An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers

Mixture of t factor analyzers (MtFA) have been shown to be a sound model-based tool for robust clustering of high-dimensional data. This approach, which is deemed to be one of natural parametric extensions with respect to normal-theory models, allows for accommodation of potential noise components,...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics Vol. 28; no. 2; pp. 751 - 769
Main Authors Wang, Wan-Lun, Lin, Tsung-I
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.04.2013
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0943-4062
1613-9658
DOI10.1007/s00180-012-0327-z

Cover

Abstract Mixture of t factor analyzers (MtFA) have been shown to be a sound model-based tool for robust clustering of high-dimensional data. This approach, which is deemed to be one of natural parametric extensions with respect to normal-theory models, allows for accommodation of potential noise components, atypical observations or data with longer-than-normal tails. In this paper, we propose an efficient expectation conditional maximization (ECM) algorithm for fast maximum likelihood estimation of MtFA. The proposed algorithm inherits all appealing properties of the ordinary EM algorithm such as its stability and monotonicity, but has a faster convergence rate since its CM steps are governed by a much smaller fraction of missing information. Numerical experiments based on simulated and real data show that the new procedure outperforms the commonly used EM and AECM algorithms substantially in most of the situations, regardless of how the convergence speed is assessed by the computing time or number of iterations.
AbstractList Mixture of t factor analyzers (MtFA) have been shown to be a sound model-based tool for robust clustering of high-dimensional data. This approach, which is deemed to be one of natural parametric extensions with respect to normal-theory models, allows for accommodation of potential noise components, atypical observations or data with longer-than-normal tails. In this paper, we propose an efficient expectation conditional maximization (ECM) algorithm for fast maximum likelihood estimation of MtFA. The proposed algorithm inherits all appealing properties of the ordinary EM algorithm such as its stability and monotonicity, but has a faster convergence rate since its CM steps are governed by a much smaller fraction of missing information. Numerical experiments based on simulated and real data show that the new procedure outperforms the commonly used EM and AECM algorithms substantially in most of the situations, regardless of how the convergence speed is assessed by the computing time or number of iterations. [PUBLICATION ABSTRACT]
Mixture of t factor analyzers (MtFA) have been shown to be a sound model-based tool for robust clustering of high-dimensional data. This approach, which is deemed to be one of natural parametric extensions with respect to normal-theory models, allows for accommodation of potential noise components, atypical observations or data with longer-than-normal tails. In this paper, we propose an efficient expectation conditional maximization (ECM) algorithm for fast maximum likelihood estimation of MtFA. The proposed algorithm inherits all appealing properties of the ordinary EM algorithm such as its stability and monotonicity, but has a faster convergence rate since its CM steps are governed by a much smaller fraction of missing information. Numerical experiments based on simulated and real data show that the new procedure outperforms the commonly used EM and AECM algorithms substantially in most of the situations, regardless of how the convergence speed is assessed by the computing time or number of iterations.
Mixture of t factor analyzers (MtFA) have been shown to be a sound model-based tool for robust clustering of high-dimensional data. This approach, which is deemed to be one of natural parametric extensions with respect to normal-theory models, allows for accommodation of potential noise components, atypical observations or data with longer-than-normal tails. In this paper, we propose an efficient expectation conditional maximization (ECM) algorithm for fast maximum likelihood estimation of MtFA. The proposed algorithm inherits all appealing properties of the ordinary EM algorithm such as its stability and monotonicity, but has a faster convergence rate since its CM steps are governed by a much smaller fraction of missing information. Numerical experiments based on simulated and real data show that the new procedure outperforms the commonly used EM and AECM algorithms substantially in most of the situations, regardless of how the convergence speed is assessed by the computing time or number of iterations.
Author Lin, Tsung-I
Wang, Wan-Lun
Author_xml – sequence: 1
  givenname: Wan-Lun
  surname: Wang
  fullname: Wang, Wan-Lun
  organization: Department of Statistics, Feng Chia University
– sequence: 2
  givenname: Tsung-I
  surname: Lin
  fullname: Lin, Tsung-I
  email: tilin@amath.nchu.edu.tw
  organization: Institute of Statistics, National Chung Hsing University, Department of Public Health, China Medical University
BookMark eNp9kLFOHDEQhq2ISDlIHiCdJZo0DjP27vpcohMhkUA0pI1lvDYYdm2wvRLc08eXSxEhkWqa75v55z8kBzFFR8hnhK8IIE8KAK6BAXIGgku2fUdWOKBgaujXB2QFqhOsg4F_IIel3ANwLjmuyK_TSJ33wQYXKz3bXFIz3aYc6t1Mfcp0Ns9hXmY6hQc3hbuURupKDbOpIUUaIp3Dc12yKzR5Wpk3tjbLRDO9bF0uH8l7b6biPv2dR-Tnt7PrzXd2cXX-Y3N6wazoVGVohRpH49XNIJVFZ5RZ94gjcEAvB47eyUHa3q0lSoESYOyEQy_63qPpbsQR-bLf-5jT09IS6jkU66bJRJeWorGd6YQSnWjo8Sv0Pi25Bd5RqDolJR8ahXvK5lRKdl4_5vZ1ftEIete43jeuW-N617jeNke-cmyof4qq2YTpvybfm6Vdibcu_5PpTek3lcqXXQ
CitedBy_id crossref_primary_10_1007_s00362_022_01318_8
crossref_primary_10_1080_03610918_2018_1547397
crossref_primary_10_1007_s11634_013_0133_7
crossref_primary_10_1016_j_jmva_2015_09_025
crossref_primary_10_1007_s11009_021_09872_8
crossref_primary_10_1016_j_csda_2013_11_008
crossref_primary_10_1016_j_jmva_2017_07_009
crossref_primary_10_1007_s11222_014_9502_0
crossref_primary_10_1007_s11749_020_00702_6
crossref_primary_10_1016_j_spl_2014_01_015
crossref_primary_10_1016_j_csda_2020_106961
crossref_primary_10_1016_j_asoc_2025_112940
crossref_primary_10_1007_s10182_016_0281_0
crossref_primary_10_1007_s11634_021_00453_8
crossref_primary_10_1016_j_csda_2014_10_007
crossref_primary_10_1007_s11749_014_0422_2
crossref_primary_10_1016_j_asoc_2019_105539
crossref_primary_10_1007_s00180_018_0835_6
crossref_primary_10_1016_j_jmva_2017_11_003
Cites_doi 10.1162/089976600300015088
10.1002/0471721182
10.1093/bioinformatics/18.3.413
10.1198/106186001317243403
10.1007/s00180-008-0129-5
10.1023/B:STCO.0000021410.33077.10
10.1093/biomet/81.4.633
10.1016/j.jmva.2008.04.010
10.1162/08997660151134299
10.1007/s11222-007-9042-y
10.1016/S0167-9473(02)00183-4
10.1007/s00180-009-0169-5
10.1016/S0165-0270(03)00120-1
10.1016/S0031-3203(01)00080-2
10.1007/s11222-010-9225-9
10.1016/j.csda.2006.09.015
10.1111/1467-9868.00082
10.1093/biomet/80.2.267
10.1109/TNN.2008.2003467
10.1162/089976699300016728
10.1007/s11222-009-9128-9
10.1109/78.324732
10.1111/j.2517-6161.1989.tb01754.x
10.1109/CVPR.1998.698584
10.1080/01621459.1993.10594313
10.1111/j.2517-6161.1977.tb01600.x
10.1111/j.2517-6161.1982.tb01203.x
ContentType Journal Article
Copyright Springer-Verlag 2012
Springer-Verlag Berlin Heidelberg 2013
Copyright_xml – notice: Springer-Verlag 2012
– notice: Springer-Verlag Berlin Heidelberg 2013
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8C1
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s00180-012-0327-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1613-9658
EndPage 769
ExternalDocumentID 2927199821
10_1007_s00180_012_0327_z
Genre Feature
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7WY
88I
8C1
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c349t-1c39ddaf9b679c1ea9a8511d0201f7621fe767c5e871731700d43e1f355f1a4b3
IEDL.DBID U2A
ISSN 0943-4062
IngestDate Thu Sep 04 19:09:32 EDT 2025
Fri Jul 25 19:06:52 EDT 2025
Thu Apr 24 23:02:37 EDT 2025
Wed Oct 01 05:00:48 EDT 2025
Fri Feb 21 02:33:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Maximum likelihood estimation
ECM algorithm
MFA
AECM algorithm
EM algorithm
MtFA
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-1c39ddaf9b679c1ea9a8511d0201f7621fe767c5e871731700d43e1f355f1a4b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1319497726
PQPubID 54096
PageCount 19
ParticipantIDs proquest_miscellaneous_1349439343
proquest_journals_1319497726
crossref_primary_10_1007_s00180_012_0327_z
crossref_citationtrail_10_1007_s00180_012_0327_z
springer_journals_10_1007_s00180_012_0327_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130400
2013-4-00
20130401
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 4
  year: 2013
  text: 20130400
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Computational statistics
PublicationTitleAbbrev Comput Stat
PublicationYear 2013
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References Louis (CR16) 1982; 44
Lin, Lee, Ni (CR12) 2004; 14
Celeux, Chrétien, Forbes, Mkhadri (CR1) 2001; 10
Meilijson (CR21) 1989; 51
Meng, van Dyk (CR23) 1997; 59
Ho, Pyne, Lin (CR7) 2012; 22
Shoham, Fellows, Normann (CR25) 2003; 127
Dempster, Laird, Rubin (CR2) 1977; 39
Meng, Rubin (CR22) 1993; 80
Jamshidian, Jennrich (CR8) 1993; 88
Fessler, Hero (CR3) 1994; 42
Shoham (CR24) 2002; 35
Liu, Rubin (CR15) 1995; 5
Lin (CR10) 2010; 20
Lin (CR9) 2009; 100
McLachlan, Bean, Jones (CR17) 2007; 51
Lin, Lin (CR13) 2010; 25
Zhao, Yu, Jiang (CR30) 2008; 18
CR4
CR6
McLachlan, Peel (CR19) 2000
Ueda, Nakano, Ghahramani, Hinton (CR27) 2000; 12
Utsugi, Kumagai (CR28) 2001; 13
Zhao, Yu (CR29) 2008; 19
Ghahramani, Beal, Solla, Leen, Muller (CR5) 2000
Lin, Ho, Shen (CR11) 2009; 24
McLachlan, Peel, Bean (CR20) 2003; 41
Liu, Rubin (CR14) 1994; 81
McLachlan, Bean, Peel (CR18) 2002; 18
Tipping, Bishop (CR26) 1999; 11
GJ McLachlan (327_CR17) 2007; 51
M Jamshidian (327_CR8) 1993; 88
327_CR6
N Ueda (327_CR27) 2000; 12
GJ McLachlan (327_CR20) 2003; 41
G Celeux (327_CR1) 2001; 10
TC Lin (327_CR13) 2010; 25
A Utsugi (327_CR28) 2001; 13
GJ McLachlan (327_CR19) 2000
TI Lin (327_CR10) 2010; 20
CH Liu (327_CR15) 1995; 5
I Meilijson (327_CR21) 1989; 51
S Shoham (327_CR24) 2002; 35
JH Zhao (327_CR29) 2008; 19
TI Lin (327_CR9) 2009; 100
JH Zhao (327_CR30) 2008; 18
XL Meng (327_CR22) 1993; 80
JA Fessler (327_CR3) 1994; 42
TA Louis (327_CR16) 1982; 44
XL Meng (327_CR23) 1997; 59
Z Ghahramani (327_CR5) 2000
S Shoham (327_CR25) 2003; 127
TI Lin (327_CR12) 2004; 14
ME Tipping (327_CR26) 1999; 11
CH Liu (327_CR14) 1994; 81
327_CR4
AP Dempster (327_CR2) 1977; 39
HJ Ho (327_CR7) 2012; 22
TI Lin (327_CR11) 2009; 24
GJ McLachlan (327_CR18) 2002; 18
References_xml – volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: CR2
  article-title: Maximum likelihood from incomplete data via the EM algorithm (with discussion)
  publication-title: J R Stat Soc Ser B
– volume: 12
  start-page: 2109
  year: 2000
  end-page: 2128
  ident: CR27
  article-title: SMEM algorithm for mixture models
  publication-title: Neural Comput
  doi: 10.1162/089976600300015088
– year: 2000
  ident: CR19
  publication-title: Finite mixture models
  doi: 10.1002/0471721182
– ident: CR4
– volume: 88
  start-page: 221
  year: 1993
  end-page: 228
  ident: CR8
  article-title: Conjugate gradient acceleration of the EM algorithm
  publication-title: J Am Stat Assoc
– start-page: 449
  year: 2000
  end-page: 455
  ident: CR5
  article-title: Variational inference for Bayesian mixture of factor analysers
  publication-title: Advances in neural information processing systems 12
– volume: 18
  start-page: 413
  year: 2002
  end-page: 422
  ident: CR18
  article-title: A mixture model-based approach to the clustering of microarray expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.3.413
– ident: CR6
– volume: 44
  start-page: 226
  year: 1982
  end-page: 233
  ident: CR16
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J R Stat Soc Ser B
– volume: 10
  start-page: 697
  year: 2001
  end-page: 712
  ident: CR1
  article-title: A component-wise EM algorithm for mixtures
  publication-title: J Comput Graph Statist
  doi: 10.1198/106186001317243403
– volume: 24
  start-page: 375
  year: 2009
  end-page: 392
  ident: CR11
  article-title: Computationally efficient learning of multivariate mixture models with missing information
  publication-title: Comp Stat
  doi: 10.1007/s00180-008-0129-5
– volume: 51
  start-page: 127
  year: 1989
  end-page: 138
  ident: CR21
  article-title: A fast improvement to the EM algorithm in its own terms
  publication-title: J R Stat Soc Ser B
– volume: 14
  start-page: 119
  year: 2004
  end-page: 130
  ident: CR12
  article-title: Bayesian analysis of mixture modelling using the multivariate distribution
  publication-title: Stat Comput
  doi: 10.1023/B:STCO.0000021410.33077.10
– volume: 81
  start-page: 633
  year: 1994
  end-page: 648
  ident: CR14
  article-title: The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence
  publication-title: Biometrika
  doi: 10.1093/biomet/81.4.633
– volume: 100
  start-page: 257
  year: 2009
  end-page: 265
  ident: CR9
  article-title: Maximum likelihood estimation for multivariate skew normal mixture models (In press)
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2008.04.010
– volume: 13
  start-page: 993
  year: 2001
  end-page: 1002
  ident: CR28
  article-title: Bayesian analysis of mixtures of factor analyzers
  publication-title: Neural Comp
  doi: 10.1162/08997660151134299
– volume: 18
  start-page: 109
  year: 2008
  end-page: 123
  ident: CR30
  article-title: ML estimation for factor analysis: EM or non-EM
  publication-title: Stat Comput
  doi: 10.1007/s11222-007-9042-y
– volume: 41
  start-page: 379
  year: 2003
  end-page: 388
  ident: CR20
  article-title: Modelling high-dimensional data by mixtures of factor analyzers
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(02)00183-4
– volume: 25
  start-page: 183
  year: 2010
  end-page: 201
  ident: CR13
  article-title: Supervised learning of multivariate skew normal mixture models with missing information
  publication-title: Comput Stat
  doi: 10.1007/s00180-009-0169-5
– volume: 127
  start-page: 111
  year: 2003
  end-page: 122
  ident: CR25
  article-title: Robust, automatic spike sorting using mixtures of multivariate -distributions
  publication-title: J Neurosci Methods
  doi: 10.1016/S0165-0270(03)00120-1
– volume: 35
  start-page: 1127
  year: 2002
  end-page: 1142
  ident: CR24
  article-title: Robust clustering by deterministic agglomeration EM of mixtures of multivariate -distributions
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(01)00080-2
– volume: 22
  start-page: 287
  year: 2012
  end-page: 299
  ident: CR7
  article-title: Maximum likelihood inference for mixtures of skew Student- -normal distributions through practical EM-type algorithms
  publication-title: Stat Comput
  doi: 10.1007/s11222-010-9225-9
– volume: 5
  start-page: 19
  year: 1995
  end-page: 39
  ident: CR15
  article-title: ML estimation of the distribution using EM and its extensions, ECM and ECME
  publication-title: Stat Sin
– volume: 51
  start-page: 5327
  year: 2007
  end-page: 5338
  ident: CR17
  article-title: Extension of the mixture of factor analyzers model to incorporate the multivariate -distribution
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2006.09.015
– volume: 59
  start-page: 511
  year: 1997
  end-page: 567
  ident: CR23
  article-title: The EM algorithm—an old folk-song sung to a fast new tune
  publication-title: J Roy Stat Soc B
  doi: 10.1111/1467-9868.00082
– volume: 80
  start-page: 267
  year: 1993
  end-page: 278
  ident: CR22
  article-title: Maximum likelihood estimation via the ECM algorithm: a general framework
  publication-title: Biometrika
  doi: 10.1093/biomet/80.2.267
– volume: 19
  start-page: 1956
  year: 2008
  end-page: 1961
  ident: CR29
  article-title: Fast ML estimation for the mixture of factor analyzers via an ECM algorithm
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2003467
– volume: 11
  start-page: 443
  year: 1999
  end-page: 482
  ident: CR26
  article-title: Mixtures of probabilistic principal component analyzers
  publication-title: Neural Comput
  doi: 10.1162/089976699300016728
– volume: 20
  start-page: 343
  year: 2010
  end-page: 356
  ident: CR10
  article-title: Robust mixture modeling using multivariate skew distributions
  publication-title: Stat Comput
  doi: 10.1007/s11222-009-9128-9
– volume: 42
  start-page: 2664
  year: 1994
  end-page: 2677
  ident: CR3
  article-title: Space-alternating generalized expectation-maximisation algorithm
  publication-title: IEEE Tran Sig Proc
  doi: 10.1109/78.324732
– volume: 25
  start-page: 183
  year: 2010
  ident: 327_CR13
  publication-title: Comput Stat
  doi: 10.1007/s00180-009-0169-5
– volume: 22
  start-page: 287
  year: 2012
  ident: 327_CR7
  publication-title: Stat Comput
  doi: 10.1007/s11222-010-9225-9
– volume: 10
  start-page: 697
  year: 2001
  ident: 327_CR1
  publication-title: J Comput Graph Statist
  doi: 10.1198/106186001317243403
– volume: 35
  start-page: 1127
  year: 2002
  ident: 327_CR24
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(01)00080-2
– volume: 11
  start-page: 443
  year: 1999
  ident: 327_CR26
  publication-title: Neural Comput
  doi: 10.1162/089976699300016728
– volume: 18
  start-page: 109
  year: 2008
  ident: 327_CR30
  publication-title: Stat Comput
  doi: 10.1007/s11222-007-9042-y
– volume: 14
  start-page: 119
  year: 2004
  ident: 327_CR12
  publication-title: Stat Comput
  doi: 10.1023/B:STCO.0000021410.33077.10
– volume: 51
  start-page: 5327
  year: 2007
  ident: 327_CR17
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2006.09.015
– volume: 81
  start-page: 633
  year: 1994
  ident: 327_CR14
  publication-title: Biometrika
  doi: 10.1093/biomet/81.4.633
– volume: 51
  start-page: 127
  year: 1989
  ident: 327_CR21
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1989.tb01754.x
– ident: 327_CR4
  doi: 10.1109/CVPR.1998.698584
– volume: 5
  start-page: 19
  year: 1995
  ident: 327_CR15
  publication-title: Stat Sin
– volume: 127
  start-page: 111
  year: 2003
  ident: 327_CR25
  publication-title: J Neurosci Methods
  doi: 10.1016/S0165-0270(03)00120-1
– volume: 59
  start-page: 511
  year: 1997
  ident: 327_CR23
  publication-title: J Roy Stat Soc B
  doi: 10.1111/1467-9868.00082
– volume: 19
  start-page: 1956
  year: 2008
  ident: 327_CR29
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2003467
– volume: 88
  start-page: 221
  year: 1993
  ident: 327_CR8
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1993.10594313
– volume: 20
  start-page: 343
  year: 2010
  ident: 327_CR10
  publication-title: Stat Comput
  doi: 10.1007/s11222-009-9128-9
– volume-title: Finite mixture models
  year: 2000
  ident: 327_CR19
  doi: 10.1002/0471721182
– volume: 18
  start-page: 413
  year: 2002
  ident: 327_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.3.413
– start-page: 449
  volume-title: Advances in neural information processing systems 12
  year: 2000
  ident: 327_CR5
– volume: 42
  start-page: 2664
  year: 1994
  ident: 327_CR3
  publication-title: IEEE Tran Sig Proc
  doi: 10.1109/78.324732
– volume: 41
  start-page: 379
  year: 2003
  ident: 327_CR20
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(02)00183-4
– volume: 39
  start-page: 1
  year: 1977
  ident: 327_CR2
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 24
  start-page: 375
  year: 2009
  ident: 327_CR11
  publication-title: Comp Stat
  doi: 10.1007/s00180-008-0129-5
– volume: 80
  start-page: 267
  year: 1993
  ident: 327_CR22
  publication-title: Biometrika
  doi: 10.1093/biomet/80.2.267
– ident: 327_CR6
– volume: 44
  start-page: 226
  year: 1982
  ident: 327_CR16
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– volume: 12
  start-page: 2109
  year: 2000
  ident: 327_CR27
  publication-title: Neural Comput
  doi: 10.1162/089976600300015088
– volume: 13
  start-page: 993
  year: 2001
  ident: 327_CR28
  publication-title: Neural Comp
  doi: 10.1162/08997660151134299
– volume: 100
  start-page: 257
  year: 2009
  ident: 327_CR9
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2008.04.010
SSID ssj0022721
Score 2.0517895
Snippet Mixture of t factor analyzers (MtFA) have been shown to be a sound model-based tool for robust clustering of high-dimensional data. This approach, which is...
Mixture of t factor analyzers (MtFA) have been shown to be a sound model-based tool for robust clustering of high-dimensional data. This approach, which is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 751
SubjectTerms Accommodation
Algorithms
Approximation
Clustering
Computational mathematics
Convergence
Data compression
Economic Theory/Quantitative Economics/Mathematical Methods
Electrochemical machining
Mathematical models
Mathematics and Statistics
Maximization
Maximum likelihood estimation
Maximum likelihood method
Missing data
Original Paper
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Statistics
Studies
Theorems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED6x8rI9IGCbVgbISDwNWUts59cDQqUqQkitpgkknohsxx4RTdqtqYT618-XJuGHBM9xYuXubH_2nb8P4JgplmTKSppoT1ARSEGVtZbGsYpUhAcDCs8hx5Pw8kZc3Qa3GzBp78JgWWU7J9YTdTbTeEb-03exIhxYYeHZ_C9F1SjMrrYSGrKRVshOa4qxD7DJkBmrB5vno8mv390WjEX1TSwsp3M7p5C1eU6vphX1YyzSYtTjLKKrlyvVE_x8lTGtF6KLbdhqECQZrF2-Axum3IVP445-dfEZ7gYlMTU3hFtSyGg4JnL6x_1MdV8QB1JJIR_zYlmQaf5gpjkSGxMk21jfYiR5SYr8ETMLCzKzpKJrTR4ikb9k5eDiF7i5GF0PL2kjpEA1F0lFfc2TLJM2UWGUaN_IRCLQyhxU9K2bDX1rojDSgYkxJ4-MfZngxrcOi1hfCsW_Qq-cleYbEMO4CJR07oysYEbLWJpYB5ZrEXosE33wWqOlumEZR7GLadrxI9d2Tp2dU7RzuurDj-6V-Zpi473G-60n0ma0LdKn2OjDUffYjRNMfsjSzJbYRjinJ1zwPpy0Hnz2ibc63Hu_w-_wkdUCGVjLsw-96t_SHDiYUqnDJvb-A3oX5PM
  priority: 102
  providerName: ProQuest
Title An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers
URI https://link.springer.com/article/10.1007/s00180-012-0327-z
https://www.proquest.com/docview/1319497726
https://www.proquest.com/docview/1349439343
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: AMVHM
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1613-9658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: AFBBN
  dateStart: 19990301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1613-9658
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: 8FG
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: 8C1
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: AGYKE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: U2A
  dateStart: 20040212
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6xu5flgGABUVgqI3ECWWps53UsVbsVKCuEKFouRLZjLxFNimgrrfrrmcmLhwCJS3zIxJFm_PjsmfkG4LkwIi2M1zy1E8VVqBU33nueJCY2MV0MGLqHzC6j5Uq9vgqvujzubR_t3rskm5V6SHaj-nEURCX4RIqYH47gJCQ2LxzEKzEdTlkibpKtKGIOD0eR6F2Zf-ri183oB8L8zSna7DWLu3CnA4ls2lr1Htxy9RnczgaG1e0ZnBJKbEmW78Onac1cwwWBWwibzzKm19cbPPZ_rhiCUlbpm7LaV2xdfnHrkoiMGZFrtFmLrKxZVd6QJ2HLNp7teFuDh2niKzkgPHwAq8X8_WzJu8IJ3EqV7nhgZVoU2qcmilMbOJ1qAlYFQsPA4-oXeBdHsQ1dQj54YugrlHSBR-zhA62MfAjH9aZ2j4A5IVVoNJov9ko4qxPtEht6aVU0EYUawaTXYG47VnEqbrHOBz7kRuk5Kj0npeeHEbwYPvnaUmr8S_i8N0veza5tHuC6oRC4imgEz4bXOC_I2aFrt9mTjMIRkEolR_CyN-dPXfzth4__S_oJnIqmPgaF8pzD8e7b3j1FlLIzYzhKZgE9FxdjOJlefHwzpzb7sMywfTW_fPtu3Izc789k5hY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6UMBIcAFZJLbzOiBULa22tNtTK_VEsB0bIjbZwmZF2R_Fb2Qm2aSARG89x7GlmfHMZ8_4G4AXwoisMF7zzAaKq0grbrz3PE1NYhK6GDB0Dzk9iicn6sNpdLoBv_q3MFRW2fvE1lEXc0t35G9CtBWFYEXE786-ceoaRdnVvoVGZxYH7ucPPLIt3u6_R_2-FGJv93g84euuAtxKlTU8tDIrCu0zEyeZDZ3ONKGOAnFT6NE1hN4lcWIjl1KCmujrCiVd6DEw-1ArI3Hea3BdSZGQI0jHQ0mJEEn7zouK9fBcFos-ixq0pKVhSiVgggf4J1_9HQcvwO0_-dg2zO3dgdtrfMp2OoO6Cxuuvge3pgO56-I-fNypmWuZJzBgsd3xlOnZZxRV86ViCIFZpc_LalmxWfnVzUqiTWZE5dG9kWRlzarynPIWCzb3rOFdxx-miR1lhWD0AZxciUAfwmY9r90WMCekioxGY0m8Es7qVLvURl5aFQeiUCMIeqHlds1hTq00ZvnAvtzKOUc55yTnfDWCV8MvZx2Bx2WDt3tN5Ou9vMgvLG8Ez4fPuAsptaJrN1_SGIVKz6SSI3jda_CPKf634KPLF3wGNybH08P8cP_o4DHcFG0rDqoa2obN5vvSPUFA1JinrRUy-HTVZv8bI2IaKQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIiE4ID7FQgEjwQVkNbGdrwNC1barlrIVByr1RLAdGyI22cJmRdmfxq9jJpukgERvPcexpfGz59kzfgPwXBiRFcZrntlAcRVpxY33nqepSUxCFwOG7iGnR_H-sXp7Ep1swK_-LQylVfZ7YrtRF3NLd-TbIWJFIVkR8bbv0iLe707enH7jVEGKIq19OY01RA7dzx94fFu8PtjFuX4hxGTvw3ifdxUGuJUqa3hoZVYU2mcmTjIbOp1pYiAFcqjQ4zYRepfEiY1cSsFqkrIrlHShRyftQ62MxH6vwNVExjHp9qfjIb1EiKR980WJe3hGi0UfUQ1aAdMwpXQwwQMpEr762yeeE91_YrOty5vcgpsdV2U7a3Ddhg1X34Eb00HodXEXPu7UzLUqFOi82N54yvTsM5qq-VIxpMOs0mdltazYrPzqZiVJKDOS9Vi_l2RlzaryjGIYCzb3rOHr6j9Mk1LKConpPTi-FIPeh816XrsHwJyQKjIagZN4JZzVqXapjby0Kg5EoUYQ9EbLbadnTmU1ZvmgxNzaOUc752TnfDWCl8Mvp2sxj4sab_UzkXfrepGfo3AEz4bPuCIpzKJrN19SG4WTnkklR_Cqn8E_uvjfgA8vHvApXEPA5-8Ojg4fwXXRVuWgBKIt2Gy-L91j5EaNedKCkMGny0b9b1VhHmM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+ECM+algorithm+for+maximum+likelihood+estimation+in+mixtures+of+t-factor+analyzers&rft.jtitle=Computational+statistics&rft.au=Wang%2C+Wan-Lun&rft.au=Lin%2C+Tsung-I&rft.date=2013-04-01&rft.pub=Springer-Verlag&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=28&rft.issue=2&rft.spage=751&rft.epage=769&rft_id=info:doi/10.1007%2Fs00180-012-0327-z&rft.externalDocID=10_1007_s00180_012_0327_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon