Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review

With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for advancing clinical practice. One of the key objectives in healthcare is the early detection and prediction of disease to timely provide preventiv...

Full description

Saved in:
Bibliographic Details
Published inIEEE reviews in biomedical engineering Vol. 14; pp. 139 - 155
Main Authors Rasheed, Khansa, Qayyum, Adnan, Qadir, Junaid, Sivathamboo, Shobi, Kwan, Patrick, Kuhlmann, Levin, O'Brien, Terence, Razi, Adeel
Format Journal Article
LanguageEnglish
Published United States IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1937-3333
1941-1189
1941-1189
DOI10.1109/RBME.2020.3008792

Cover

Abstract With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for advancing clinical practice. One of the key objectives in healthcare is the early detection and prediction of disease to timely provide preventive interventions. This is especially the case for epilepsy, which is characterized by recurrent and unpredictable seizures. Patients can be relieved from the adverse consequences of epileptic seizures if it could somehow be predicted in advance. Despite decades of research, seizure prediction remains an unsolved problem. This is likely to remain at least partly because of the inadequate amount of data to resolve the problem. There have been exciting new developments in ML-based algorithms that have the potential to deliver a paradigm shift in the early and accurate prediction of epileptic seizures. Here we provide a comprehensive review of state-of-the-art ML techniques in early prediction of seizures using EEG signals. We will identify the gaps, challenges, and pitfalls in the current research and recommend future directions.
AbstractList With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for advancing clinical practice. One of the key objectives in healthcare is the early detection and prediction of disease to timely provide preventive interventions. This is especially the case for epilepsy, which is characterized by recurrent and unpredictable seizures. Patients can be relieved from the adverse consequences of epileptic seizures if it could somehow be predicted in advance. Despite decades of research, seizure prediction remains an unsolved problem. This is likely to remain at least partly because of the inadequate amount of data to resolve the problem. There have been exciting new developments in ML-based algorithms that have the potential to deliver a paradigm shift in the early and accurate prediction of epileptic seizures. Here we provide a comprehensive review of state-of-the-art ML techniques in early prediction of seizures using EEG signals. We will identify the gaps, challenges, and pitfalls in the current research and recommend future directions.
With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for advancing clinical practice. One of the key objectives in healthcare is the early detection and prediction of disease to timely provide preventive interventions. This is especially the case for epilepsy, which is characterized by recurrent and unpredictable seizures. Patients can be relieved from the adverse consequences of epileptic seizures if it could somehow be predicted in advance. Despite decades of research, seizure prediction remains an unsolved problem. This is likely to remain at least partly because of the inadequate amount of data to resolve the problem. There have been exciting new developments in ML-based algorithms that have the potential to deliver a paradigm shift in the early and accurate prediction of epileptic seizures. Here we provide a comprehensive review of state-of-the-art ML techniques in early prediction of seizures using EEG signals. We will identify the gaps, challenges, and pitfalls in the current research and recommend future directions.With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for advancing clinical practice. One of the key objectives in healthcare is the early detection and prediction of disease to timely provide preventive interventions. This is especially the case for epilepsy, which is characterized by recurrent and unpredictable seizures. Patients can be relieved from the adverse consequences of epileptic seizures if it could somehow be predicted in advance. Despite decades of research, seizure prediction remains an unsolved problem. This is likely to remain at least partly because of the inadequate amount of data to resolve the problem. There have been exciting new developments in ML-based algorithms that have the potential to deliver a paradigm shift in the early and accurate prediction of epileptic seizures. Here we provide a comprehensive review of state-of-the-art ML techniques in early prediction of seizures using EEG signals. We will identify the gaps, challenges, and pitfalls in the current research and recommend future directions.
Author Sivathamboo, Shobi
Qadir, Junaid
Kwan, Patrick
Qayyum, Adnan
Kuhlmann, Levin
Rasheed, Khansa
Razi, Adeel
O'Brien, Terence
Author_xml – sequence: 1
  givenname: Khansa
  orcidid: 0000-0002-3513-1786
  surname: Rasheed
  fullname: Rasheed, Khansa
  email: msee18016@itu.edu.pk
  organization: Information Technology University (ITU)-Punjab, Lahore, Pakistan
– sequence: 2
  givenname: Adnan
  orcidid: 0000-0002-6732-7601
  surname: Qayyum
  fullname: Qayyum, Adnan
  email: adnan.qayyum@itu.edu.pk
  organization: Information Technology University (ITU)-Punjab, Lahore, Pakistan
– sequence: 3
  givenname: Junaid
  orcidid: 0000-0001-9466-2475
  surname: Qadir
  fullname: Qadir, Junaid
  email: junaid.qadir@itu.edu.pk
  organization: Information Technology University (ITU)-Punjab, Lahore, Pakistan
– sequence: 4
  givenname: Shobi
  surname: Sivathamboo
  fullname: Sivathamboo, Shobi
  email: shobi.sivathamboo@monash.edu
  organization: Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
– sequence: 5
  givenname: Patrick
  surname: Kwan
  fullname: Kwan, Patrick
  email: patrick.kwan@monash.edu
  organization: Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
– sequence: 6
  givenname: Levin
  orcidid: 0000-0002-5108-6348
  surname: Kuhlmann
  fullname: Kuhlmann, Levin
  email: levin.kuhlmann@monash.edu
  organization: Faculty of Information Technology, Monash University, Clayton, VIC, Australia
– sequence: 7
  givenname: Terence
  surname: O'Brien
  fullname: O'Brien, Terence
  email: te.obrien@alfred.org.au
  organization: Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
– sequence: 8
  givenname: Adeel
  orcidid: 0000-0002-0779-9439
  surname: Razi
  fullname: Razi, Adeel
  email: adeel.razi@monash.edu
  organization: Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32746369$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOwzAQRS0Eorw-ACGhSGzYpNixG8fsAJWHVB5q6dpy4nExSpNiJyD4ehxaWHTBbOyxzx2P5-6izaquAKFDgvuEYHE2vrwf9hOc4D7FOOMi2UA7RDASE5KJzW5PeUxD9NCB9684xIBxkuFt1KMJZylNxQ56uFfFi60gGoFyla1mkald9ORA26Lp0uHClrBobBFNwH61Dnw09T8Xw5toYmeVKv15dBGN4d3Cxz7aMuEADlbrHppeD5-vbuPR483d1cUoLigTTZwwqrhOBoTq1HDDFFO5MDobZGkhQosKc21yo3ma5BllOvxIU2JUzjKitUrpHjpd1l24-q0F38i59QWUpaqgbr0MD2Aa1CkO6Mka-lq3rms7UFmYXJhDV_B4RbX5HLRcODtX7lP-TioAfAkUrvbegZGFbVRj66pxypaSYNnZIjtbZGeLXNkSlGRN-Vv8P83RUmMB4I8XhIpkwOk3sPSVLw
CODEN IRBECO
CitedBy_id crossref_primary_10_3389_fpsyg_2023_1126994
crossref_primary_10_3389_fpsyt_2023_1137704
crossref_primary_10_1109_ACCESS_2023_3251105
crossref_primary_10_1016_j_bspc_2023_104798
crossref_primary_10_1109_JIOT_2024_3373616
crossref_primary_10_1111_exsy_13374
crossref_primary_10_1186_s42494_025_00205_7
crossref_primary_10_1016_j_eswa_2023_120986
crossref_primary_10_48084_etasr_8270
crossref_primary_10_3390_bioengineering8030035
crossref_primary_10_1007_s10462_024_10799_y
crossref_primary_10_1007_s11831_023_10055_6
crossref_primary_10_1016_j_neunet_2023_03_040
crossref_primary_10_1016_j_procs_2023_08_138
crossref_primary_10_1109_JTEHM_2023_3308196
crossref_primary_10_1007_s40747_024_01592_z
crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_32604_cmc_2024_055910
crossref_primary_10_1007_s11036_023_02112_y
crossref_primary_10_1007_s10548_025_01111_4
crossref_primary_10_1007_s00034_024_02715_0
crossref_primary_10_1093_braincomms_fcac218
crossref_primary_10_3390_app14020534
crossref_primary_10_1109_TIM_2022_3217515
crossref_primary_10_3390_e24010102
crossref_primary_10_1109_TNSRE_2025_3547616
crossref_primary_10_3390_brainsci11050615
crossref_primary_10_1007_s11042_024_20049_6
crossref_primary_10_1007_s11265_021_01659_x
crossref_primary_10_1038_s41598_023_30864_w
crossref_primary_10_1109_TFUZZ_2024_3363623
crossref_primary_10_3390_s20195716
crossref_primary_10_1142_S0129065724500412
crossref_primary_10_1155_2022_7751263
crossref_primary_10_1016_j_eswa_2024_123991
crossref_primary_10_3390_data9050061
crossref_primary_10_1007_s11045_022_00839_7
crossref_primary_10_1038_s41598_022_09429_w
crossref_primary_10_1142_S0129065723500545
crossref_primary_10_1016_j_heliyon_2023_e22431
crossref_primary_10_1088_2057_1976_ad9155
crossref_primary_10_1016_j_neuri_2023_100152
crossref_primary_10_1038_s41582_024_00965_9
crossref_primary_10_1016_j_bspc_2022_104449
crossref_primary_10_1016_j_mejo_2023_105810
crossref_primary_10_1038_s41598_024_67855_4
crossref_primary_10_3390_app13042703
crossref_primary_10_1109_TNSRE_2021_3103210
crossref_primary_10_3390_app132111631
crossref_primary_10_3390_s23042312
crossref_primary_10_3390_app10238662
crossref_primary_10_1016_j_neuri_2024_100168
crossref_primary_10_1088_1741_2552_ac0d60
crossref_primary_10_3390_app12146967
crossref_primary_10_1186_s42490_023_00073_7
crossref_primary_10_1007_s44258_024_00043_1
crossref_primary_10_1016_j_measen_2022_100465
crossref_primary_10_1088_1741_2552_adb455
crossref_primary_10_1152_jn_00055_2024
crossref_primary_10_1136_bmjopen_2023_079785
crossref_primary_10_1146_annurev_bioeng_110220_030247
crossref_primary_10_1109_ACCESS_2024_3457018
crossref_primary_10_3389_fneur_2024_1374443
crossref_primary_10_1109_LSP_2024_3400037
crossref_primary_10_3934_publichealth_2024004
crossref_primary_10_3389_fncom_2022_1059565
crossref_primary_10_3390_biomedinformatics3010014
crossref_primary_10_1155_2022_1573076
crossref_primary_10_3390_s23249871
crossref_primary_10_1109_JBHI_2021_3100297
crossref_primary_10_3390_app14167398
crossref_primary_10_1002_brb3_3139
crossref_primary_10_3389_fneur_2021_675728
crossref_primary_10_1038_s41598_022_23656_1
crossref_primary_10_1109_JBHI_2024_3509959
crossref_primary_10_3390_bioengineering9110690
crossref_primary_10_1016_j_clinph_2022_09_017
crossref_primary_10_1016_j_jneumeth_2022_109483
crossref_primary_10_3390_biology13040203
crossref_primary_10_3390_biomedinformatics3040065
crossref_primary_10_1109_TNSRE_2021_3125023
crossref_primary_10_1016_j_neuroscience_2021_11_017
crossref_primary_10_1038_s41598_023_44763_7
crossref_primary_10_3389_fncom_2023_1294770
crossref_primary_10_1016_j_compbiomed_2024_108510
crossref_primary_10_1007_s11571_023_10026_4
crossref_primary_10_1109_JBHI_2024_3366341
crossref_primary_10_1007_s11227_023_05299_9
crossref_primary_10_3390_diagnostics12112879
crossref_primary_10_3389_fncom_2023_1195334
crossref_primary_10_1007_s11042_023_14928_7
crossref_primary_10_1002_cpe_7099
crossref_primary_10_1016_j_bspc_2021_103099
crossref_primary_10_3390_e23111424
crossref_primary_10_1080_03007995_2022_2043654
crossref_primary_10_3389_fneur_2021_705119
crossref_primary_10_1038_s41746_024_01008_9
crossref_primary_10_1080_21681163_2024_2304574
crossref_primary_10_1007_s12559_023_10142_7
crossref_primary_10_1155_2022_5430528
crossref_primary_10_1038_s41598_021_02798_8
crossref_primary_10_1038_s41598_025_92490_y
crossref_primary_10_3390_app13158747
crossref_primary_10_3390_brainsci14040306
crossref_primary_10_1111_epi_17546
crossref_primary_10_1088_1741_2552_ad9682
crossref_primary_10_1109_ACCESS_2024_3462772
crossref_primary_10_3390_biomedinformatics5010014
crossref_primary_10_1109_TBME_2021_3095848
crossref_primary_10_3390_ijerph18115780
crossref_primary_10_1002_acn3_51320
crossref_primary_10_3390_s24030877
crossref_primary_10_1016_j_seizure_2024_08_024
crossref_primary_10_1016_j_brainres_2022_148131
crossref_primary_10_4018_IJACI_300791
crossref_primary_10_1016_j_bspc_2021_102741
crossref_primary_10_1109_JBHI_2024_3460533
crossref_primary_10_3390_bioengineering9070283
crossref_primary_10_1186_s42494_021_00055_z
crossref_primary_10_1016_j_compbiomed_2022_106053
crossref_primary_10_1016_j_neunet_2024_106792
crossref_primary_10_3389_fncom_2023_1172987
crossref_primary_10_1109_TBME_2022_3171982
crossref_primary_10_1109_JBHI_2022_3203454
crossref_primary_10_1007_s11571_024_10216_8
crossref_primary_10_3390_diagnostics13213382
crossref_primary_10_1007_s42979_023_01741_0
crossref_primary_10_1016_j_seizure_2024_03_013
crossref_primary_10_1007_s42979_024_03488_8
crossref_primary_10_1007_s13246_023_01340_6
crossref_primary_10_1109_JSEN_2021_3057076
crossref_primary_10_1007_s10489_023_04582_9
crossref_primary_10_1136_bmjopen_2022_066932
crossref_primary_10_1016_j_cmpb_2023_107856
crossref_primary_10_1109_JBHI_2022_3159531
crossref_primary_10_1039_D2TB00618A
crossref_primary_10_1016_j_bspc_2022_104026
crossref_primary_10_1016_j_ebr_2023_100600
crossref_primary_10_1109_TNSRE_2023_3253821
crossref_primary_10_32604_csse_2023_029649
crossref_primary_10_1109_TBME_2024_3458177
crossref_primary_10_3389_fnins_2023_1184990
crossref_primary_10_1016_j_seizure_2024_05_015
crossref_primary_10_1097_YCT_0000000000001009
crossref_primary_10_3390_diagnostics14222525
crossref_primary_10_1016_j_jneumeth_2022_109557
crossref_primary_10_3390_brainsci13010071
crossref_primary_10_1088_1741_2552_ac9644
crossref_primary_10_1038_s41598_023_50609_z
crossref_primary_10_3233_IDT_240923
crossref_primary_10_3389_fnins_2024_1373515
Cites_doi 10.1016/j.eswa.2012.02.040
10.1038/nature14539
10.1016/j.yebeh.2018.10.013
10.1038/s41582-018-0055-2
10.1038/nrg3920
10.1109/IEMCON.2018.8614893
10.1126/science.3045969
10.1007/BF02524422
10.3390/brainsci9070156
10.1016/j.jacc.2018.03.521
10.1103/PhysRevE.67.021912
10.1186/1475-925X-3-7
10.3389/fncom.2018.00055
10.1109/TBME.2017.2785401
10.1111/j.1528-1157.1998.tb01430.x
10.1016/j.eswa.2014.12.009
10.1016/j.eplepsyres.2007.08.002
10.1109/ACCESS.2020.2976866
10.1088/1741-2560/5/4/004
10.1109/ACCESS.2019.2944691
10.1016/j.yebeh.2015.08.006
10.1097/WCO.0000000000000429
10.1007/978-981-15-2021-1_7
10.1016/j.seizure.2006.03.005
10.1111/epi.12434
10.1111/epi.12163
10.1145/3373017.3373055
10.1097/00001756-199907130-00028
10.1111/j.1939-1676.1999.tb02159.x
10.1016/j.compbiomed.2017.01.011
10.1016/j.neunet.2007.12.031
10.1016/j.ebiom.2018.01.006
10.1007/s10916-008-9231-z
10.1016/j.yebeh.2018.09.030
10.15252/msb.20156651
10.1093/brain/awl241
10.1093/brain/awx173
10.1111/j.1600-0846.2008.00304.x
10.1037/0033-2909.126.1.109
10.1016/j.neuroimage.2014.10.002
10.1002/cpe.5199
10.1002/ana.410170612
10.1016/j.compbiomed.2018.05.019
10.1016/j.clinph.2004.10.014
10.1016/S0887-8994(03)00145-0
10.1007/978-3-030-01421-6_12
10.1016/S1474-4422(13)70075-9
10.1007/s10072-008-0851-3
10.1109/ACCESS.2018.2842082
10.1016/0010-4809(77)90029-5
10.1073/pnas.1900654116
10.1016/j.knosys.2013.02.014
10.1016/j.jneumeth.2015.06.010
10.1097/WNP.0000000000000139
10.1016/j.nbd.2012.05.016
10.1109/SP.2018.00057
10.1038/2667
10.1109/ICMLA.2018.00191
10.1016/j.physd.2004.02.013
10.1016/j.clinph.2014.05.022
10.1016/j.neuron.2017.06.011
10.1016/j.clinph.2004.08.022
10.1016/0013-4694(83)90022-6
10.1038/s41467-020-15908-3
10.1097/WNP.0000000000000149
10.1109/MSP.2015.2482121
10.1109/TBME.2015.2512276
10.1016/j.cmpb.2017.04.001
10.1109/TBME.2012.2237399
10.1109/TNSRE.2013.2282153
10.1007/BF01140588
10.1523/JNEUROSCI.0508-17.2018
10.1371/journal.pone.0141287
10.1016/j.amc.2006.09.022
10.4236/jbise.2011.412097
10.1212/WNL.44.12.2277
10.1016/j.clinph.2004.10.013
10.1109/TENCON.2016.7848530
10.1126/science.aaw4399
10.1007/BF00335153
10.1371/journal.pone.0228025
10.1016/j.eplepsyres.2005.03.009
10.1523/ENEURO.0349-17.2017
10.1016/S0920-1211(03)00002-0
10.1016/j.csbj.2014.11.005
10.1109/MLSP.2016.7738824
10.1016/j.conb.2010.07.004
10.1001/jama.2016.17216
10.1260/2040-2295.6.2.159
10.1109/TBCAS.2019.2929053
10.1038/nm.4246
10.1093/brain/awf048
10.3174/ajnr.A5543
10.1016/S0140-6736(03)12754-7
10.3348/kjr.2017.18.4.570
10.17706/jcp.13.6.616-621
10.1023/A:1015075101937
10.1016/j.yebeh.2012.06.016
10.1088/1741-2552/ab260c
10.1109/ICDSP.2018.8631844
10.1093/brain/awy210
10.1080/03091900701559408
10.1038/nrneurol.2009.80
10.1063/1.1935138
10.1016/S0167-2789(00)00087-7
10.1016/j.ebiom.2017.11.032
10.1186/s13638-018-1308-x
10.1016/j.clinph.2009.09.002
10.1093/brain/aww019
10.1038/nrn2416
10.1016/j.clinph.2004.08.021
10.1155/2017/9074759
10.1016/j.clinph.2004.08.025
10.1016/B978-044450270-4/50024-3
10.1016/j.clinph.2004.08.020
10.1007/s11910-017-0758-6
10.1016/j.yebeh.2010.05.008
10.1002/9783527625192
10.1142/S012906571750006X
10.1109/TNSRE.2003.814441
10.1109/COMST.2020.2975048
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/RBME.2020.3008792
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1941-1189
EndPage 155
ExternalDocumentID 32746369
10_1109_RBME_2020_3008792
9139257
Genre orig-research
Journal Article
GroupedDBID ---
0R~
23N
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACPRK
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-243a7d2513d6f7f4a4ab9fd8586c9180a07dfbfd762b834d189d31fab481dda63
IEDL.DBID RIE
ISSN 1937-3333
1941-1189
IngestDate Sun Sep 28 00:07:59 EDT 2025
Mon Jun 30 16:44:29 EDT 2025
Thu Jan 02 22:58:09 EST 2025
Tue Jul 01 00:53:41 EDT 2025
Thu Apr 24 22:57:01 EDT 2025
Wed Aug 27 05:58:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-243a7d2513d6f7f4a4ab9fd8586c9180a07dfbfd762b834d189d31fab481dda63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0779-9439
0000-0002-5108-6348
0000-0001-9466-2475
0000-0002-3513-1786
0000-0002-6732-7601
PMID 32746369
PQID 2480873696
PQPubID 85512
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_RBME_2020_3008792
proquest_journals_2480873696
proquest_miscellaneous_2430376260
ieee_primary_9139257
crossref_primary_10_1109_RBME_2020_3008792
pubmed_primary_32746369
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE reviews in biomedical engineering
PublicationTitleAbbrev RBME
PublicationTitleAlternate IEEE Rev Biomed Eng
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
assi (ref85) 2018; 8
ref59
ref58
ref53
ref52
ref55
ref54
kukharchik (ref70) 0
lecun (ref100) 2015; 521
ref51
ref50
ref46
ref45
lillis (ref123) 2012; 47
masterton (ref124) 2013; 54
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
mitchell (ref13) 2019
ref4
ref3
ref6
ref5
ref101
ref40
hussein (ref94) 2019
ref34
ref37
ref36
ref31
valderrama (ref22) 0
sun (ref25) 0
ref30
ref33
ref32
ghassemi (ref115) 2018
bandarabadi (ref83) 2015; 126
ref39
ref38
viglione (ref35) 1975; 39
usman (ref79) 2018; 13
ref24
ref23
ref26
ref20
ref21
mirowski (ref48) 2009; 120
ref28
ref27
truong (ref93) 2017
viola (ref131) 2010
ref12
ref128
ref15
ref129
abbasi-asl (ref136) 2018
weyhenmeyer (ref14) 2006
ref126
ref97
mormann (ref86) 2005; 116
ref127
ref96
ref99
ref11
ref125
ref98
ref10
ref17
ref16
ref19
o’donnell (ref75) 2006; 27
sutton (ref76) 1998; 2
ref134
ref92
ref95
ref132
iasemidis (ref47) 2005; 116
ref130
ref91
ref90
ref89
ref139
ref137
ref138
ref88
ref87
akin (ref29) 2002; 26
ref82
hinton (ref72) 2011; 1
ref81
ref84
tyner (ref18) 1983; 1
murdoch (ref135) 2019
ref80
ref108
ref78
ref109
ref106
ref107
ref104
ref74
ref105
ref77
ref102
ref103
ref2
zaharchuk (ref68) 2018; 39
ref1
gao (ref133) 2019
ref71
ref111
ref112
ref73
ref110
ref119
ref67
ref117
ref69
ref118
ref64
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref62
ref120
ref61
ref121
References_xml – ident: ref24
  doi: 10.1016/j.eswa.2012.02.040
– volume: 521
  start-page: 436
  year: 2015
  ident: ref100
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref61
  doi: 10.1016/j.yebeh.2018.10.013
– ident: ref10
  doi: 10.1038/s41582-018-0055-2
– ident: ref71
  doi: 10.1038/nrg3920
– ident: ref8
  doi: 10.1109/IEMCON.2018.8614893
– volume: 8
  year: 2018
  ident: ref85
  article-title: Bispectrum features and multilayer perceptron classifier to enhance seizure prediction
  publication-title: Sci Rep
– volume: 1
  year: 1983
  ident: ref18
  publication-title: Fundamentals of EEG Technology Vol 1 Basic Concepts and Methods
– ident: ref16
  doi: 10.1126/science.3045969
– ident: ref49
  doi: 10.1007/BF02524422
– ident: ref125
  doi: 10.3390/brainsci9070156
– ident: ref69
  doi: 10.1016/j.jacc.2018.03.521
– ident: ref88
  doi: 10.1103/PhysRevE.67.021912
– year: 2006
  ident: ref14
  publication-title: Rapid Review Neuroscience E-Book
– ident: ref30
  doi: 10.1186/1475-925X-3-7
– ident: ref65
  doi: 10.3389/fncom.2018.00055
– ident: ref92
  doi: 10.1109/TBME.2017.2785401
– year: 2019
  ident: ref94
  article-title: Human intracranial EEG quantitative analysis and automatic feature learning for epileptic seizure prediction
– ident: ref111
  doi: 10.1111/j.1528-1157.1998.tb01430.x
– ident: ref23
  doi: 10.1016/j.eswa.2014.12.009
– ident: ref90
  doi: 10.1016/j.eplepsyres.2007.08.002
– ident: ref95
  doi: 10.1109/ACCESS.2020.2976866
– ident: ref113
  doi: 10.1088/1741-2560/5/4/004
– ident: ref98
  doi: 10.1109/ACCESS.2019.2944691
– year: 2019
  ident: ref13
  publication-title: Artificial Intelligence A Guide for Thinking Humans
– ident: ref128
  doi: 10.1016/j.yebeh.2015.08.006
– ident: ref116
  doi: 10.1097/WCO.0000000000000429
– ident: ref96
  doi: 10.1007/978-981-15-2021-1_7
– ident: ref58
  doi: 10.1016/j.seizure.2006.03.005
– ident: ref60
  doi: 10.1111/epi.12434
– volume: 2
  year: 1998
  ident: ref76
  publication-title: Introduction to Reinforcement Learning
– year: 2018
  ident: ref115
  article-title: Opportunities in machine learning for healthcare
– volume: 54
  start-page: 801
  year: 2013
  ident: ref124
  article-title: Absence epilepsy subnetworks revealed by event-related independent components analysis of functional magnetic resonance imaging
  publication-title: Epilepsia
  doi: 10.1111/epi.12163
– ident: ref21
  doi: 10.1145/3373017.3373055
– ident: ref41
  doi: 10.1097/00001756-199907130-00028
– ident: ref57
  doi: 10.1111/j.1939-1676.1999.tb02159.x
– ident: ref130
  doi: 10.1016/j.compbiomed.2017.01.011
– ident: ref67
  doi: 10.1016/j.neunet.2007.12.031
– ident: ref119
  doi: 10.1016/j.ebiom.2018.01.006
– ident: ref4
  doi: 10.1007/s10916-008-9231-z
– ident: ref9
  doi: 10.1016/j.yebeh.2018.09.030
– ident: ref103
  doi: 10.15252/msb.20156651
– ident: ref3
  doi: 10.1093/brain/awl241
– ident: ref118
  doi: 10.1093/brain/awx173
– ident: ref63
  doi: 10.1111/j.1600-0846.2008.00304.x
– volume: 27
  start-page: 1032
  year: 2006
  ident: ref75
  article-title: A method for clustering white matter fiber tracts
  publication-title: Amer J Neuroradiol
– ident: ref15
  doi: 10.1037/0033-2909.126.1.109
– ident: ref64
  doi: 10.1016/j.neuroimage.2014.10.002
– ident: ref104
  doi: 10.1002/cpe.5199
– ident: ref38
  doi: 10.1002/ana.410170612
– ident: ref97
  doi: 10.1016/j.compbiomed.2018.05.019
– ident: ref32
  doi: 10.1016/j.clinph.2004.10.014
– ident: ref50
  doi: 10.1016/S0887-8994(03)00145-0
– ident: ref80
  doi: 10.1007/978-3-030-01421-6_12
– ident: ref59
  doi: 10.1016/S1474-4422(13)70075-9
– ident: ref89
  doi: 10.1007/s10072-008-0851-3
– ident: ref77
  doi: 10.1109/ACCESS.2018.2842082
– year: 2018
  ident: ref136
  article-title: The deeptune framework for modeling and characterizing neurons in visual cortex area v4
  publication-title: BioRxiv
– ident: ref28
  doi: 10.1016/0010-4809(77)90029-5
– year: 2019
  ident: ref135
  article-title: Interpretable machine learning: Definitions, methods, and applications
  doi: 10.1073/pnas.1900654116
– ident: ref6
  doi: 10.1016/j.knosys.2013.02.014
– ident: ref7
  doi: 10.1016/j.jneumeth.2015.06.010
– ident: ref126
  doi: 10.1097/WNP.0000000000000139
– volume: 47
  start-page: 358
  year: 2012
  ident: ref123
  article-title: Pyramidal cells accumulate chloride at seizure onset
  publication-title: Neurobiol Disease
  doi: 10.1016/j.nbd.2012.05.016
– ident: ref138
  doi: 10.1109/SP.2018.00057
– ident: ref40
  doi: 10.1038/2667
– start-page: 77
  year: 0
  ident: ref22
  article-title: Patient-specific seizure prediction using a multi-feature and multi-modal EEG-ECG classification
  publication-title: Proc XII Mediterranean Conf Med Biol Eng Comput
– year: 2017
  ident: ref93
  article-title: A generalised seizure prediction with convolutional neural networks for intracranial and scalp electroencephalogram data analysis
– ident: ref110
  doi: 10.1109/ICMLA.2018.00191
– ident: ref112
  doi: 10.1016/j.physd.2004.02.013
– volume: 126
  start-page: 237
  year: 2015
  ident: ref83
  article-title: Epileptic seizure prediction using relative spectral power features
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2014.05.022
– ident: ref105
  doi: 10.1016/j.neuron.2017.06.011
– start-page: 2214
  year: 0
  ident: ref70
  article-title: Vocal fold pathology detection using modified wavelet-like features and support vector machines
  publication-title: Proc IEEE 15th Eur Signal Process Conf
– ident: ref45
  doi: 10.1016/j.clinph.2004.08.022
– ident: ref37
  doi: 10.1016/0013-4694(83)90022-6
– ident: ref54
  doi: 10.1038/s41467-020-15908-3
– ident: ref117
  doi: 10.1097/WNP.0000000000000149
– ident: ref17
  doi: 10.1109/MSP.2015.2482121
– ident: ref19
  doi: 10.1109/TBME.2015.2512276
– ident: ref81
  doi: 10.1016/j.cmpb.2017.04.001
– ident: ref114
  doi: 10.1109/TBME.2012.2237399
– ident: ref34
  doi: 10.1109/TNSRE.2013.2282153
– ident: ref39
  doi: 10.1007/BF01140588
– ident: ref73
  doi: 10.1523/JNEUROSCI.0508-17.2018
– ident: ref102
  doi: 10.1371/journal.pone.0141287
– ident: ref27
  doi: 10.1016/j.amc.2006.09.022
– ident: ref5
  doi: 10.4236/jbise.2011.412097
– ident: ref120
  doi: 10.1212/WNL.44.12.2277
– volume: 116
  start-page: 532
  year: 2005
  ident: ref47
  article-title: Long-term prospective on-line real-time seizure prediction
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2004.10.013
– ident: ref132
  doi: 10.1109/TENCON.2016.7848530
– ident: ref137
  doi: 10.1126/science.aaw4399
– ident: ref36
  doi: 10.1007/BF00335153
– ident: ref82
  doi: 10.1371/journal.pone.0228025
– ident: ref31
  doi: 10.1016/j.eplepsyres.2005.03.009
– ident: ref20
  doi: 10.1523/ENEURO.0349-17.2017
– ident: ref52
  doi: 10.1016/S0920-1211(03)00002-0
– ident: ref62
  doi: 10.1016/j.csbj.2014.11.005
– ident: ref108
  doi: 10.1109/MLSP.2016.7738824
– ident: ref106
  doi: 10.1016/j.conb.2010.07.004
– ident: ref66
  doi: 10.1001/jama.2016.17216
– ident: ref122
  doi: 10.1260/2040-2295.6.2.159
– ident: ref99
  doi: 10.1109/TBCAS.2019.2929053
– ident: ref74
  doi: 10.1038/nm.4246
– ident: ref43
  doi: 10.1093/brain/awf048
– volume: 39
  start-page: 1776
  year: 2018
  ident: ref68
  article-title: Deep learning in neuroradiology
  publication-title: Amer J Neuroradiol
  doi: 10.3174/ajnr.A5543
– ident: ref44
  doi: 10.1016/S0140-6736(03)12754-7
– ident: ref101
  doi: 10.3348/kjr.2017.18.4.570
– volume: 13
  start-page: 616
  year: 2018
  ident: ref79
  article-title: Efficient prediction and classification of epileptic seizures using EEG data based on univariate linear features
  publication-title: JCP
  doi: 10.17706/jcp.13.6.616-621
– volume: 26
  start-page: 241
  year: 2002
  ident: ref29
  article-title: Comparison of wavelet transform and FFT methods in the analysis of EEG signals
  publication-title: J Med Syst
  doi: 10.1023/A:1015075101937
– ident: ref2
  doi: 10.1016/j.yebeh.2012.06.016
– ident: ref11
  doi: 10.1088/1741-2552/ab260c
– ident: ref129
  doi: 10.1109/ICDSP.2018.8631844
– ident: ref53
  doi: 10.1093/brain/awy210
– ident: ref87
  doi: 10.1080/03091900701559408
– volume: 1
  start-page: 12
  year: 2011
  ident: ref72
  article-title: Machine learning for neuroscience
  publication-title: IEEE Circuits Syst
– ident: ref1
  doi: 10.1038/nrneurol.2009.80
– ident: ref46
  doi: 10.1063/1.1935138
– ident: ref42
  doi: 10.1016/S0167-2789(00)00087-7
– volume: 39
  start-page: 435
  year: 1975
  ident: ref35
  article-title: Proceedings: Epileptic seizure prediction
  publication-title: Electroencephalography Clin Neurophysiol
– ident: ref107
  doi: 10.1016/j.ebiom.2017.11.032
– year: 2019
  ident: ref133
  article-title: Diagnosing abnormal electrocardiogram (ECG) via deep learning
– ident: ref134
  doi: 10.1186/s13638-018-1308-x
– volume: 120
  start-page: 1927
  year: 2009
  ident: ref48
  article-title: Classification of patterns of EEG synchronization for seizure prediction
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.09.002
– ident: ref109
  doi: 10.1093/brain/aww019
– ident: ref121
  doi: 10.1038/nrn2416
– start-page: 121
  year: 2010
  ident: ref131
  article-title: Using ICA for the analysis of multi-channel EEG data
  publication-title: Simultaneous EEG fMRI Recording Anal Appl Recording Anal Appl
– ident: ref33
  doi: 10.1016/j.clinph.2004.08.021
– ident: ref78
  doi: 10.1155/2017/9074759
– volume: 116
  start-page: 569
  year: 2005
  ident: ref86
  article-title: On the predictability of epileptic seizures
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2004.08.025
– ident: ref91
  doi: 10.1016/B978-044450270-4/50024-3
– ident: ref51
  doi: 10.1016/j.clinph.2004.08.020
– ident: ref56
  doi: 10.1007/s11910-017-0758-6
– start-page: 219
  year: 0
  ident: ref25
  article-title: Independent component analysis of EEG signals
  publication-title: Proc IEEE Int Workshop VLSI Des Video Technol
– ident: ref127
  doi: 10.1016/j.yebeh.2010.05.008
– ident: ref12
  doi: 10.1002/cpe.5199
– ident: ref55
  doi: 10.1002/9783527625192
– ident: ref84
  doi: 10.1142/S012906571750006X
– ident: ref26
  doi: 10.1109/TNSRE.2003.814441
– ident: ref139
  doi: 10.1109/COMST.2020.2975048
SSID ssj0000547180
Score 2.6269307
SecondaryResourceType review_article
Snippet With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 139
SubjectTerms Algorithms
Artificial intelligence
Australia
Brain
Convulsions & seizures
EEG
Electrodes
Electroencephalography
Epilepsy
Epileptic seizure
Imaging
Learning algorithms
Machine learning
Neuroscience
Predictions
Seizures
State-of-the-art reviews
Title Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review
URI https://ieeexplore.ieee.org/document/9139257
https://www.ncbi.nlm.nih.gov/pubmed/32746369
https://www.proquest.com/docview/2480873696
https://www.proquest.com/docview/2430376260
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB4SH0p6aFqnbdQ4ZQs5lcqRtKtXbmmQGwoyoUkgN7EvGdNgG9e6-Nd3RlqLENpSnQQavXZm57Ez-w3AWWKU1DqRfial8amdha-45X5sNRkok0Wa1jvKaXJ9L74_xA978KXfC2OtbYvP7JhO21y-WeqGlsrOCcISRWwf9lHMur1a_XoKuh6oZoMuiYzzBg-XxAyD_PzH17LAYDDCGJVA2HJqYsMxIEs4VTo_sUhti5W_e5ut1ZkcQrn73q7Y5Oe42aix3j6DcvzfH3oNr5z7yS47eXkDe3YxhJdPQAmH8KJ06fYjmJZtqaVlDoV1xtDFZTdrIqByaVasUKmg0tHs1s63DYburK1BYEXxjd3OZwTOfMEuWZeBeAv3k-Lu6tp3DRh8zUW-8SPBZWrQA-ImqdNaSCFVXpsszhKd42DLIDW1qg0qVJVxYcIsNzyspRLoBRuZ8HcwWCwX9hhYYmPNM9o7xY2QEt1SKerQpCZXIo1D7UGwY0KlHTo5Ncl4rNooJcgrYmFFLKwcCz343N-y6qA5_kV8RMPfE7qR92C043TlJu-vKhIZ3kONDj341F_GaUe5FLmwy4Zo0PanFA168L6TkP7ZO8H68Od3nsBBSE2EA1RR0QgGm3VjT9Gz2aiPrUj_BmKg77Y
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIlE48GgLBAoYqSdEtknsJA63glIWaFaoD6m3yK9UFWi3KptLfz0zjjeqEFTkFCmTl2c8npe_AdgtrFbGFCqWStmY2lnEmjse587QAmVlZije0cyK6an4epafrcH7cS-Mc84Xn7kJnfpcvl2YnkJlewRhiSJ2B-7m6FXIYbfWGFFB4wMVbTKkkXHm4BHSmGlS7R19bGp0BzP0UgmGraI2NhxdsoJTrfONNck3Wfm3venXnYNH0Ky-eCg3-THpl3pirv8Ac_zfX3oMD4MByvYHiXkCa26-CQ9uwBJuwr0mJNy3YNb4YkvHAg7rOUMjl32_IgIqmGb1JaoVVDuGHbuL6x6dd-arEFhdf2bHF-cEz_yB7bMhB7ENpwf1yadpHFowxIaLahlngqvSog3EbdGVnVBC6aqzMpeFqXCwVVLaTncWVaqWXNhUVpanndIC7WCrCv4U1ueLuXsOrHC54ZJ2T3ErlELDVIkutaWttCjz1ESQrJjQmoBPTm0yfrbeT0mqlljYEgvbwMII3o23XA7gHLcRb9Hwj4Rh5CPYWXG6DdP3V5sJifdQq8MI3o6XceJRNkXN3aInGlz9S_IHI3g2SMj47JVgvfj7O9_AxvSkOWwPv8y-vYT7GZXJ-KjODqwvr3r3Cu2cpX7txfs3Kjny_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+Predicting+Epileptic+Seizures+Using+EEG+Signals%3A+A+Review&rft.jtitle=IEEE+reviews+in+biomedical+engineering&rft.au=Rasheed%2C+Khansa&rft.au=Qayyum%2C+Adnan&rft.au=Qadir%2C+Junaid&rft.au=Sivathamboo%2C+Shobi&rft.date=2021&rft.eissn=1941-1189&rft.volume=14&rft.spage=139&rft_id=info:doi/10.1109%2FRBME.2020.3008792&rft_id=info%3Apmid%2F32746369&rft.externalDocID=32746369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-3333&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-3333&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-3333&client=summon