An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers
Mixture of t factor analyzers (MtFA) have been shown to be a sound model-based tool for robust clustering of high-dimensional data. This approach, which is deemed to be one of natural parametric extensions with respect to normal-theory models, allows for accommodation of potential noise components,...
Saved in:
| Published in | Computational statistics Vol. 28; no. 2; pp. 751 - 769 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer-Verlag
01.04.2013
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0943-4062 1613-9658 |
| DOI | 10.1007/s00180-012-0327-z |
Cover
| Abstract | Mixture of
t
factor analyzers (MtFA) have been shown to be a sound model-based tool for robust clustering of high-dimensional data. This approach, which is deemed to be one of natural parametric extensions with respect to normal-theory models, allows for accommodation of potential noise components, atypical observations or data with longer-than-normal tails. In this paper, we propose an efficient expectation conditional maximization (ECM) algorithm for fast maximum likelihood estimation of MtFA. The proposed algorithm inherits all appealing properties of the ordinary EM algorithm such as its stability and monotonicity, but has a faster convergence rate since its CM steps are governed by a much smaller fraction of missing information. Numerical experiments based on simulated and real data show that the new procedure outperforms the commonly used EM and AECM algorithms substantially in most of the situations, regardless of how the convergence speed is assessed by the computing time or number of iterations. |
|---|---|
| AbstractList | Mixture of t factor analyzers (MtFA) have been shown to be a sound model-based tool for robust clustering of high-dimensional data. This approach, which is deemed to be one of natural parametric extensions with respect to normal-theory models, allows for accommodation of potential noise components, atypical observations or data with longer-than-normal tails. In this paper, we propose an efficient expectation conditional maximization (ECM) algorithm for fast maximum likelihood estimation of MtFA. The proposed algorithm inherits all appealing properties of the ordinary EM algorithm such as its stability and monotonicity, but has a faster convergence rate since its CM steps are governed by a much smaller fraction of missing information. Numerical experiments based on simulated and real data show that the new procedure outperforms the commonly used EM and AECM algorithms substantially in most of the situations, regardless of how the convergence speed is assessed by the computing time or number of iterations. [PUBLICATION ABSTRACT] Mixture of t factor analyzers (MtFA) have been shown to be a sound model-based tool for robust clustering of high-dimensional data. This approach, which is deemed to be one of natural parametric extensions with respect to normal-theory models, allows for accommodation of potential noise components, atypical observations or data with longer-than-normal tails. In this paper, we propose an efficient expectation conditional maximization (ECM) algorithm for fast maximum likelihood estimation of MtFA. The proposed algorithm inherits all appealing properties of the ordinary EM algorithm such as its stability and monotonicity, but has a faster convergence rate since its CM steps are governed by a much smaller fraction of missing information. Numerical experiments based on simulated and real data show that the new procedure outperforms the commonly used EM and AECM algorithms substantially in most of the situations, regardless of how the convergence speed is assessed by the computing time or number of iterations. Mixture of t factor analyzers (MtFA) have been shown to be a sound model-based tool for robust clustering of high-dimensional data. This approach, which is deemed to be one of natural parametric extensions with respect to normal-theory models, allows for accommodation of potential noise components, atypical observations or data with longer-than-normal tails. In this paper, we propose an efficient expectation conditional maximization (ECM) algorithm for fast maximum likelihood estimation of MtFA. The proposed algorithm inherits all appealing properties of the ordinary EM algorithm such as its stability and monotonicity, but has a faster convergence rate since its CM steps are governed by a much smaller fraction of missing information. Numerical experiments based on simulated and real data show that the new procedure outperforms the commonly used EM and AECM algorithms substantially in most of the situations, regardless of how the convergence speed is assessed by the computing time or number of iterations. |
| Author | Lin, Tsung-I Wang, Wan-Lun |
| Author_xml | – sequence: 1 givenname: Wan-Lun surname: Wang fullname: Wang, Wan-Lun organization: Department of Statistics, Feng Chia University – sequence: 2 givenname: Tsung-I surname: Lin fullname: Lin, Tsung-I email: tilin@amath.nchu.edu.tw organization: Institute of Statistics, National Chung Hsing University, Department of Public Health, China Medical University |
| BookMark | eNp9kLFOHDEQhq2ISDlIHiCdJZo0DjP27vpcohMhkUA0pI1lvDYYdm2wvRLc08eXSxEhkWqa75v55z8kBzFFR8hnhK8IIE8KAK6BAXIGgku2fUdWOKBgaujXB2QFqhOsg4F_IIel3ANwLjmuyK_TSJ33wQYXKz3bXFIz3aYc6t1Mfcp0Ns9hXmY6hQc3hbuURupKDbOpIUUaIp3Dc12yKzR5Wpk3tjbLRDO9bF0uH8l7b6biPv2dR-Tnt7PrzXd2cXX-Y3N6wazoVGVohRpH49XNIJVFZ5RZ94gjcEAvB47eyUHa3q0lSoESYOyEQy_63qPpbsQR-bLf-5jT09IS6jkU66bJRJeWorGd6YQSnWjo8Sv0Pi25Bd5RqDolJR8ahXvK5lRKdl4_5vZ1ftEIete43jeuW-N617jeNke-cmyof4qq2YTpvybfm6Vdibcu_5PpTek3lcqXXQ |
| CitedBy_id | crossref_primary_10_1007_s00362_022_01318_8 crossref_primary_10_1080_03610918_2018_1547397 crossref_primary_10_1007_s11634_013_0133_7 crossref_primary_10_1016_j_jmva_2015_09_025 crossref_primary_10_1007_s11009_021_09872_8 crossref_primary_10_1016_j_csda_2013_11_008 crossref_primary_10_1016_j_jmva_2017_07_009 crossref_primary_10_1007_s11222_014_9502_0 crossref_primary_10_1007_s11749_020_00702_6 crossref_primary_10_1016_j_spl_2014_01_015 crossref_primary_10_1016_j_csda_2020_106961 crossref_primary_10_1016_j_asoc_2025_112940 crossref_primary_10_1007_s10182_016_0281_0 crossref_primary_10_1007_s11634_021_00453_8 crossref_primary_10_1016_j_csda_2014_10_007 crossref_primary_10_1007_s11749_014_0422_2 crossref_primary_10_1016_j_asoc_2019_105539 crossref_primary_10_1007_s00180_018_0835_6 crossref_primary_10_1016_j_jmva_2017_11_003 |
| Cites_doi | 10.1162/089976600300015088 10.1002/0471721182 10.1093/bioinformatics/18.3.413 10.1198/106186001317243403 10.1007/s00180-008-0129-5 10.1023/B:STCO.0000021410.33077.10 10.1093/biomet/81.4.633 10.1016/j.jmva.2008.04.010 10.1162/08997660151134299 10.1007/s11222-007-9042-y 10.1016/S0167-9473(02)00183-4 10.1007/s00180-009-0169-5 10.1016/S0165-0270(03)00120-1 10.1016/S0031-3203(01)00080-2 10.1007/s11222-010-9225-9 10.1016/j.csda.2006.09.015 10.1111/1467-9868.00082 10.1093/biomet/80.2.267 10.1109/TNN.2008.2003467 10.1162/089976699300016728 10.1007/s11222-009-9128-9 10.1109/78.324732 10.1111/j.2517-6161.1989.tb01754.x 10.1109/CVPR.1998.698584 10.1080/01621459.1993.10594313 10.1111/j.2517-6161.1977.tb01600.x 10.1111/j.2517-6161.1982.tb01203.x |
| ContentType | Journal Article |
| Copyright | Springer-Verlag 2012 Springer-Verlag Berlin Heidelberg 2013 |
| Copyright_xml | – notice: Springer-Verlag 2012 – notice: Springer-Verlag Berlin Heidelberg 2013 |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8C1 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
| DOI | 10.1007/s00180-012-0327-z |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1613-9658 |
| EndPage | 769 |
| ExternalDocumentID | 2927199821 10_1007_s00180_012_0327_z |
| Genre | Feature |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7WY 88I 8C1 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- MK~ N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Y Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c349t-1c39ddaf9b679c1ea9a8511d0201f7621fe767c5e871731700d43e1f355f1a4b3 |
| IEDL.DBID | U2A |
| ISSN | 0943-4062 |
| IngestDate | Thu Sep 04 19:09:32 EDT 2025 Fri Jul 25 19:06:52 EDT 2025 Thu Apr 24 23:02:37 EDT 2025 Wed Oct 01 05:00:48 EDT 2025 Fri Feb 21 02:33:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Maximum likelihood estimation ECM algorithm MFA AECM algorithm EM algorithm MtFA |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-1c39ddaf9b679c1ea9a8511d0201f7621fe767c5e871731700d43e1f355f1a4b3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 1319497726 |
| PQPubID | 54096 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_1349439343 proquest_journals_1319497726 crossref_primary_10_1007_s00180_012_0327_z crossref_citationtrail_10_1007_s00180_012_0327_z springer_journals_10_1007_s00180_012_0327_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20130400 2013-4-00 20130401 |
| PublicationDateYYYYMMDD | 2013-04-01 |
| PublicationDate_xml | – month: 4 year: 2013 text: 20130400 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Computational statistics |
| PublicationTitleAbbrev | Comput Stat |
| PublicationYear | 2013 |
| Publisher | Springer-Verlag Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer Nature B.V |
| References | Louis (CR16) 1982; 44 Lin, Lee, Ni (CR12) 2004; 14 Celeux, Chrétien, Forbes, Mkhadri (CR1) 2001; 10 Meilijson (CR21) 1989; 51 Meng, van Dyk (CR23) 1997; 59 Ho, Pyne, Lin (CR7) 2012; 22 Shoham, Fellows, Normann (CR25) 2003; 127 Dempster, Laird, Rubin (CR2) 1977; 39 Meng, Rubin (CR22) 1993; 80 Jamshidian, Jennrich (CR8) 1993; 88 Fessler, Hero (CR3) 1994; 42 Shoham (CR24) 2002; 35 Liu, Rubin (CR15) 1995; 5 Lin (CR10) 2010; 20 Lin (CR9) 2009; 100 McLachlan, Bean, Jones (CR17) 2007; 51 Lin, Lin (CR13) 2010; 25 Zhao, Yu, Jiang (CR30) 2008; 18 CR4 CR6 McLachlan, Peel (CR19) 2000 Ueda, Nakano, Ghahramani, Hinton (CR27) 2000; 12 Utsugi, Kumagai (CR28) 2001; 13 Zhao, Yu (CR29) 2008; 19 Ghahramani, Beal, Solla, Leen, Muller (CR5) 2000 Lin, Ho, Shen (CR11) 2009; 24 McLachlan, Peel, Bean (CR20) 2003; 41 Liu, Rubin (CR14) 1994; 81 McLachlan, Bean, Peel (CR18) 2002; 18 Tipping, Bishop (CR26) 1999; 11 GJ McLachlan (327_CR17) 2007; 51 M Jamshidian (327_CR8) 1993; 88 327_CR6 N Ueda (327_CR27) 2000; 12 GJ McLachlan (327_CR20) 2003; 41 G Celeux (327_CR1) 2001; 10 TC Lin (327_CR13) 2010; 25 A Utsugi (327_CR28) 2001; 13 GJ McLachlan (327_CR19) 2000 TI Lin (327_CR10) 2010; 20 CH Liu (327_CR15) 1995; 5 I Meilijson (327_CR21) 1989; 51 S Shoham (327_CR24) 2002; 35 JH Zhao (327_CR29) 2008; 19 TI Lin (327_CR9) 2009; 100 JH Zhao (327_CR30) 2008; 18 XL Meng (327_CR22) 1993; 80 JA Fessler (327_CR3) 1994; 42 TA Louis (327_CR16) 1982; 44 XL Meng (327_CR23) 1997; 59 Z Ghahramani (327_CR5) 2000 S Shoham (327_CR25) 2003; 127 TI Lin (327_CR12) 2004; 14 ME Tipping (327_CR26) 1999; 11 CH Liu (327_CR14) 1994; 81 327_CR4 AP Dempster (327_CR2) 1977; 39 HJ Ho (327_CR7) 2012; 22 TI Lin (327_CR11) 2009; 24 GJ McLachlan (327_CR18) 2002; 18 |
| References_xml | – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: CR2 article-title: Maximum likelihood from incomplete data via the EM algorithm (with discussion) publication-title: J R Stat Soc Ser B – volume: 12 start-page: 2109 year: 2000 end-page: 2128 ident: CR27 article-title: SMEM algorithm for mixture models publication-title: Neural Comput doi: 10.1162/089976600300015088 – year: 2000 ident: CR19 publication-title: Finite mixture models doi: 10.1002/0471721182 – ident: CR4 – volume: 88 start-page: 221 year: 1993 end-page: 228 ident: CR8 article-title: Conjugate gradient acceleration of the EM algorithm publication-title: J Am Stat Assoc – start-page: 449 year: 2000 end-page: 455 ident: CR5 article-title: Variational inference for Bayesian mixture of factor analysers publication-title: Advances in neural information processing systems 12 – volume: 18 start-page: 413 year: 2002 end-page: 422 ident: CR18 article-title: A mixture model-based approach to the clustering of microarray expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.3.413 – ident: CR6 – volume: 44 start-page: 226 year: 1982 end-page: 233 ident: CR16 article-title: Finding the observed information matrix when using the EM algorithm publication-title: J R Stat Soc Ser B – volume: 10 start-page: 697 year: 2001 end-page: 712 ident: CR1 article-title: A component-wise EM algorithm for mixtures publication-title: J Comput Graph Statist doi: 10.1198/106186001317243403 – volume: 24 start-page: 375 year: 2009 end-page: 392 ident: CR11 article-title: Computationally efficient learning of multivariate mixture models with missing information publication-title: Comp Stat doi: 10.1007/s00180-008-0129-5 – volume: 51 start-page: 127 year: 1989 end-page: 138 ident: CR21 article-title: A fast improvement to the EM algorithm in its own terms publication-title: J R Stat Soc Ser B – volume: 14 start-page: 119 year: 2004 end-page: 130 ident: CR12 article-title: Bayesian analysis of mixture modelling using the multivariate distribution publication-title: Stat Comput doi: 10.1023/B:STCO.0000021410.33077.10 – volume: 81 start-page: 633 year: 1994 end-page: 648 ident: CR14 article-title: The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence publication-title: Biometrika doi: 10.1093/biomet/81.4.633 – volume: 100 start-page: 257 year: 2009 end-page: 265 ident: CR9 article-title: Maximum likelihood estimation for multivariate skew normal mixture models (In press) publication-title: J Multivar Anal doi: 10.1016/j.jmva.2008.04.010 – volume: 13 start-page: 993 year: 2001 end-page: 1002 ident: CR28 article-title: Bayesian analysis of mixtures of factor analyzers publication-title: Neural Comp doi: 10.1162/08997660151134299 – volume: 18 start-page: 109 year: 2008 end-page: 123 ident: CR30 article-title: ML estimation for factor analysis: EM or non-EM publication-title: Stat Comput doi: 10.1007/s11222-007-9042-y – volume: 41 start-page: 379 year: 2003 end-page: 388 ident: CR20 article-title: Modelling high-dimensional data by mixtures of factor analyzers publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(02)00183-4 – volume: 25 start-page: 183 year: 2010 end-page: 201 ident: CR13 article-title: Supervised learning of multivariate skew normal mixture models with missing information publication-title: Comput Stat doi: 10.1007/s00180-009-0169-5 – volume: 127 start-page: 111 year: 2003 end-page: 122 ident: CR25 article-title: Robust, automatic spike sorting using mixtures of multivariate -distributions publication-title: J Neurosci Methods doi: 10.1016/S0165-0270(03)00120-1 – volume: 35 start-page: 1127 year: 2002 end-page: 1142 ident: CR24 article-title: Robust clustering by deterministic agglomeration EM of mixtures of multivariate -distributions publication-title: Pattern Recogn doi: 10.1016/S0031-3203(01)00080-2 – volume: 22 start-page: 287 year: 2012 end-page: 299 ident: CR7 article-title: Maximum likelihood inference for mixtures of skew Student- -normal distributions through practical EM-type algorithms publication-title: Stat Comput doi: 10.1007/s11222-010-9225-9 – volume: 5 start-page: 19 year: 1995 end-page: 39 ident: CR15 article-title: ML estimation of the distribution using EM and its extensions, ECM and ECME publication-title: Stat Sin – volume: 51 start-page: 5327 year: 2007 end-page: 5338 ident: CR17 article-title: Extension of the mixture of factor analyzers model to incorporate the multivariate -distribution publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2006.09.015 – volume: 59 start-page: 511 year: 1997 end-page: 567 ident: CR23 article-title: The EM algorithm—an old folk-song sung to a fast new tune publication-title: J Roy Stat Soc B doi: 10.1111/1467-9868.00082 – volume: 80 start-page: 267 year: 1993 end-page: 278 ident: CR22 article-title: Maximum likelihood estimation via the ECM algorithm: a general framework publication-title: Biometrika doi: 10.1093/biomet/80.2.267 – volume: 19 start-page: 1956 year: 2008 end-page: 1961 ident: CR29 article-title: Fast ML estimation for the mixture of factor analyzers via an ECM algorithm publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2003467 – volume: 11 start-page: 443 year: 1999 end-page: 482 ident: CR26 article-title: Mixtures of probabilistic principal component analyzers publication-title: Neural Comput doi: 10.1162/089976699300016728 – volume: 20 start-page: 343 year: 2010 end-page: 356 ident: CR10 article-title: Robust mixture modeling using multivariate skew distributions publication-title: Stat Comput doi: 10.1007/s11222-009-9128-9 – volume: 42 start-page: 2664 year: 1994 end-page: 2677 ident: CR3 article-title: Space-alternating generalized expectation-maximisation algorithm publication-title: IEEE Tran Sig Proc doi: 10.1109/78.324732 – volume: 25 start-page: 183 year: 2010 ident: 327_CR13 publication-title: Comput Stat doi: 10.1007/s00180-009-0169-5 – volume: 22 start-page: 287 year: 2012 ident: 327_CR7 publication-title: Stat Comput doi: 10.1007/s11222-010-9225-9 – volume: 10 start-page: 697 year: 2001 ident: 327_CR1 publication-title: J Comput Graph Statist doi: 10.1198/106186001317243403 – volume: 35 start-page: 1127 year: 2002 ident: 327_CR24 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(01)00080-2 – volume: 11 start-page: 443 year: 1999 ident: 327_CR26 publication-title: Neural Comput doi: 10.1162/089976699300016728 – volume: 18 start-page: 109 year: 2008 ident: 327_CR30 publication-title: Stat Comput doi: 10.1007/s11222-007-9042-y – volume: 14 start-page: 119 year: 2004 ident: 327_CR12 publication-title: Stat Comput doi: 10.1023/B:STCO.0000021410.33077.10 – volume: 51 start-page: 5327 year: 2007 ident: 327_CR17 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2006.09.015 – volume: 81 start-page: 633 year: 1994 ident: 327_CR14 publication-title: Biometrika doi: 10.1093/biomet/81.4.633 – volume: 51 start-page: 127 year: 1989 ident: 327_CR21 publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1989.tb01754.x – ident: 327_CR4 doi: 10.1109/CVPR.1998.698584 – volume: 5 start-page: 19 year: 1995 ident: 327_CR15 publication-title: Stat Sin – volume: 127 start-page: 111 year: 2003 ident: 327_CR25 publication-title: J Neurosci Methods doi: 10.1016/S0165-0270(03)00120-1 – volume: 59 start-page: 511 year: 1997 ident: 327_CR23 publication-title: J Roy Stat Soc B doi: 10.1111/1467-9868.00082 – volume: 19 start-page: 1956 year: 2008 ident: 327_CR29 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2003467 – volume: 88 start-page: 221 year: 1993 ident: 327_CR8 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1993.10594313 – volume: 20 start-page: 343 year: 2010 ident: 327_CR10 publication-title: Stat Comput doi: 10.1007/s11222-009-9128-9 – volume-title: Finite mixture models year: 2000 ident: 327_CR19 doi: 10.1002/0471721182 – volume: 18 start-page: 413 year: 2002 ident: 327_CR18 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.3.413 – start-page: 449 volume-title: Advances in neural information processing systems 12 year: 2000 ident: 327_CR5 – volume: 42 start-page: 2664 year: 1994 ident: 327_CR3 publication-title: IEEE Tran Sig Proc doi: 10.1109/78.324732 – volume: 41 start-page: 379 year: 2003 ident: 327_CR20 publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(02)00183-4 – volume: 39 start-page: 1 year: 1977 ident: 327_CR2 publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 24 start-page: 375 year: 2009 ident: 327_CR11 publication-title: Comp Stat doi: 10.1007/s00180-008-0129-5 – volume: 80 start-page: 267 year: 1993 ident: 327_CR22 publication-title: Biometrika doi: 10.1093/biomet/80.2.267 – ident: 327_CR6 – volume: 44 start-page: 226 year: 1982 ident: 327_CR16 publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1982.tb01203.x – volume: 12 start-page: 2109 year: 2000 ident: 327_CR27 publication-title: Neural Comput doi: 10.1162/089976600300015088 – volume: 13 start-page: 993 year: 2001 ident: 327_CR28 publication-title: Neural Comp doi: 10.1162/08997660151134299 – volume: 100 start-page: 257 year: 2009 ident: 327_CR9 publication-title: J Multivar Anal doi: 10.1016/j.jmva.2008.04.010 |
| SSID | ssj0022721 |
| Score | 2.0517895 |
| Snippet | Mixture of
t
factor analyzers (MtFA) have been shown to be a sound model-based tool for robust clustering of high-dimensional data. This approach, which is... Mixture of t factor analyzers (MtFA) have been shown to be a sound model-based tool for robust clustering of high-dimensional data. This approach, which is... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 751 |
| SubjectTerms | Accommodation Algorithms Approximation Clustering Computational mathematics Convergence Data compression Economic Theory/Quantitative Economics/Mathematical Methods Electrochemical machining Mathematical models Mathematics and Statistics Maximization Maximum likelihood estimation Maximum likelihood method Missing data Original Paper Probability and Statistics in Computer Science Probability Theory and Stochastic Processes Statistics Studies Theorems |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED6x8rI9IGCbVgbISDwNWUts59cDQqUqQkitpgkknohsxx4RTdqtqYT618-XJuGHBM9xYuXubH_2nb8P4JgplmTKSppoT1ARSEGVtZbGsYpUhAcDCs8hx5Pw8kZc3Qa3GzBp78JgWWU7J9YTdTbTeEb-03exIhxYYeHZ_C9F1SjMrrYSGrKRVshOa4qxD7DJkBmrB5vno8mv390WjEX1TSwsp3M7p5C1eU6vphX1YyzSYtTjLKKrlyvVE_x8lTGtF6KLbdhqECQZrF2-Axum3IVP445-dfEZ7gYlMTU3hFtSyGg4JnL6x_1MdV8QB1JJIR_zYlmQaf5gpjkSGxMk21jfYiR5SYr8ETMLCzKzpKJrTR4ikb9k5eDiF7i5GF0PL2kjpEA1F0lFfc2TLJM2UWGUaN_IRCLQyhxU9K2bDX1rojDSgYkxJ4-MfZngxrcOi1hfCsW_Qq-cleYbEMO4CJR07oysYEbLWJpYB5ZrEXosE33wWqOlumEZR7GLadrxI9d2Tp2dU7RzuurDj-6V-Zpi473G-60n0ma0LdKn2OjDUffYjRNMfsjSzJbYRjinJ1zwPpy0Hnz2ibc63Hu_w-_wkdUCGVjLsw-96t_SHDiYUqnDJvb-A3oX5PM priority: 102 providerName: ProQuest |
| Title | An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers |
| URI | https://link.springer.com/article/10.1007/s00180-012-0327-z https://www.proquest.com/docview/1319497726 https://www.proquest.com/docview/1349439343 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1613-9658 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: AMVHM dateStart: 20110301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1613-9658 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: AFBBN dateStart: 19990301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1613-9658 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1613-9658 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: 8FG dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1613-9658 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: 8C1 dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1613-9658 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: AGYKE dateStart: 19990101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1613-9658 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: U2A dateStart: 20040212 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6xu5flgGABUVgqI3ECWWps53UsVbsVKCuEKFouRLZjLxFNimgrrfrrmcmLhwCJS3zIxJFm_PjsmfkG4LkwIi2M1zy1E8VVqBU33nueJCY2MV0MGLqHzC6j5Uq9vgqvujzubR_t3rskm5V6SHaj-nEURCX4RIqYH47gJCQ2LxzEKzEdTlkibpKtKGIOD0eR6F2Zf-ri183oB8L8zSna7DWLu3CnA4ls2lr1Htxy9RnczgaG1e0ZnBJKbEmW78Onac1cwwWBWwibzzKm19cbPPZ_rhiCUlbpm7LaV2xdfnHrkoiMGZFrtFmLrKxZVd6QJ2HLNp7teFuDh2niKzkgPHwAq8X8_WzJu8IJ3EqV7nhgZVoU2qcmilMbOJ1qAlYFQsPA4-oXeBdHsQ1dQj54YugrlHSBR-zhA62MfAjH9aZ2j4A5IVVoNJov9ko4qxPtEht6aVU0EYUawaTXYG47VnEqbrHOBz7kRuk5Kj0npeeHEbwYPvnaUmr8S_i8N0veza5tHuC6oRC4imgEz4bXOC_I2aFrt9mTjMIRkEolR_CyN-dPXfzth4__S_oJnIqmPgaF8pzD8e7b3j1FlLIzYzhKZgE9FxdjOJlefHwzpzb7sMywfTW_fPtu3Izc789k5hY |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6UMBIcAFZJLbzOiBULa22tNtTK_VEsB0bIjbZwmZF2R_Fb2Qm2aSARG89x7GlmfHMZ8_4G4AXwoisMF7zzAaKq0grbrz3PE1NYhK6GDB0Dzk9iicn6sNpdLoBv_q3MFRW2fvE1lEXc0t35G9CtBWFYEXE786-ceoaRdnVvoVGZxYH7ucPPLIt3u6_R_2-FGJv93g84euuAtxKlTU8tDIrCu0zEyeZDZ3ONKGOAnFT6NE1hN4lcWIjl1KCmujrCiVd6DEw-1ArI3Hea3BdSZGQI0jHQ0mJEEn7zouK9fBcFos-ixq0pKVhSiVgggf4J1_9HQcvwO0_-dg2zO3dgdtrfMp2OoO6Cxuuvge3pgO56-I-fNypmWuZJzBgsd3xlOnZZxRV86ViCIFZpc_LalmxWfnVzUqiTWZE5dG9kWRlzarynPIWCzb3rOFdxx-miR1lhWD0AZxciUAfwmY9r90WMCekioxGY0m8Es7qVLvURl5aFQeiUCMIeqHlds1hTq00ZvnAvtzKOUc55yTnfDWCV8MvZx2Bx2WDt3tN5Ou9vMgvLG8Ez4fPuAsptaJrN1_SGIVKz6SSI3jda_CPKf634KPLF3wGNybH08P8cP_o4DHcFG0rDqoa2obN5vvSPUFA1JinrRUy-HTVZv8bI2IaKQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIiE4ID7FQgEjwQVkNbGdrwNC1barlrIVByr1RLAdGyI22cJmRdmfxq9jJpukgERvPcexpfGz59kzfgPwXBiRFcZrntlAcRVpxY33nqepSUxCFwOG7iGnR_H-sXp7Ep1swK_-LQylVfZ7YrtRF3NLd-TbIWJFIVkR8bbv0iLe707enH7jVEGKIq19OY01RA7dzx94fFu8PtjFuX4hxGTvw3ifdxUGuJUqa3hoZVYU2mcmTjIbOp1pYiAFcqjQ4zYRepfEiY1cSsFqkrIrlHShRyftQ62MxH6vwNVExjHp9qfjIb1EiKR980WJe3hGi0UfUQ1aAdMwpXQwwQMpEr762yeeE91_YrOty5vcgpsdV2U7a3Ddhg1X34Eb00HodXEXPu7UzLUqFOi82N54yvTsM5qq-VIxpMOs0mdltazYrPzqZiVJKDOS9Vi_l2RlzaryjGIYCzb3rOHr6j9Mk1LKConpPTi-FIPeh816XrsHwJyQKjIagZN4JZzVqXapjby0Kg5EoUYQ9EbLbadnTmU1ZvmgxNzaOUc752TnfDWCl8Mvp2sxj4sab_UzkXfrepGfo3AEz4bPuCIpzKJrN19SG4WTnkklR_Cqn8E_uvjfgA8vHvApXEPA5-8Ojg4fwXXRVuWgBKIt2Gy-L91j5EaNedKCkMGny0b9b1VhHmM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+ECM+algorithm+for+maximum+likelihood+estimation+in+mixtures+of+t-factor+analyzers&rft.jtitle=Computational+statistics&rft.au=Wang%2C+Wan-Lun&rft.au=Lin%2C+Tsung-I&rft.date=2013-04-01&rft.pub=Springer-Verlag&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=28&rft.issue=2&rft.spage=751&rft.epage=769&rft_id=info:doi/10.1007%2Fs00180-012-0327-z&rft.externalDocID=10_1007_s00180_012_0327_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon |