A GOA-MSVM based strategy to achieve high fault identification accuracy for rotating machinery under different load conditions
•GOA-MSVM method can identify both fault type and fault severity of rolling bearings.•GOA-MSVM is proved to be able to identify weak faults of planetary gearbox.•VMD SE is used as a part of feature vector and compared with VMD AE and EMD SE.•GOA-MSVM is more suitable to identify rotating machinery f...
Saved in:
Published in | Measurement : journal of the International Measurement Confederation Vol. 163; p. 108067 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
15.10.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0263-2241 1873-412X |
DOI | 10.1016/j.measurement.2020.108067 |
Cover
Abstract | •GOA-MSVM method can identify both fault type and fault severity of rolling bearings.•GOA-MSVM is proved to be able to identify weak faults of planetary gearbox.•VMD SE is used as a part of feature vector and compared with VMD AE and EMD SE.•GOA-MSVM is more suitable to identify rotating machinery faults than other 5 SVM-based methods.
Identifying fault of rotating machinery under different load conditions with high accuracy is a remaining challenge for vibration signal based fault diagnosis. Aiming at this challenge, this paper proposes a comprehensive strategy of combining mixed kernel-support vector machine (MSVM) with grasshopper optimisation algorithm (GOA) to identify typical faults of rotating machinery subject to different load levels. The basic idea of the proposed strategy can be summarized as the following three steps. Firstly, a feature vector that uses multi-domain indexes containing the sample entropy (SE) of variational mode decomposition (VMD) is constructed to characterize the fault information. Secondly, a MSVM model containing six design variables is established and then optimized by GOA. Finally, the optimized MSVM model is adopted to train the fault feature vectors to fulfill fault pattern recognition. In order to verify the identification accuracy of the proposed strategy, two sets of fault signal generated from a rolling bearing test rig and a laboratory planetary gearbox operating under different load conditions are analyzed. The diagnostic results manifest that the proposed strategy can fully identify different level faults of rolling bearing and weak faults of planetary gearbox as well. More than 99% identification accuracy of the proposed strategy is further highlighted by comparisons with other five SVM-based methods. The present method provides a promising solution for high fault identification accuracy in rotating machinery working under different loads. |
---|---|
AbstractList | •GOA-MSVM method can identify both fault type and fault severity of rolling bearings.•GOA-MSVM is proved to be able to identify weak faults of planetary gearbox.•VMD SE is used as a part of feature vector and compared with VMD AE and EMD SE.•GOA-MSVM is more suitable to identify rotating machinery faults than other 5 SVM-based methods.
Identifying fault of rotating machinery under different load conditions with high accuracy is a remaining challenge for vibration signal based fault diagnosis. Aiming at this challenge, this paper proposes a comprehensive strategy of combining mixed kernel-support vector machine (MSVM) with grasshopper optimisation algorithm (GOA) to identify typical faults of rotating machinery subject to different load levels. The basic idea of the proposed strategy can be summarized as the following three steps. Firstly, a feature vector that uses multi-domain indexes containing the sample entropy (SE) of variational mode decomposition (VMD) is constructed to characterize the fault information. Secondly, a MSVM model containing six design variables is established and then optimized by GOA. Finally, the optimized MSVM model is adopted to train the fault feature vectors to fulfill fault pattern recognition. In order to verify the identification accuracy of the proposed strategy, two sets of fault signal generated from a rolling bearing test rig and a laboratory planetary gearbox operating under different load conditions are analyzed. The diagnostic results manifest that the proposed strategy can fully identify different level faults of rolling bearing and weak faults of planetary gearbox as well. More than 99% identification accuracy of the proposed strategy is further highlighted by comparisons with other five SVM-based methods. The present method provides a promising solution for high fault identification accuracy in rotating machinery working under different loads. Identifying fault of rotating machinery under different load conditions with high accuracy is a remaining challenge for vibration signal based fault diagnosis. Aiming at this challenge, this paper proposes a comprehensive strategy of combining mixed kernel-support vector machine (MSVM) with grasshopper optimisation algorithm (GOA) to identify typical faults of rotating machinery subject to different load levels. The basic idea of the proposed strategy can be summarized as the following three steps. Firstly, a feature vector that uses multi-domain indexes containing the sample entropy (SE) of variational mode decomposition (VMD) is constructed to characterize the fault information. Secondly, a MSVM model containing six design variables is established and then optimized by GOA. Finally, the optimized MSVM model is adopted to train the fault feature vectors to fulfill fault pattern recognition. In order to verify the identification accuracy of the proposed strategy, two sets of fault signal generated from a rolling bearing test rig and a laboratory planetary gearbox operating under different load conditions are analyzed. The diagnostic results manifest that the proposed strategy can fully identify different level faults of rolling bearing and weak faults of planetary gearbox as well. More than 99% identification accuracy of the proposed strategy is further highlighted by comparisons with other five SVM-based methods. The present method provides a promising solution for high fault identification accuracy in rotating machinery working under different loads. |
ArticleNumber | 108067 |
Author | Zhong, Min Zheng, Jinde Zhang, Jun Yao, Ligang Zhang, Jianqun |
Author_xml | – sequence: 1 givenname: Jianqun surname: Zhang fullname: Zhang, Jianqun organization: School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China – sequence: 2 givenname: Jun surname: Zhang fullname: Zhang, Jun email: zhang_jun@fzu.edu.cn organization: School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China – sequence: 3 givenname: Min surname: Zhong fullname: Zhong, Min organization: School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China – sequence: 4 givenname: Jinde surname: Zheng fullname: Zheng, Jinde organization: School of Mechanical Engineering, Anhui University of Technology, Ma’anshan 243032, China – sequence: 5 givenname: Ligang surname: Yao fullname: Yao, Ligang organization: School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China |
BookMark | eNqNkE1rGzEURUVJoU7a_6DS9biSRtKMVsWYNikkZNEPuhOy9GTL2FIqaQLe5LdXU3dRssrqweWe--BcoouYIiD0npIlJVR-3C-PYMqU4QixLhlhcz4SObxCCzoOfccp-3WBFoTJvmOM0zfospQ9IUT2Si7Q0wpf36-6u28_7_DGFHC41GwqbE-4JmzsLsAj4F3Y7rA306Hi4Nqj4IM1NaTYGnbKxp6wTxnnVFsat_g4gxHyCU_RQcYueA-5gfiQjMM2RRdmvLxFr705FHj3716hH18-f1_fdLf311_Xq9vO9lzVjvZeOaUktyPtnR0F45xsRmm5FdJIL0bJyQBMqA1VkpmBGkMYUOIGK5Sw_RX6cN59yOn3BKXqfZpybC8140IIKUivWkudWzanUjJ4_ZDD0eSTpkTPuvVe_6dbz7r1WXdjPz1jbah_HTWf4fCihfV5AZqIxwBZFxsgWnAhg63apfCClT8umKds |
CitedBy_id | crossref_primary_10_1177_14759217241312938 crossref_primary_10_1007_s12206_021_0901_9 crossref_primary_10_1016_j_knosys_2021_107467 crossref_primary_10_1177_14759217211057444 crossref_primary_10_1016_j_measurement_2022_111651 crossref_primary_10_3390_s23104951 crossref_primary_10_1016_j_measurement_2022_111635 crossref_primary_10_1088_1361_6501_ad83ea crossref_primary_10_1016_j_isatra_2023_03_022 crossref_primary_10_1109_ACCESS_2021_3067597 crossref_primary_10_3390_e24070927 crossref_primary_10_3390_s24134251 crossref_primary_10_1155_2022_8126464 crossref_primary_10_3390_jmse11010027 crossref_primary_10_1016_j_ins_2021_04_082 crossref_primary_10_3390_jmse10020132 crossref_primary_10_3390_machines12120871 crossref_primary_10_1109_JSEN_2022_3227099 crossref_primary_10_1177_14759217231168877 crossref_primary_10_1088_1361_6501_ad1d4a crossref_primary_10_1007_s40430_023_04451_z crossref_primary_10_1016_j_measurement_2024_115125 crossref_primary_10_3390_e23070794 crossref_primary_10_1109_TIM_2024_3385848 crossref_primary_10_1177_09544062211032995 crossref_primary_10_2478_pomr_2023_0010 crossref_primary_10_1140_epjqt_s40507_022_00137_y crossref_primary_10_1016_j_measurement_2021_109116 crossref_primary_10_1109_JSEN_2022_3214286 crossref_primary_10_1109_ACCESS_2024_3382214 crossref_primary_10_1155_2021_8699362 crossref_primary_10_3390_sym13020163 crossref_primary_10_1088_1361_6501_ad2c51 crossref_primary_10_1109_JSEN_2022_3161596 crossref_primary_10_1088_1361_6501_acc3b9 crossref_primary_10_1177_14759217241236884 crossref_primary_10_1177_10775463231217530 crossref_primary_10_1177_09544062241264267 |
Cites_doi | 10.1016/j.ymssp.2018.04.038 10.1007/s12206-019-0101-z 10.1016/j.patcog.2012.07.021 10.1109/ACCESS.2019.2918343 10.1016/j.ymssp.2015.11.014 10.1177/0142331215592064 10.4028/www.scientific.net/AMM.278-280.1027 10.3390/app8122630 10.1109/ACCESS.2018.2789933 10.1016/j.ymssp.2007.08.004 10.4028/www.scientific.net/AMR.634-638.3958 10.1007/s00521-015-1850-y 10.1016/j.isatra.2018.06.001 10.1016/S0076-6879(04)84011-4 10.1109/TSP.2013.2288675 10.1016/j.measurement.2013.08.021 10.1016/j.ymssp.2015.04.021 10.1016/j.eswa.2008.01.047 10.1016/j.ymssp.2012.09.005 10.1007/s40565-018-0402-8 10.1016/j.ymssp.2018.07.034 10.1016/j.ymssp.2017.06.022 10.1016/j.advengsoft.2017.01.004 10.1109/TIE.2015.2417501 10.1016/j.ymssp.2017.11.029 10.1016/j.measurement.2019.04.030 10.1088/1361-6501/ab43ed 10.1016/j.measurement.2012.07.005 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier Science Ltd. Oct 15, 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Oct 15, 2020 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.measurement.2020.108067 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-412X |
ExternalDocumentID | 10_1016_j_measurement_2020_108067 S0263224120306059 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GS5 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSQ SST SSZ T5K ZMT ~G- 29M AATTM AAXKI AAYWO AAYXX ABFNM ABXDB ACLOT ACNNM ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW WUQ XPP ~HD AGCQF |
ID | FETCH-LOGICAL-c349t-13f9d9964c813dc852440b86c4c56a6f586407e259b1962a71aa02e10d7c595c3 |
IEDL.DBID | .~1 |
ISSN | 0263-2241 |
IngestDate | Wed Aug 13 08:02:12 EDT 2025 Wed Oct 01 05:13:57 EDT 2025 Thu Apr 24 23:04:47 EDT 2025 Fri Feb 23 02:48:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sample entropy Variational mode decomposition Mixed kernel-support vector machine Grasshopper optimisation algorithm Rotating machinery Fault identification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-13f9d9964c813dc852440b86c4c56a6f586407e259b1962a71aa02e10d7c595c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2455565039 |
PQPubID | 2047460 |
ParticipantIDs | proquest_journals_2455565039 crossref_primary_10_1016_j_measurement_2020_108067 crossref_citationtrail_10_1016_j_measurement_2020_108067 elsevier_sciencedirect_doi_10_1016_j_measurement_2020_108067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-15 |
PublicationDateYYYYMMDD | 2020-10-15 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Measurement : journal of the International Measurement Confederation |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Zhang, Zhong, Zhang (b0025) 2020; 31 Ulus, Erkaya (b0015) 2016; 21 Gan, Wang, Zhu (b0050) 2016; 72–73 Zhu, Xiong, Liang (b0100) 2018; 7 Chen, Tang, Song (b0115) 2014; 47 Zhang, Zhang, Zhong (b0020) 2019; 7 Richman, Lake, Moorman (b0150) 2004; 384 Gold, Sollich (b0140) 2002; 55 Ren, Liang, Gu (b0145) 2008; 22 Han, Zhao, Shi (b0125) 2019; 33 Arbelaitz, Gurrutxaga, Muguerza (b0175) 2013; 46 Wang, Li, Xiang (b0045) 2014; 602–605 Li, Gao, Guo (b0120) 2013; 634–638 Saremi, Mirjalili, Lewis (b0130) 2017; 105 Li, Li, Wei (b0085) 2018; 81 Zhao, Gao, Liu (b0110) 2019; 7 Xu, Chen (b0030) 2013; 35 Smith, Randall (b0160) 2015; 64–65 Mao, Feng, Liang (b0070) 2019; 117 Gao, Cecati, Ding (b0095) 2015; 62 Zhang, Miao, Zhang (b0135) 2018; 108 An, Yang (b0165) 2016; 38 Taplak, Erkaya, Uzmay (b0010) 2013; 46 Zhao, Xu, Jia (b0035) 2016; 27 Jiang, Wang, Zhu (b0090) 2017; 28 Zhang, Li, Peng (b0060) 2018; 100 . Xiong, Zhang, Liang, Zhu, Li (b0040) 2018; 2018 Tang, Tang, Sheng (b0105) 2009; 36 Dragomiretskiy, Zosso (b0080) 2014; 62 Long, Yang, Guo, Zhao, Wu (b0055) 2019; 2019 K.A. Loparo, Bearing vibration dataset, Case Western Reserve University, 2003. Ding, Li, Lin (b0005) 2019; 141 Glowacz (b0075) 2018; 8 Zhong, Zhao, Dong (b0170) 2013; 278–280 Wang, Xiang, Zhong (b0065) 2018; 112 Xiong (10.1016/j.measurement.2020.108067_b0040) 2018; 2018 An (10.1016/j.measurement.2020.108067_b0165) 2016; 38 Gan (10.1016/j.measurement.2020.108067_b0050) 2016; 72–73 Ren (10.1016/j.measurement.2020.108067_b0145) 2008; 22 Zhang (10.1016/j.measurement.2020.108067_b0020) 2019; 7 Gao (10.1016/j.measurement.2020.108067_b0095) 2015; 62 Tang (10.1016/j.measurement.2020.108067_b0105) 2009; 36 Zhang (10.1016/j.measurement.2020.108067_b0025) 2020; 31 Arbelaitz (10.1016/j.measurement.2020.108067_b0175) 2013; 46 Zhao (10.1016/j.measurement.2020.108067_b0035) 2016; 27 Ulus (10.1016/j.measurement.2020.108067_b0015) 2016; 21 Zhang (10.1016/j.measurement.2020.108067_b0060) 2018; 100 Glowacz (10.1016/j.measurement.2020.108067_b0075) 2018; 8 Xu (10.1016/j.measurement.2020.108067_b0030) 2013; 35 Long (10.1016/j.measurement.2020.108067_b0055) 2019; 2019 Wang (10.1016/j.measurement.2020.108067_b0065) 2018; 112 10.1016/j.measurement.2020.108067_b0155 Mao (10.1016/j.measurement.2020.108067_b0070) 2019; 117 Richman (10.1016/j.measurement.2020.108067_b0150) 2004; 384 Smith (10.1016/j.measurement.2020.108067_b0160) 2015; 64–65 Li (10.1016/j.measurement.2020.108067_b0085) 2018; 81 Wang (10.1016/j.measurement.2020.108067_b0045) 2014; 602–605 Zhang (10.1016/j.measurement.2020.108067_b0135) 2018; 108 Zhong (10.1016/j.measurement.2020.108067_b0170) 2013; 278–280 Han (10.1016/j.measurement.2020.108067_b0125) 2019; 33 Li (10.1016/j.measurement.2020.108067_b0120) 2013; 634–638 Zhu (10.1016/j.measurement.2020.108067_b0100) 2018; 7 Zhao (10.1016/j.measurement.2020.108067_b0110) 2019; 7 Gold (10.1016/j.measurement.2020.108067_b0140) 2002; 55 Saremi (10.1016/j.measurement.2020.108067_b0130) 2017; 105 Dragomiretskiy (10.1016/j.measurement.2020.108067_b0080) 2014; 62 Jiang (10.1016/j.measurement.2020.108067_b0090) 2017; 28 Ding (10.1016/j.measurement.2020.108067_b0005) 2019; 141 Taplak (10.1016/j.measurement.2020.108067_b0010) 2013; 46 Chen (10.1016/j.measurement.2020.108067_b0115) 2014; 47 |
References_xml | – volume: 31 year: 2020 ident: b0025 article-title: Detection for weak fault in planetary gear trains based on an improved maximum correlation kurtosis deconvolution publication-title: Meas. Sci. Technol. – volume: 112 start-page: 154 year: 2018 end-page: 170 ident: b0065 article-title: A data indicator-based deep belief networks to detect multiple faults in axial piston pumps publication-title: Mech. Syst. Sig. Process. – volume: 81 start-page: 329 year: 2018 end-page: 341 ident: b0085 article-title: Health condition identification of planetary gearboxes based on variational mode decomposition and generalized composite multi-scale symbolic dynamic entropy publication-title: ISA Trans. – volume: 7 start-page: 350 year: 2019 end-page: 356 ident: b0110 article-title: Fault diagnosis of wind turbine bearing based on stochastic subspace identification and multi-kernel support vector machine publication-title: J. Mod Power Syst. Clean Energy – volume: 7 start-page: 33583 year: 2018 end-page: 33588 ident: b0100 article-title: Fault diagnosis of rotation machinery based on support vector machine optimized by quantum genetic algorithm publication-title: IEEE Access – volume: 8 start-page: 2630 year: 2018 ident: b0075 article-title: Recognition of Acoustic Signals of Commutator Motors publication-title: Appl. Sci. – reference: K.A. Loparo, Bearing vibration dataset, Case Western Reserve University, 2003. < – volume: 46 start-page: 243 year: 2013 end-page: 256 ident: b0175 article-title: An extensive comparative study of cluster validity indices publication-title: Pattern Recogn. – volume: 384 start-page: 172 year: 2004 end-page: 184 ident: b0150 article-title: Sample Entropy publication-title: Methods Enzymol. – volume: 2019 start-page: 1 year: 2019 end-page: 14 ident: b0055 article-title: A CBA-KELM-Based Recognition Method for Fault Diagnosis of Wind Turbines with Time-Domain Analysis and Multisensor Data Fusion publication-title: Shock Vib. – volume: 64–65 start-page: 100 year: 2015 end-page: 131 ident: b0160 article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study publication-title: Mech. Syst. Sig. Process. – volume: 28 start-page: 1215 year: 2017 end-page: 1220 ident: b0090 article-title: Integrated VMD denoising and KFCM clustering fault identification method of rolling bearings publication-title: China Mech. Eng. – volume: 55 start-page: 221 year: 2002 end-page: 249 ident: b0140 article-title: Model selection for support vector machine classification publication-title: Neurocomputing – volume: 108 start-page: 58 year: 2018 end-page: 72 ident: b0135 article-title: A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery publication-title: Mech. Syst. Sig. Process. – volume: 100 start-page: 439 year: 2018 end-page: 453 ident: b0060 article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load publication-title: Mech. Syst. Sig. Process. – volume: 35 start-page: 167 year: 2013 end-page: 175 ident: b0030 article-title: An intelligent fault identification method of rolling bearings based on LSSVM optimized by improved PSO publication-title: Mech. Syst. Sig. Process. – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: b0080 article-title: Variational Mode Decomposition publication-title: IEEE Trans. Signal Process. – volume: 21 start-page: 103 year: 2016 end-page: 111 ident: b0015 article-title: An experimental study on gear diagnosis by using acoustic emission technique publication-title: Int. J. Acoust. Vibr. – volume: 72–73 start-page: 92 year: 2016 end-page: 104 ident: b0050 article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings publication-title: Mech. Syst. Sig. Process. – volume: 2018 start-page: 1 year: 2018 end-page: 13 ident: b0040 article-title: Combining the Multi-Genetic Algorithm and Support Vector Machine for Fault Diagnosis of Bearings publication-title: Shock Vib. – volume: 62 start-page: 3768 year: 2015 end-page: 3774 ident: b0095 article-title: A survey of fault diagnosis and fault-tolerant techniques—Part II: Fault Diagnosis with Knowledge-Based and Hybrid/Active Approaches publication-title: IEEE Trans. Ind. Electron. – volume: 33 start-page: 487 year: 2019 end-page: 494 ident: b0125 article-title: Gear fault feature extraction and diagnosis method under different load excitation based on EMD, PSO-SVM and fractal box dimension publication-title: J. Mech. Sci. Technol. – volume: 117 start-page: 293 year: 2019 end-page: 318 ident: b0070 article-title: A novel deep output kernel learning method for bearing fault structural diagnosis publication-title: Mech. Syst. Sig. Process. – volume: 36 start-page: 2901 year: 2009 end-page: 2909 ident: b0105 article-title: Forecasting volatility based on wavelet support vector machine publication-title: Expert Syst. Appl. – volume: 602–605 start-page: 1803 year: 2014 end-page: 1806 ident: b0045 article-title: A new signal classification method based on EEMD and FCM and its application in bearing fault diagnosis publication-title: Appl. Mech. & Mater. – reference: >. – volume: 27 start-page: 375 year: 2016 end-page: 385 ident: b0035 article-title: Improved shuffled frog leaping algorithm-based BP neural network and its application in bearing early fault diagnosis publication-title: Neural Comput. Appl. – volume: 47 start-page: 576 year: 2014 end-page: 590 ident: b0115 article-title: Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization publication-title: Measurement – volume: 141 start-page: 380 year: 2019 end-page: 395 ident: b0005 article-title: Fast time-frequency manifold learning and its reconstruction for transient feature extraction in rotating machinery fault diagnosis publication-title: Measurement – volume: 22 start-page: 436 year: 2008 end-page: 450 ident: b0145 article-title: Fault diagnosis strategy for incompletely described samples and its application to refrigeration system publication-title: Mech. Syst. Sig. Process. – volume: 38 start-page: 282 year: 2016 end-page: 292 ident: b0165 article-title: Denoising of hydropower unit vibration signal based on variational mode decomposition and approximate entropy publication-title: Trans. Inst. Meas. Control – volume: 46 start-page: 336 year: 2013 end-page: 344 ident: b0010 article-title: Experimental analysis on fault detection for a direct coupled rotor-bearing system publication-title: Measurement – volume: 7 start-page: 67944 year: 2019 end-page: 67959 ident: b0020 article-title: Detection for incipient damages of wind turbine rolling bearing based on VMD-AMCKD method publication-title: IEEE Access – volume: 634–638 start-page: 3958 year: 2013 end-page: 3961 ident: b0120 article-title: Fault diagnosis of metallurgical machinery based on spectral kurtosis and GA-SVM publication-title: Adv. Mater. Res. – volume: 278–280 start-page: 1027 year: 2013 end-page: 1031 ident: b0170 article-title: Rolling bearing fault diagnosis using sample entropy and 1.5 dimension spectrum based on EMD publication-title: Appl. Mech. Mater. – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: b0130 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Adv. Eng. Softw. – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.measurement.2020.108067_b0040 article-title: Combining the Multi-Genetic Algorithm and Support Vector Machine for Fault Diagnosis of Bearings publication-title: Shock Vib. – volume: 112 start-page: 154 year: 2018 ident: 10.1016/j.measurement.2020.108067_b0065 article-title: A data indicator-based deep belief networks to detect multiple faults in axial piston pumps publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.04.038 – volume: 55 start-page: 221 issue: 1 year: 2002 ident: 10.1016/j.measurement.2020.108067_b0140 article-title: Model selection for support vector machine classification publication-title: Neurocomputing – volume: 33 start-page: 487 issue: 2 year: 2019 ident: 10.1016/j.measurement.2020.108067_b0125 article-title: Gear fault feature extraction and diagnosis method under different load excitation based on EMD, PSO-SVM and fractal box dimension publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-019-0101-z – volume: 46 start-page: 243 issue: 1 year: 2013 ident: 10.1016/j.measurement.2020.108067_b0175 article-title: An extensive comparative study of cluster validity indices publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2012.07.021 – volume: 7 start-page: 67944 year: 2019 ident: 10.1016/j.measurement.2020.108067_b0020 article-title: Detection for incipient damages of wind turbine rolling bearing based on VMD-AMCKD method publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918343 – volume: 72–73 start-page: 92 year: 2016 ident: 10.1016/j.measurement.2020.108067_b0050 article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2015.11.014 – volume: 38 start-page: 282 issue: 3 year: 2016 ident: 10.1016/j.measurement.2020.108067_b0165 article-title: Denoising of hydropower unit vibration signal based on variational mode decomposition and approximate entropy publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331215592064 – volume: 278–280 start-page: 1027 year: 2013 ident: 10.1016/j.measurement.2020.108067_b0170 article-title: Rolling bearing fault diagnosis using sample entropy and 1.5 dimension spectrum based on EMD publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.278-280.1027 – volume: 21 start-page: 103 issue: 1 year: 2016 ident: 10.1016/j.measurement.2020.108067_b0015 article-title: An experimental study on gear diagnosis by using acoustic emission technique publication-title: Int. J. Acoust. Vibr. – volume: 8 start-page: 2630 issue: 12 year: 2018 ident: 10.1016/j.measurement.2020.108067_b0075 article-title: Recognition of Acoustic Signals of Commutator Motors publication-title: Appl. Sci. doi: 10.3390/app8122630 – volume: 7 start-page: 33583 year: 2018 ident: 10.1016/j.measurement.2020.108067_b0100 article-title: Fault diagnosis of rotation machinery based on support vector machine optimized by quantum genetic algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2789933 – volume: 22 start-page: 436 issue: 2 year: 2008 ident: 10.1016/j.measurement.2020.108067_b0145 article-title: Fault diagnosis strategy for incompletely described samples and its application to refrigeration system publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2007.08.004 – volume: 634–638 start-page: 3958 year: 2013 ident: 10.1016/j.measurement.2020.108067_b0120 article-title: Fault diagnosis of metallurgical machinery based on spectral kurtosis and GA-SVM publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.634-638.3958 – volume: 27 start-page: 375 issue: 2 year: 2016 ident: 10.1016/j.measurement.2020.108067_b0035 article-title: Improved shuffled frog leaping algorithm-based BP neural network and its application in bearing early fault diagnosis publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1850-y – ident: 10.1016/j.measurement.2020.108067_b0155 – volume: 81 start-page: 329 year: 2018 ident: 10.1016/j.measurement.2020.108067_b0085 article-title: Health condition identification of planetary gearboxes based on variational mode decomposition and generalized composite multi-scale symbolic dynamic entropy publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.06.001 – volume: 384 start-page: 172 year: 2004 ident: 10.1016/j.measurement.2020.108067_b0150 article-title: Sample Entropy publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(04)84011-4 – volume: 62 start-page: 531 issue: 3 year: 2014 ident: 10.1016/j.measurement.2020.108067_b0080 article-title: Variational Mode Decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 47 start-page: 576 issue: 1 year: 2014 ident: 10.1016/j.measurement.2020.108067_b0115 article-title: Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization publication-title: Measurement doi: 10.1016/j.measurement.2013.08.021 – volume: 64–65 start-page: 100 year: 2015 ident: 10.1016/j.measurement.2020.108067_b0160 article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2015.04.021 – volume: 28 start-page: 1215 issue: 10 year: 2017 ident: 10.1016/j.measurement.2020.108067_b0090 article-title: Integrated VMD denoising and KFCM clustering fault identification method of rolling bearings publication-title: China Mech. Eng. – volume: 36 start-page: 2901 issue: 2-part-P2 year: 2009 ident: 10.1016/j.measurement.2020.108067_b0105 article-title: Forecasting volatility based on wavelet support vector machine publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.01.047 – volume: 35 start-page: 167 issue: 1–2 year: 2013 ident: 10.1016/j.measurement.2020.108067_b0030 article-title: An intelligent fault identification method of rolling bearings based on LSSVM optimized by improved PSO publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2012.09.005 – volume: 602–605 start-page: 1803 issue: 1 year: 2014 ident: 10.1016/j.measurement.2020.108067_b0045 article-title: A new signal classification method based on EEMD and FCM and its application in bearing fault diagnosis publication-title: Appl. Mech. & Mater. – volume: 7 start-page: 350 issue: 2 year: 2019 ident: 10.1016/j.measurement.2020.108067_b0110 article-title: Fault diagnosis of wind turbine bearing based on stochastic subspace identification and multi-kernel support vector machine publication-title: J. Mod Power Syst. Clean Energy doi: 10.1007/s40565-018-0402-8 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.measurement.2020.108067_b0055 article-title: A CBA-KELM-Based Recognition Method for Fault Diagnosis of Wind Turbines with Time-Domain Analysis and Multisensor Data Fusion publication-title: Shock Vib. – volume: 117 start-page: 293 year: 2019 ident: 10.1016/j.measurement.2020.108067_b0070 article-title: A novel deep output kernel learning method for bearing fault structural diagnosis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.07.034 – volume: 100 start-page: 439 year: 2018 ident: 10.1016/j.measurement.2020.108067_b0060 article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2017.06.022 – volume: 105 start-page: 30 year: 2017 ident: 10.1016/j.measurement.2020.108067_b0130 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.01.004 – volume: 62 start-page: 3768 issue: 6 year: 2015 ident: 10.1016/j.measurement.2020.108067_b0095 article-title: A survey of fault diagnosis and fault-tolerant techniques—Part II: Fault Diagnosis with Knowledge-Based and Hybrid/Active Approaches publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2417501 – volume: 108 start-page: 58 year: 2018 ident: 10.1016/j.measurement.2020.108067_b0135 article-title: A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2017.11.029 – volume: 141 start-page: 380 year: 2019 ident: 10.1016/j.measurement.2020.108067_b0005 article-title: Fast time-frequency manifold learning and its reconstruction for transient feature extraction in rotating machinery fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2019.04.030 – volume: 31 year: 2020 ident: 10.1016/j.measurement.2020.108067_b0025 article-title: Detection for weak fault in planetary gear trains based on an improved maximum correlation kurtosis deconvolution publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab43ed – volume: 46 start-page: 336 issue: 1 year: 2013 ident: 10.1016/j.measurement.2020.108067_b0010 article-title: Experimental analysis on fault detection for a direct coupled rotor-bearing system publication-title: Measurement doi: 10.1016/j.measurement.2012.07.005 |
SSID | ssj0006396 |
Score | 2.446623 |
Snippet | •GOA-MSVM method can identify both fault type and fault severity of rolling bearings.•GOA-MSVM is proved to be able to identify weak faults of planetary... Identifying fault of rotating machinery under different load conditions with high accuracy is a remaining challenge for vibration signal based fault diagnosis.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108067 |
SubjectTerms | Algorithms Bearings Design optimization Diagnostic systems Fault detection Fault diagnosis Fault identification Gearboxes Grasshopper optimisation algorithm Machinery Mixed kernel-support vector machine Pattern recognition Roller bearings Rotating machinery Sample entropy Strategy Support vector machines Variational mode decomposition |
Title | A GOA-MSVM based strategy to achieve high fault identification accuracy for rotating machinery under different load conditions |
URI | https://dx.doi.org/10.1016/j.measurement.2020.108067 https://www.proquest.com/docview/2455565039 |
Volume | 163 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AKRWK dateStart: 19830101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4hEGh7mDZgGhsgT9praOLYaSLxUiFYGSp7YEy8Wc7ZmTqVFqXppL7wt3OXH5RNe0DiJZIjO4p89n139nd3AF8ytrFtgUGIqAJVJGFgrXWBlJEqMJd5HHPs8OgyGV6rbzf6Zg1OulgYplW2ur_R6bW2bt_02tns3Y3HvauQU40TAEk2e8lK4Ah2lTCt7-h-RfMgBE6ac5Y44N5b8HnF8bpdncORqygbxl1dcv6_GPWPtq4h6OwtvGltRzFofu8drPnpNrx-klFwGzZrRifOd-B-IL5-HwSjq58jwVDlxLxJRLsU1UwwhdL_8YKzFYvCLiaVGLuWOFTLinrgorS4FGTVinLGN_bTX-K25l76cik4-KwUXX2VSkxm1glyrl3DAduF67PTHyfDoC22EGCsMi5JX2SOnB-FaRQ7TDXhfpinCSrUiU0KnfKVnydvKadNK20_sjaUPgpdH3WmMX4P69PZ1H8AQS5cLtH5MOHc-t6n_X5MC5aeKHURpXuQdtNrsM1EzgUxJqajnP02TyRjWDKmkcweyMehd006jucMOu5kaP5aW4Zg4znD9zu5m3aDz41UWpMtHMbZx5d9_RO84hbDYaT3Yb0qF_6A7JwqP6wX8iFsDM4vhpcPgZ3_cg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRX1wqAqlKo-2Ruo12sSxs4nUywoBS2GXA1BxsxzbQYuWXZTNVtpLf3tnEoeXekDqJYckE0Uee74Z-5sZgO8Z-di6MEFojAhEkYSB1toGnEeiMDnP45hyh4ejZHApfl7JqxXYb3NhiFbpbX9j02tr7e90_Wh278bj7nlIpcYRgDi5veglvIJVIdEmd2C1f3wyGN0bZAThpNlqiQMSeAN7DzSv24etOIwWeUO6q7vO_xOmnhnsGoUOP8B77z6yfvOH67Diphuw9qio4Aa8rkmdZv4R_vTZ0Vk_GJ7_GjJCK8vmTS3aJatmjFiU7rdjVLCYFXoxqdjYeu5QrS58wyxKbZYMHVtWzujQfnrNbmv6pSuXjPLPSta2WKnYZKYtw_jaNjSwTbg8PLjYHwS-30JgYpFRV_oisxj_CJNGsTWpROgP8zQxwshEJ4VM6dTPYcCU47rluhdpHXIXhbZnZCZN_Ak609nUfQaGUVzOjXVhQuX1nUt7vRjnLF4Nl0WUbkHaDq8yvhg59cSYqJZ1dqMeaUaRZlSjmS3g96J3TUWOlwj9aHWonkwvhcjxEvHdVu_Kr_G54kJKdIfDONv-v69_g7eDi-GpOj0enezAO3pC6BjJXehU5cJ9Qbenyr_6af0XJ50CLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+GOA-MSVM+based+strategy+to+achieve+high+fault+identification+accuracy+for+rotating+machinery+under+different+load+conditions&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Zhang%2C+Jianqun&rft.au=Zhang%2C+Jun&rft.au=Zhong%2C+Min&rft.au=Zheng%2C+Jinde&rft.date=2020-10-15&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=163&rft_id=info:doi/10.1016%2Fj.measurement.2020.108067&rft.externalDocID=S0263224120306059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |