10_1109_TNSRE_2023_3253821 crossref_primary_10_32604_csse_2023_029649 crossref_primary_10_1109_TBME_2024_3458177 crossref_primary_10_3389_fnins_2023_1184990 crossref_primary_10_1016_j_seizure_2024_05_015 crossref_primary_10_1097_YCT_0000000000001009 crossref_primary_10_3390_diagnostics14222525 crossref_primary_10_1016_j_jneumeth_2022_109557 crossref_primary_10_3390_brainsci13010071 crossref_primary_10_1088_1741_2552_ac9644 crossref_primary_10_1038_s41598_023_50609_z crossref_primary_10_3233_IDT_240923 crossref_primary_10_3389_fnins_2024_1373515 |
Cites_doi | 10.1016/j.eswa.2012.02.040 10.1038/nature14539 10.1016/j.yebeh.2018.10.013 10.1038/s41582-018-0055-2 10.1038/nrg3920 10.1109/IEMCON.2018.8614893 10.1126/science.3045969 10.1007/BF02524422 10.3390/brainsci9070156 10.1016/j.jacc.2018.03.521 10.1103/PhysRevE.67.021912 10.1186/1475-925X-3-7 10.3389/fncom.2018.00055 10.1109/TBME.2017.2785401 10.1111/j.1528-1157.1998.tb01430.x 10.1016/j.eswa.2014.12.009 10.1016/j.eplepsyres.2007.08.002 10.1109/ACCESS.2020.2976866 10.1088/1741-2560/5/4/004 10.1109/ACCESS.2019.2944691 10.1016/j.yebeh.2015.08.006 10.1097/WCO.0000000000000429 10.1007/978-981-15-2021-1_7 10.1016/j.seizure.2006.03.005 10.1111/epi.12434 10.1111/epi.12163 10.1145/3373017.3373055 10.1097/00001756-199907130-00028 10.1111/j.1939-1676.1999.tb02159.x 10.1016/j.compbiomed.2017.01.011 10.1016/j.neunet.2007.12.031 10.1016/j.ebiom.2018.01.006 10.1007/s10916-008-9231-z 10.1016/j.yebeh.2018.09.030 10.15252/msb.20156651 10.1093/brain/awl241 10.1093/brain/awx173 10.1111/j.1600-0846.2008.00304.x 10.1037/0033-2909.126.1.109 10.1016/j.neuroimage.2014.10.002 10.1002/cpe.5199 10.1002/ana.410170612 10.1016/j.compbiomed.2018.05.019 10.1016/j.clinph.2004.10.014 10.1016/S0887-8994(03)00145-0 10.1007/978-3-030-01421-6_12 10.1016/S1474-4422(13)70075-9 10.1007/s10072-008-0851-3 10.1109/ACCESS.2018.2842082 10.1016/0010-4809(77)90029-5 10.1073/pnas.1900654116 10.1016/j.knosys.2013.02.014 10.1016/j.jneumeth.2015.06.010 10.1097/WNP.0000000000000139 10.1016/j.nbd.2012.05.016 10.1109/SP.2018.00057 10.1038/2667 10.1109/ICMLA.2018.00191 10.1016/j.physd.2004.02.013 10.1016/j.clinph.2014.05.022 10.1016/j.neuron.2017.06.011 10.1016/j.clinph.2004.08.022 10.1016/0013-4694(83)90022-6 10.1038/s41467-020-15908-3 10.1097/WNP.0000000000000149 10.1109/MSP.2015.2482121 10.1109/TBME.2015.2512276 10.1016/j.cmpb.2017.04.001 10.1109/TBME.2012.2237399 10.1109/TNSRE.2013.2282153 10.1007/BF01140588 10.1523/JNEUROSCI.0508-17.2018 10.1371/journal.pone.0141287 10.1016/j.amc.2006.09.022 10.4236/jbise.2011.412097 10.1212/WNL.44.12.2277 10.1016/j.clinph.2004.10.013 10.1109/TENCON.2016.7848530 10.1126/science.aaw4399 10.1007/BF00335153 10.1371/journal.pone.0228025 10.1016/j.eplepsyres.2005.03.009 10.1523/ENEURO.0349-17.2017 10.1016/S0920-1211(03)00002-0 10.1016/j.csbj.2014.11.005 10.1109/MLSP.2016.7738824 10.1016/j.conb.2010.07.004 10.1001/jama.2016.17216 10.1260/2040-2295.6.2.159 10.1109/TBCAS.2019.2929053 10.1038/nm.4246 10.1093/brain/awf048 10.3174/ajnr.A5543 10.1016/S0140-6736(03)12754-7 10.3348/kjr.2017.18.4.570 10.17706/jcp.13.6.616-621 10.1023/A:1015075101937 10.1016/j.yebeh.2012.06.016 10.1088/1741-2552/ab260c 10.1109/ICDSP.2018.8631844 10.1093/brain/awy210 10.1080/03091900701559408 10.1038/nrneurol.2009.80 10.1063/1.1935138 10.1016/S0167-2789(00)00087-7 10.1016/j.ebiom.2017.11.032 10.1186/s13638-018-1308-x 10.1016/j.clinph.2009.09.002 10.1093/brain/aww019 10.1038/nrn2416 10.1016/j.clinph.2004.08.021 10.1155/2017/9074759 10.1016/j.clinph.2004.08.025 10.1016/B978-044450270-4/50024-3 10.1016/j.clinph.2004.08.020 10.1007/s11910-017-0758-6 10.1016/j.yebeh.2010.05.008 10.1002/9783527625192 10.1142/S012906571750006X 10.1109/TNSRE.2003.814441 10.1109/COMST.2020.2975048 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/RBME.2020.3008792 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1941-1189 |
EndPage | 155 |
ExternalDocumentID | 32746369 10_1109_RBME_2020_3008792 9139257 |
Genre | orig-research Journal Article |
GroupedDBID | --- 0R~ 23N 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACPRK AETIX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD F5P HZ~ IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c349t-243a7d2513d6f7f4a4ab9fd8586c9180a07dfbfd762b834d189d31fab481dda63 |
IEDL.DBID | RIE |
ISSN | 1937-3333 1941-1189 |
IngestDate | Sun Sep 28 00:07:59 EDT 2025 Mon Jun 30 16:44:29 EDT 2025 Thu Jan 02 22:58:09 EST 2025 Tue Jul 01 00:53:41 EDT 2025 Thu Apr 24 22:57:01 EDT 2025 Wed Aug 27 05:58:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-243a7d2513d6f7f4a4ab9fd8586c9180a07dfbfd762b834d189d31fab481dda63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0779-9439 0000-0002-5108-6348 0000-0001-9466-2475 0000-0002-3513-1786 0000-0002-6732-7601 |
PMID | 32746369 |
PQID | 2480873696 |
PQPubID | 85512 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1109_RBME_2020_3008792 proquest_journals_2480873696 proquest_miscellaneous_2430376260 ieee_primary_9139257 crossref_primary_10_1109_RBME_2020_3008792 pubmed_primary_32746369 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE reviews in biomedical engineering |
PublicationTitleAbbrev | RBME |
PublicationTitleAlternate | IEEE Rev Biomed Eng |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 assi (ref85) 2018; 8 ref59 ref58 ref53 ref52 ref55 ref54 kukharchik (ref70) 0 lecun (ref100) 2015; 521 ref51 ref50 ref46 ref45 lillis (ref123) 2012; 47 masterton (ref124) 2013; 54 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 mitchell (ref13) 2019 ref4 ref3 ref6 ref5 ref101 ref40 hussein (ref94) 2019 ref34 ref37 ref36 ref31 valderrama (ref22) 0 sun (ref25) 0 ref30 ref33 ref32 ghassemi (ref115) 2018 bandarabadi (ref83) 2015; 126 ref39 ref38 viglione (ref35) 1975; 39 usman (ref79) 2018; 13 ref24 ref23 ref26 ref20 ref21 mirowski (ref48) 2009; 120 ref28 ref27 truong (ref93) 2017 viola (ref131) 2010 ref12 ref128 ref15 ref129 abbasi-asl (ref136) 2018 weyhenmeyer (ref14) 2006 ref126 ref97 mormann (ref86) 2005; 116 ref127 ref96 ref99 ref11 ref125 ref98 ref10 ref17 ref16 ref19 o’donnell (ref75) 2006; 27 sutton (ref76) 1998; 2 ref134 ref92 ref95 ref132 iasemidis (ref47) 2005; 116 ref130 ref91 ref90 ref89 ref139 ref137 ref138 ref88 ref87 akin (ref29) 2002; 26 ref82 hinton (ref72) 2011; 1 ref81 ref84 tyner (ref18) 1983; 1 murdoch (ref135) 2019 ref80 ref108 ref78 ref109 ref106 ref107 ref104 ref74 ref105 ref77 ref102 ref103 ref2 zaharchuk (ref68) 2018; 39 ref1 gao (ref133) 2019 ref71 ref111 ref112 ref73 ref110 ref119 ref67 ref117 ref69 ref118 ref64 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref24 doi: 10.1016/j.eswa.2012.02.040 – volume: 521 start-page: 436 year: 2015 ident: ref100 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref61 doi: 10.1016/j.yebeh.2018.10.013 – ident: ref10 doi: 10.1038/s41582-018-0055-2 – ident: ref71 doi: 10.1038/nrg3920 – ident: ref8 doi: 10.1109/IEMCON.2018.8614893 – volume: 8 year: 2018 ident: ref85 article-title: Bispectrum features and multilayer perceptron classifier to enhance seizure prediction publication-title: Sci Rep – volume: 1 year: 1983 ident: ref18 publication-title: Fundamentals of EEG Technology Vol 1 Basic Concepts and Methods – ident: ref16 doi: 10.1126/science.3045969 – ident: ref49 doi: 10.1007/BF02524422 – ident: ref125 doi: 10.3390/brainsci9070156 – ident: ref69 doi: 10.1016/j.jacc.2018.03.521 – ident: ref88 doi: 10.1103/PhysRevE.67.021912 – year: 2006 ident: ref14 publication-title: Rapid Review Neuroscience E-Book – ident: ref30 doi: 10.1186/1475-925X-3-7 – ident: ref65 doi: 10.3389/fncom.2018.00055 – ident: ref92 doi: 10.1109/TBME.2017.2785401 – year: 2019 ident: ref94 article-title: Human intracranial EEG quantitative analysis and automatic feature learning for epileptic seizure prediction – ident: ref111 doi: 10.1111/j.1528-1157.1998.tb01430.x – ident: ref23 doi: 10.1016/j.eswa.2014.12.009 – ident: ref90 doi: 10.1016/j.eplepsyres.2007.08.002 – ident: ref95 doi: 10.1109/ACCESS.2020.2976866 – ident: ref113 doi: 10.1088/1741-2560/5/4/004 – ident: ref98 doi: 10.1109/ACCESS.2019.2944691 – year: 2019 ident: ref13 publication-title: Artificial Intelligence A Guide for Thinking Humans – ident: ref128 doi: 10.1016/j.yebeh.2015.08.006 – ident: ref116 doi: 10.1097/WCO.0000000000000429 – ident: ref96 doi: 10.1007/978-981-15-2021-1_7 – ident: ref58 doi: 10.1016/j.seizure.2006.03.005 – ident: ref60 doi: 10.1111/epi.12434 – volume: 2 year: 1998 ident: ref76 publication-title: Introduction to Reinforcement Learning – year: 2018 ident: ref115 article-title: Opportunities in machine learning for healthcare – volume: 54 start-page: 801 year: 2013 ident: ref124 article-title: Absence epilepsy subnetworks revealed by event-related independent components analysis of functional magnetic resonance imaging publication-title: Epilepsia doi: 10.1111/epi.12163 – ident: ref21 doi: 10.1145/3373017.3373055 – ident: ref41 doi: 10.1097/00001756-199907130-00028 – ident: ref57 doi: 10.1111/j.1939-1676.1999.tb02159.x – ident: ref130 doi: 10.1016/j.compbiomed.2017.01.011 – ident: ref67 doi: 10.1016/j.neunet.2007.12.031 – ident: ref119 doi: 10.1016/j.ebiom.2018.01.006 – ident: ref4 doi: 10.1007/s10916-008-9231-z – ident: ref9 doi: 10.1016/j.yebeh.2018.09.030 – ident: ref103 doi: 10.15252/msb.20156651 – ident: ref3 doi: 10.1093/brain/awl241 – ident: ref118 doi: 10.1093/brain/awx173 – ident: ref63 doi: 10.1111/j.1600-0846.2008.00304.x – volume: 27 start-page: 1032 year: 2006 ident: ref75 article-title: A method for clustering white matter fiber tracts publication-title: Amer J Neuroradiol – ident: ref15 doi: 10.1037/0033-2909.126.1.109 – ident: ref64 doi: 10.1016/j.neuroimage.2014.10.002 – ident: ref104 doi: 10.1002/cpe.5199 – ident: ref38 doi: 10.1002/ana.410170612 – ident: ref97 doi: 10.1016/j.compbiomed.2018.05.019 – ident: ref32 doi: 10.1016/j.clinph.2004.10.014 – ident: ref50 doi: 10.1016/S0887-8994(03)00145-0 – ident: ref80 doi: 10.1007/978-3-030-01421-6_12 – ident: ref59 doi: 10.1016/S1474-4422(13)70075-9 – ident: ref89 doi: 10.1007/s10072-008-0851-3 – ident: ref77 doi: 10.1109/ACCESS.2018.2842082 – year: 2018 ident: ref136 article-title: The deeptune framework for modeling and characterizing neurons in visual cortex area v4 publication-title: BioRxiv – ident: ref28 doi: 10.1016/0010-4809(77)90029-5 – year: 2019 ident: ref135 article-title: Interpretable machine learning: Definitions, methods, and applications doi: 10.1073/pnas.1900654116 – ident: ref6 doi: 10.1016/j.knosys.2013.02.014 – ident: ref7 doi: 10.1016/j.jneumeth.2015.06.010 – ident: ref126 doi: 10.1097/WNP.0000000000000139 – volume: 47 start-page: 358 year: 2012 ident: ref123 article-title: Pyramidal cells accumulate chloride at seizure onset publication-title: Neurobiol Disease doi: 10.1016/j.nbd.2012.05.016 – ident: ref138 doi: 10.1109/SP.2018.00057 – ident: ref40 doi: 10.1038/2667 – start-page: 77 year: 0 ident: ref22 article-title: Patient-specific seizure prediction using a multi-feature and multi-modal EEG-ECG classification publication-title: Proc XII Mediterranean Conf Med Biol Eng Comput – year: 2017 ident: ref93 article-title: A generalised seizure prediction with convolutional neural networks for intracranial and scalp electroencephalogram data analysis – ident: ref110 doi: 10.1109/ICMLA.2018.00191 – ident: ref112 doi: 10.1016/j.physd.2004.02.013 – volume: 126 start-page: 237 year: 2015 ident: ref83 article-title: Epileptic seizure prediction using relative spectral power features publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2014.05.022 – ident: ref105 doi: 10.1016/j.neuron.2017.06.011 – start-page: 2214 year: 0 ident: ref70 article-title: Vocal fold pathology detection using modified wavelet-like features and support vector machines publication-title: Proc IEEE 15th Eur Signal Process Conf – ident: ref45 doi: 10.1016/j.clinph.2004.08.022 – ident: ref37 doi: 10.1016/0013-4694(83)90022-6 – ident: ref54 doi: 10.1038/s41467-020-15908-3 – ident: ref117 doi: 10.1097/WNP.0000000000000149 – ident: ref17 doi: 10.1109/MSP.2015.2482121 – ident: ref19 doi: 10.1109/TBME.2015.2512276 – ident: ref81 doi: 10.1016/j.cmpb.2017.04.001 – ident: ref114 doi: 10.1109/TBME.2012.2237399 – ident: ref34 doi: 10.1109/TNSRE.2013.2282153 – ident: ref39 doi: 10.1007/BF01140588 – ident: ref73 doi: 10.1523/JNEUROSCI.0508-17.2018 – ident: ref102 doi: 10.1371/journal.pone.0141287 – ident: ref27 doi: 10.1016/j.amc.2006.09.022 – ident: ref5 doi: 10.4236/jbise.2011.412097 – ident: ref120 doi: 10.1212/WNL.44.12.2277 – volume: 116 start-page: 532 year: 2005 ident: ref47 article-title: Long-term prospective on-line real-time seizure prediction publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2004.10.013 – ident: ref132 doi: 10.1109/TENCON.2016.7848530 – ident: ref137 doi: 10.1126/science.aaw4399 – ident: ref36 doi: 10.1007/BF00335153 – ident: ref82 doi: 10.1371/journal.pone.0228025 – ident: ref31 doi: 10.1016/j.eplepsyres.2005.03.009 – ident: ref20 doi: 10.1523/ENEURO.0349-17.2017 – ident: ref52 doi: 10.1016/S0920-1211(03)00002-0 – ident: ref62 doi: 10.1016/j.csbj.2014.11.005 – ident: ref108 doi: 10.1109/MLSP.2016.7738824 – ident: ref106 doi: 10.1016/j.conb.2010.07.004 – ident: ref66 doi: 10.1001/jama.2016.17216 – ident: ref122 doi: 10.1260/2040-2295.6.2.159 – ident: ref99 doi: 10.1109/TBCAS.2019.2929053 – ident: ref74 doi: 10.1038/nm.4246 – ident: ref43 doi: 10.1093/brain/awf048 – volume: 39 start-page: 1776 year: 2018 ident: ref68 article-title: Deep learning in neuroradiology publication-title: Amer J Neuroradiol doi: 10.3174/ajnr.A5543 – ident: ref44 doi: 10.1016/S0140-6736(03)12754-7 – ident: ref101 doi: 10.3348/kjr.2017.18.4.570 – volume: 13 start-page: 616 year: 2018 ident: ref79 article-title: Efficient prediction and classification of epileptic seizures using EEG data based on univariate linear features publication-title: JCP doi: 10.17706/jcp.13.6.616-621 – volume: 26 start-page: 241 year: 2002 ident: ref29 article-title: Comparison of wavelet transform and FFT methods in the analysis of EEG signals publication-title: J Med Syst doi: 10.1023/A:1015075101937 – ident: ref2 doi: 10.1016/j.yebeh.2012.06.016 – ident: ref11 doi: 10.1088/1741-2552/ab260c – ident: ref129 doi: 10.1109/ICDSP.2018.8631844 – ident: ref53 doi: 10.1093/brain/awy210 – ident: ref87 doi: 10.1080/03091900701559408 – volume: 1 start-page: 12 year: 2011 ident: ref72 article-title: Machine learning for neuroscience publication-title: IEEE Circuits Syst – ident: ref1 doi: 10.1038/nrneurol.2009.80 – ident: ref46 doi: 10.1063/1.1935138 – ident: ref42 doi: 10.1016/S0167-2789(00)00087-7 – volume: 39 start-page: 435 year: 1975 ident: ref35 article-title: Proceedings: Epileptic seizure prediction publication-title: Electroencephalography Clin Neurophysiol – ident: ref107 doi: 10.1016/j.ebiom.2017.11.032 – year: 2019 ident: ref133 article-title: Diagnosing abnormal electrocardiogram (ECG) via deep learning – ident: ref134 doi: 10.1186/s13638-018-1308-x – volume: 120 start-page: 1927 year: 2009 ident: ref48 article-title: Classification of patterns of EEG synchronization for seizure prediction publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.09.002 – ident: ref109 doi: 10.1093/brain/aww019 – ident: ref121 doi: 10.1038/nrn2416 – start-page: 121 year: 2010 ident: ref131 article-title: Using ICA for the analysis of multi-channel EEG data publication-title: Simultaneous EEG fMRI Recording Anal Appl Recording Anal Appl – ident: ref33 doi: 10.1016/j.clinph.2004.08.021 – ident: ref78 doi: 10.1155/2017/9074759 – volume: 116 start-page: 569 year: 2005 ident: ref86 article-title: On the predictability of epileptic seizures publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2004.08.025 – ident: ref91 doi: 10.1016/B978-044450270-4/50024-3 – ident: ref51 doi: 10.1016/j.clinph.2004.08.020 – ident: ref56 doi: 10.1007/s11910-017-0758-6 – start-page: 219 year: 0 ident: ref25 article-title: Independent component analysis of EEG signals publication-title: Proc IEEE Int Workshop VLSI Des Video Technol – ident: ref127 doi: 10.1016/j.yebeh.2010.05.008 – ident: ref12 doi: 10.1002/cpe.5199 – ident: ref55 doi: 10.1002/9783527625192 – ident: ref84 doi: 10.1142/S012906571750006X – ident: ref26 doi: 10.1109/TNSRE.2003.814441 – ident: ref139 doi: 10.1109/COMST.2020.2975048 |
SSID | ssj0000547180 |
Score | 2.6269307 |
SecondaryResourceType | review_article |
Snippet | With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 139 |
SubjectTerms | Algorithms Artificial intelligence Australia Brain Convulsions & seizures EEG Electrodes Electroencephalography Epilepsy Epileptic seizure Imaging Learning algorithms Machine learning Neuroscience Predictions Seizures State-of-the-art reviews |
Title | Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review |
URI | https://ieeexplore.ieee.org/document/9139257 https://www.ncbi.nlm.nih.gov/pubmed/32746369 https://www.proquest.com/docview/2480873696 https://www.proquest.com/docview/2430376260 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB4SH0p6aFqnbdQ4ZQs5lcqRtKtXbmmQGwoyoUkgN7EvGdNgG9e6-Nd3RlqLENpSnQQavXZm57Ez-w3AWWKU1DqRfial8amdha-45X5sNRkok0Wa1jvKaXJ9L74_xA978KXfC2OtbYvP7JhO21y-WeqGlsrOCcISRWwf9lHMur1a_XoKuh6oZoMuiYzzBg-XxAyD_PzH17LAYDDCGJVA2HJqYsMxIEs4VTo_sUhti5W_e5ut1ZkcQrn73q7Y5Oe42aix3j6DcvzfH3oNr5z7yS47eXkDe3YxhJdPQAmH8KJ06fYjmJZtqaVlDoV1xtDFZTdrIqByaVasUKmg0tHs1s63DYburK1BYEXxjd3OZwTOfMEuWZeBeAv3k-Lu6tp3DRh8zUW-8SPBZWrQA-ImqdNaSCFVXpsszhKd42DLIDW1qg0qVJVxYcIsNzyspRLoBRuZ8HcwWCwX9hhYYmPNM9o7xY2QEt1SKerQpCZXIo1D7UGwY0KlHTo5Ncl4rNooJcgrYmFFLKwcCz343N-y6qA5_kV8RMPfE7qR92C043TlJu-vKhIZ3kONDj341F_GaUe5FLmwy4Zo0PanFA168L6TkP7ZO8H68Od3nsBBSE2EA1RR0QgGm3VjT9Gz2aiPrUj_BmKg77Y |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIlE48GgLBAoYqSdEtknsJA63glIWaFaoD6m3yK9UFWi3KptLfz0zjjeqEFTkFCmTl2c8npe_AdgtrFbGFCqWStmY2lnEmjse587QAmVlZije0cyK6an4epafrcH7cS-Mc84Xn7kJnfpcvl2YnkJlewRhiSJ2B-7m6FXIYbfWGFFB4wMVbTKkkXHm4BHSmGlS7R19bGp0BzP0UgmGraI2NhxdsoJTrfONNck3Wfm3venXnYNH0Ky-eCg3-THpl3pirv8Ac_zfX3oMD4MByvYHiXkCa26-CQ9uwBJuwr0mJNy3YNb4YkvHAg7rOUMjl32_IgIqmGb1JaoVVDuGHbuL6x6dd-arEFhdf2bHF-cEz_yB7bMhB7ENpwf1yadpHFowxIaLahlngqvSog3EbdGVnVBC6aqzMpeFqXCwVVLaTncWVaqWXNhUVpanndIC7WCrCv4U1ueLuXsOrHC54ZJ2T3ErlELDVIkutaWttCjz1ESQrJjQmoBPTm0yfrbeT0mqlljYEgvbwMII3o23XA7gHLcRb9Hwj4Rh5CPYWXG6DdP3V5sJifdQq8MI3o6XceJRNkXN3aInGlz9S_IHI3g2SMj47JVgvfj7O9_AxvSkOWwPv8y-vYT7GZXJ-KjODqwvr3r3Cu2cpX7txfs3Kjny_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+Predicting+Epileptic+Seizures+Using+EEG+Signals%3A+A+Review&rft.jtitle=IEEE+reviews+in+biomedical+engineering&rft.au=Rasheed%2C+Khansa&rft.au=Qayyum%2C+Adnan&rft.au=Qadir%2C+Junaid&rft.au=Sivathamboo%2C+Shobi&rft.date=2021&rft.eissn=1941-1189&rft.volume=14&rft.spage=139&rft_id=info:doi/10.1109%2FRBME.2020.3008792&rft_id=info%3Apmid%2F32746369&rft.externalDocID=32746369 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-3333&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-3333&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-3333&client=summon |