A GOA-MSVM based strategy to achieve high fault identification accuracy for rotating machinery under different load conditions

•GOA-MSVM method can identify both fault type and fault severity of rolling bearings.•GOA-MSVM is proved to be able to identify weak faults of planetary gearbox.•VMD SE is used as a part of feature vector and compared with VMD AE and EMD SE.•GOA-MSVM is more suitable to identify rotating machinery f...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 163; p. 108067
Main Authors Zhang, Jianqun, Zhang, Jun, Zhong, Min, Zheng, Jinde, Yao, Ligang
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 15.10.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0263-2241
1873-412X
DOI10.1016/j.measurement.2020.108067

Cover

Abstract •GOA-MSVM method can identify both fault type and fault severity of rolling bearings.•GOA-MSVM is proved to be able to identify weak faults of planetary gearbox.•VMD SE is used as a part of feature vector and compared with VMD AE and EMD SE.•GOA-MSVM is more suitable to identify rotating machinery faults than other 5 SVM-based methods. Identifying fault of rotating machinery under different load conditions with high accuracy is a remaining challenge for vibration signal based fault diagnosis. Aiming at this challenge, this paper proposes a comprehensive strategy of combining mixed kernel-support vector machine (MSVM) with grasshopper optimisation algorithm (GOA) to identify typical faults of rotating machinery subject to different load levels. The basic idea of the proposed strategy can be summarized as the following three steps. Firstly, a feature vector that uses multi-domain indexes containing the sample entropy (SE) of variational mode decomposition (VMD) is constructed to characterize the fault information. Secondly, a MSVM model containing six design variables is established and then optimized by GOA. Finally, the optimized MSVM model is adopted to train the fault feature vectors to fulfill fault pattern recognition. In order to verify the identification accuracy of the proposed strategy, two sets of fault signal generated from a rolling bearing test rig and a laboratory planetary gearbox operating under different load conditions are analyzed. The diagnostic results manifest that the proposed strategy can fully identify different level faults of rolling bearing and weak faults of planetary gearbox as well. More than 99% identification accuracy of the proposed strategy is further highlighted by comparisons with other five SVM-based methods. The present method provides a promising solution for high fault identification accuracy in rotating machinery working under different loads.
AbstractList •GOA-MSVM method can identify both fault type and fault severity of rolling bearings.•GOA-MSVM is proved to be able to identify weak faults of planetary gearbox.•VMD SE is used as a part of feature vector and compared with VMD AE and EMD SE.•GOA-MSVM is more suitable to identify rotating machinery faults than other 5 SVM-based methods. Identifying fault of rotating machinery under different load conditions with high accuracy is a remaining challenge for vibration signal based fault diagnosis. Aiming at this challenge, this paper proposes a comprehensive strategy of combining mixed kernel-support vector machine (MSVM) with grasshopper optimisation algorithm (GOA) to identify typical faults of rotating machinery subject to different load levels. The basic idea of the proposed strategy can be summarized as the following three steps. Firstly, a feature vector that uses multi-domain indexes containing the sample entropy (SE) of variational mode decomposition (VMD) is constructed to characterize the fault information. Secondly, a MSVM model containing six design variables is established and then optimized by GOA. Finally, the optimized MSVM model is adopted to train the fault feature vectors to fulfill fault pattern recognition. In order to verify the identification accuracy of the proposed strategy, two sets of fault signal generated from a rolling bearing test rig and a laboratory planetary gearbox operating under different load conditions are analyzed. The diagnostic results manifest that the proposed strategy can fully identify different level faults of rolling bearing and weak faults of planetary gearbox as well. More than 99% identification accuracy of the proposed strategy is further highlighted by comparisons with other five SVM-based methods. The present method provides a promising solution for high fault identification accuracy in rotating machinery working under different loads.
Identifying fault of rotating machinery under different load conditions with high accuracy is a remaining challenge for vibration signal based fault diagnosis. Aiming at this challenge, this paper proposes a comprehensive strategy of combining mixed kernel-support vector machine (MSVM) with grasshopper optimisation algorithm (GOA) to identify typical faults of rotating machinery subject to different load levels. The basic idea of the proposed strategy can be summarized as the following three steps. Firstly, a feature vector that uses multi-domain indexes containing the sample entropy (SE) of variational mode decomposition (VMD) is constructed to characterize the fault information. Secondly, a MSVM model containing six design variables is established and then optimized by GOA. Finally, the optimized MSVM model is adopted to train the fault feature vectors to fulfill fault pattern recognition. In order to verify the identification accuracy of the proposed strategy, two sets of fault signal generated from a rolling bearing test rig and a laboratory planetary gearbox operating under different load conditions are analyzed. The diagnostic results manifest that the proposed strategy can fully identify different level faults of rolling bearing and weak faults of planetary gearbox as well. More than 99% identification accuracy of the proposed strategy is further highlighted by comparisons with other five SVM-based methods. The present method provides a promising solution for high fault identification accuracy in rotating machinery working under different loads.
ArticleNumber 108067
Author Zhong, Min
Zheng, Jinde
Zhang, Jun
Yao, Ligang
Zhang, Jianqun
Author_xml – sequence: 1
  givenname: Jianqun
  surname: Zhang
  fullname: Zhang, Jianqun
  organization: School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
– sequence: 2
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  email: zhang_jun@fzu.edu.cn
  organization: School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
– sequence: 3
  givenname: Min
  surname: Zhong
  fullname: Zhong, Min
  organization: School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
– sequence: 4
  givenname: Jinde
  surname: Zheng
  fullname: Zheng, Jinde
  organization: School of Mechanical Engineering, Anhui University of Technology, Ma’anshan 243032, China
– sequence: 5
  givenname: Ligang
  surname: Yao
  fullname: Yao, Ligang
  organization: School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
BookMark eNqNkE1rGzEURUVJoU7a_6DS9biSRtKMVsWYNikkZNEPuhOy9GTL2FIqaQLe5LdXU3dRssrqweWe--BcoouYIiD0npIlJVR-3C-PYMqU4QixLhlhcz4SObxCCzoOfccp-3WBFoTJvmOM0zfospQ9IUT2Si7Q0wpf36-6u28_7_DGFHC41GwqbE-4JmzsLsAj4F3Y7rA306Hi4Nqj4IM1NaTYGnbKxp6wTxnnVFsat_g4gxHyCU_RQcYueA-5gfiQjMM2RRdmvLxFr705FHj3716hH18-f1_fdLf311_Xq9vO9lzVjvZeOaUktyPtnR0F45xsRmm5FdJIL0bJyQBMqA1VkpmBGkMYUOIGK5Sw_RX6cN59yOn3BKXqfZpybC8140IIKUivWkudWzanUjJ4_ZDD0eSTpkTPuvVe_6dbz7r1WXdjPz1jbah_HTWf4fCihfV5AZqIxwBZFxsgWnAhg63apfCClT8umKds
CitedBy_id crossref_primary_10_1177_14759217241312938
crossref_primary_10_1007_s12206_021_0901_9
crossref_primary_10_1016_j_knosys_2021_107467
crossref_primary_10_1177_14759217211057444
crossref_primary_10_1016_j_measurement_2022_111651
crossref_primary_10_3390_s23104951
crossref_primary_10_1016_j_measurement_2022_111635
crossref_primary_10_1088_1361_6501_ad83ea
crossref_primary_10_1016_j_isatra_2023_03_022
crossref_primary_10_1109_ACCESS_2021_3067597
crossref_primary_10_3390_e24070927
crossref_primary_10_3390_s24134251
crossref_primary_10_1155_2022_8126464
crossref_primary_10_3390_jmse11010027
crossref_primary_10_1016_j_ins_2021_04_082
crossref_primary_10_3390_jmse10020132
crossref_primary_10_3390_machines12120871
crossref_primary_10_1109_JSEN_2022_3227099
crossref_primary_10_1177_14759217231168877
crossref_primary_10_1088_1361_6501_ad1d4a
crossref_primary_10_1007_s40430_023_04451_z
crossref_primary_10_1016_j_measurement_2024_115125
crossref_primary_10_3390_e23070794
crossref_primary_10_1109_TIM_2024_3385848
crossref_primary_10_1177_09544062211032995
crossref_primary_10_2478_pomr_2023_0010
crossref_primary_10_1140_epjqt_s40507_022_00137_y
crossref_primary_10_1016_j_measurement_2021_109116
crossref_primary_10_1109_JSEN_2022_3214286
crossref_primary_10_1109_ACCESS_2024_3382214
crossref_primary_10_1155_2021_8699362
crossref_primary_10_3390_sym13020163
crossref_primary_10_1088_1361_6501_ad2c51
crossref_primary_10_1109_JSEN_2022_3161596
crossref_primary_10_1088_1361_6501_acc3b9
crossref_primary_10_1177_14759217241236884
crossref_primary_10_1177_10775463231217530
crossref_primary_10_1177_09544062241264267
Cites_doi 10.1016/j.ymssp.2018.04.038
10.1007/s12206-019-0101-z
10.1016/j.patcog.2012.07.021
10.1109/ACCESS.2019.2918343
10.1016/j.ymssp.2015.11.014
10.1177/0142331215592064
10.4028/www.scientific.net/AMM.278-280.1027
10.3390/app8122630
10.1109/ACCESS.2018.2789933
10.1016/j.ymssp.2007.08.004
10.4028/www.scientific.net/AMR.634-638.3958
10.1007/s00521-015-1850-y
10.1016/j.isatra.2018.06.001
10.1016/S0076-6879(04)84011-4
10.1109/TSP.2013.2288675
10.1016/j.measurement.2013.08.021
10.1016/j.ymssp.2015.04.021
10.1016/j.eswa.2008.01.047
10.1016/j.ymssp.2012.09.005
10.1007/s40565-018-0402-8
10.1016/j.ymssp.2018.07.034
10.1016/j.ymssp.2017.06.022
10.1016/j.advengsoft.2017.01.004
10.1109/TIE.2015.2417501
10.1016/j.ymssp.2017.11.029
10.1016/j.measurement.2019.04.030
10.1088/1361-6501/ab43ed
10.1016/j.measurement.2012.07.005
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Oct 15, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Oct 15, 2020
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2020.108067
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2020_108067
S0263224120306059
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACLOT
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
WUQ
XPP
~HD
AGCQF
ID FETCH-LOGICAL-c349t-13f9d9964c813dc852440b86c4c56a6f586407e259b1962a71aa02e10d7c595c3
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Wed Aug 13 08:02:12 EDT 2025
Wed Oct 01 05:13:57 EDT 2025
Thu Apr 24 23:04:47 EDT 2025
Fri Feb 23 02:48:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sample entropy
Variational mode decomposition
Mixed kernel-support vector machine
Grasshopper optimisation algorithm
Rotating machinery
Fault identification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-13f9d9964c813dc852440b86c4c56a6f586407e259b1962a71aa02e10d7c595c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2455565039
PQPubID 2047460
ParticipantIDs proquest_journals_2455565039
crossref_primary_10_1016_j_measurement_2020_108067
crossref_citationtrail_10_1016_j_measurement_2020_108067
elsevier_sciencedirect_doi_10_1016_j_measurement_2020_108067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Zhang, Zhong, Zhang (b0025) 2020; 31
Ulus, Erkaya (b0015) 2016; 21
Gan, Wang, Zhu (b0050) 2016; 72–73
Zhu, Xiong, Liang (b0100) 2018; 7
Chen, Tang, Song (b0115) 2014; 47
Zhang, Zhang, Zhong (b0020) 2019; 7
Richman, Lake, Moorman (b0150) 2004; 384
Gold, Sollich (b0140) 2002; 55
Ren, Liang, Gu (b0145) 2008; 22
Han, Zhao, Shi (b0125) 2019; 33
Arbelaitz, Gurrutxaga, Muguerza (b0175) 2013; 46
Wang, Li, Xiang (b0045) 2014; 602–605
Li, Gao, Guo (b0120) 2013; 634–638
Saremi, Mirjalili, Lewis (b0130) 2017; 105
Li, Li, Wei (b0085) 2018; 81
Zhao, Gao, Liu (b0110) 2019; 7
Xu, Chen (b0030) 2013; 35
Smith, Randall (b0160) 2015; 64–65
Mao, Feng, Liang (b0070) 2019; 117
Gao, Cecati, Ding (b0095) 2015; 62
Zhang, Miao, Zhang (b0135) 2018; 108
An, Yang (b0165) 2016; 38
Taplak, Erkaya, Uzmay (b0010) 2013; 46
Zhao, Xu, Jia (b0035) 2016; 27
Jiang, Wang, Zhu (b0090) 2017; 28
Zhang, Li, Peng (b0060) 2018; 100
.
Xiong, Zhang, Liang, Zhu, Li (b0040) 2018; 2018
Tang, Tang, Sheng (b0105) 2009; 36
Dragomiretskiy, Zosso (b0080) 2014; 62
Long, Yang, Guo, Zhao, Wu (b0055) 2019; 2019
K.A. Loparo, Bearing vibration dataset, Case Western Reserve University, 2003.
Ding, Li, Lin (b0005) 2019; 141
Glowacz (b0075) 2018; 8
Zhong, Zhao, Dong (b0170) 2013; 278–280
Wang, Xiang, Zhong (b0065) 2018; 112
Xiong (10.1016/j.measurement.2020.108067_b0040) 2018; 2018
An (10.1016/j.measurement.2020.108067_b0165) 2016; 38
Gan (10.1016/j.measurement.2020.108067_b0050) 2016; 72–73
Ren (10.1016/j.measurement.2020.108067_b0145) 2008; 22
Zhang (10.1016/j.measurement.2020.108067_b0020) 2019; 7
Gao (10.1016/j.measurement.2020.108067_b0095) 2015; 62
Tang (10.1016/j.measurement.2020.108067_b0105) 2009; 36
Zhang (10.1016/j.measurement.2020.108067_b0025) 2020; 31
Arbelaitz (10.1016/j.measurement.2020.108067_b0175) 2013; 46
Zhao (10.1016/j.measurement.2020.108067_b0035) 2016; 27
Ulus (10.1016/j.measurement.2020.108067_b0015) 2016; 21
Zhang (10.1016/j.measurement.2020.108067_b0060) 2018; 100
Glowacz (10.1016/j.measurement.2020.108067_b0075) 2018; 8
Xu (10.1016/j.measurement.2020.108067_b0030) 2013; 35
Long (10.1016/j.measurement.2020.108067_b0055) 2019; 2019
Wang (10.1016/j.measurement.2020.108067_b0065) 2018; 112
10.1016/j.measurement.2020.108067_b0155
Mao (10.1016/j.measurement.2020.108067_b0070) 2019; 117
Richman (10.1016/j.measurement.2020.108067_b0150) 2004; 384
Smith (10.1016/j.measurement.2020.108067_b0160) 2015; 64–65
Li (10.1016/j.measurement.2020.108067_b0085) 2018; 81
Wang (10.1016/j.measurement.2020.108067_b0045) 2014; 602–605
Zhang (10.1016/j.measurement.2020.108067_b0135) 2018; 108
Zhong (10.1016/j.measurement.2020.108067_b0170) 2013; 278–280
Han (10.1016/j.measurement.2020.108067_b0125) 2019; 33
Li (10.1016/j.measurement.2020.108067_b0120) 2013; 634–638
Zhu (10.1016/j.measurement.2020.108067_b0100) 2018; 7
Zhao (10.1016/j.measurement.2020.108067_b0110) 2019; 7
Gold (10.1016/j.measurement.2020.108067_b0140) 2002; 55
Saremi (10.1016/j.measurement.2020.108067_b0130) 2017; 105
Dragomiretskiy (10.1016/j.measurement.2020.108067_b0080) 2014; 62
Jiang (10.1016/j.measurement.2020.108067_b0090) 2017; 28
Ding (10.1016/j.measurement.2020.108067_b0005) 2019; 141
Taplak (10.1016/j.measurement.2020.108067_b0010) 2013; 46
Chen (10.1016/j.measurement.2020.108067_b0115) 2014; 47
References_xml – volume: 31
  year: 2020
  ident: b0025
  article-title: Detection for weak fault in planetary gear trains based on an improved maximum correlation kurtosis deconvolution
  publication-title: Meas. Sci. Technol.
– volume: 112
  start-page: 154
  year: 2018
  end-page: 170
  ident: b0065
  article-title: A data indicator-based deep belief networks to detect multiple faults in axial piston pumps
  publication-title: Mech. Syst. Sig. Process.
– volume: 81
  start-page: 329
  year: 2018
  end-page: 341
  ident: b0085
  article-title: Health condition identification of planetary gearboxes based on variational mode decomposition and generalized composite multi-scale symbolic dynamic entropy
  publication-title: ISA Trans.
– volume: 7
  start-page: 350
  year: 2019
  end-page: 356
  ident: b0110
  article-title: Fault diagnosis of wind turbine bearing based on stochastic subspace identification and multi-kernel support vector machine
  publication-title: J. Mod Power Syst. Clean Energy
– volume: 7
  start-page: 33583
  year: 2018
  end-page: 33588
  ident: b0100
  article-title: Fault diagnosis of rotation machinery based on support vector machine optimized by quantum genetic algorithm
  publication-title: IEEE Access
– volume: 8
  start-page: 2630
  year: 2018
  ident: b0075
  article-title: Recognition of Acoustic Signals of Commutator Motors
  publication-title: Appl. Sci.
– reference: K.A. Loparo, Bearing vibration dataset, Case Western Reserve University, 2003. <
– volume: 46
  start-page: 243
  year: 2013
  end-page: 256
  ident: b0175
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recogn.
– volume: 384
  start-page: 172
  year: 2004
  end-page: 184
  ident: b0150
  article-title: Sample Entropy
  publication-title: Methods Enzymol.
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 14
  ident: b0055
  article-title: A CBA-KELM-Based Recognition Method for Fault Diagnosis of Wind Turbines with Time-Domain Analysis and Multisensor Data Fusion
  publication-title: Shock Vib.
– volume: 64–65
  start-page: 100
  year: 2015
  end-page: 131
  ident: b0160
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study
  publication-title: Mech. Syst. Sig. Process.
– volume: 28
  start-page: 1215
  year: 2017
  end-page: 1220
  ident: b0090
  article-title: Integrated VMD denoising and KFCM clustering fault identification method of rolling bearings
  publication-title: China Mech. Eng.
– volume: 55
  start-page: 221
  year: 2002
  end-page: 249
  ident: b0140
  article-title: Model selection for support vector machine classification
  publication-title: Neurocomputing
– volume: 108
  start-page: 58
  year: 2018
  end-page: 72
  ident: b0135
  article-title: A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery
  publication-title: Mech. Syst. Sig. Process.
– volume: 100
  start-page: 439
  year: 2018
  end-page: 453
  ident: b0060
  article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load
  publication-title: Mech. Syst. Sig. Process.
– volume: 35
  start-page: 167
  year: 2013
  end-page: 175
  ident: b0030
  article-title: An intelligent fault identification method of rolling bearings based on LSSVM optimized by improved PSO
  publication-title: Mech. Syst. Sig. Process.
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b0080
  article-title: Variational Mode Decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 21
  start-page: 103
  year: 2016
  end-page: 111
  ident: b0015
  article-title: An experimental study on gear diagnosis by using acoustic emission technique
  publication-title: Int. J. Acoust. Vibr.
– volume: 72–73
  start-page: 92
  year: 2016
  end-page: 104
  ident: b0050
  article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 13
  ident: b0040
  article-title: Combining the Multi-Genetic Algorithm and Support Vector Machine for Fault Diagnosis of Bearings
  publication-title: Shock Vib.
– volume: 62
  start-page: 3768
  year: 2015
  end-page: 3774
  ident: b0095
  article-title: A survey of fault diagnosis and fault-tolerant techniques—Part II: Fault Diagnosis with Knowledge-Based and Hybrid/Active Approaches
  publication-title: IEEE Trans. Ind. Electron.
– volume: 33
  start-page: 487
  year: 2019
  end-page: 494
  ident: b0125
  article-title: Gear fault feature extraction and diagnosis method under different load excitation based on EMD, PSO-SVM and fractal box dimension
  publication-title: J. Mech. Sci. Technol.
– volume: 117
  start-page: 293
  year: 2019
  end-page: 318
  ident: b0070
  article-title: A novel deep output kernel learning method for bearing fault structural diagnosis
  publication-title: Mech. Syst. Sig. Process.
– volume: 36
  start-page: 2901
  year: 2009
  end-page: 2909
  ident: b0105
  article-title: Forecasting volatility based on wavelet support vector machine
  publication-title: Expert Syst. Appl.
– volume: 602–605
  start-page: 1803
  year: 2014
  end-page: 1806
  ident: b0045
  article-title: A new signal classification method based on EEMD and FCM and its application in bearing fault diagnosis
  publication-title: Appl. Mech. & Mater.
– reference: >.
– volume: 27
  start-page: 375
  year: 2016
  end-page: 385
  ident: b0035
  article-title: Improved shuffled frog leaping algorithm-based BP neural network and its application in bearing early fault diagnosis
  publication-title: Neural Comput. Appl.
– volume: 47
  start-page: 576
  year: 2014
  end-page: 590
  ident: b0115
  article-title: Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization
  publication-title: Measurement
– volume: 141
  start-page: 380
  year: 2019
  end-page: 395
  ident: b0005
  article-title: Fast time-frequency manifold learning and its reconstruction for transient feature extraction in rotating machinery fault diagnosis
  publication-title: Measurement
– volume: 22
  start-page: 436
  year: 2008
  end-page: 450
  ident: b0145
  article-title: Fault diagnosis strategy for incompletely described samples and its application to refrigeration system
  publication-title: Mech. Syst. Sig. Process.
– volume: 38
  start-page: 282
  year: 2016
  end-page: 292
  ident: b0165
  article-title: Denoising of hydropower unit vibration signal based on variational mode decomposition and approximate entropy
  publication-title: Trans. Inst. Meas. Control
– volume: 46
  start-page: 336
  year: 2013
  end-page: 344
  ident: b0010
  article-title: Experimental analysis on fault detection for a direct coupled rotor-bearing system
  publication-title: Measurement
– volume: 7
  start-page: 67944
  year: 2019
  end-page: 67959
  ident: b0020
  article-title: Detection for incipient damages of wind turbine rolling bearing based on VMD-AMCKD method
  publication-title: IEEE Access
– volume: 634–638
  start-page: 3958
  year: 2013
  end-page: 3961
  ident: b0120
  article-title: Fault diagnosis of metallurgical machinery based on spectral kurtosis and GA-SVM
  publication-title: Adv. Mater. Res.
– volume: 278–280
  start-page: 1027
  year: 2013
  end-page: 1031
  ident: b0170
  article-title: Rolling bearing fault diagnosis using sample entropy and 1.5 dimension spectrum based on EMD
  publication-title: Appl. Mech. Mater.
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: b0130
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Adv. Eng. Softw.
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.measurement.2020.108067_b0040
  article-title: Combining the Multi-Genetic Algorithm and Support Vector Machine for Fault Diagnosis of Bearings
  publication-title: Shock Vib.
– volume: 112
  start-page: 154
  year: 2018
  ident: 10.1016/j.measurement.2020.108067_b0065
  article-title: A data indicator-based deep belief networks to detect multiple faults in axial piston pumps
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2018.04.038
– volume: 55
  start-page: 221
  issue: 1
  year: 2002
  ident: 10.1016/j.measurement.2020.108067_b0140
  article-title: Model selection for support vector machine classification
  publication-title: Neurocomputing
– volume: 33
  start-page: 487
  issue: 2
  year: 2019
  ident: 10.1016/j.measurement.2020.108067_b0125
  article-title: Gear fault feature extraction and diagnosis method under different load excitation based on EMD, PSO-SVM and fractal box dimension
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-019-0101-z
– volume: 46
  start-page: 243
  issue: 1
  year: 2013
  ident: 10.1016/j.measurement.2020.108067_b0175
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2012.07.021
– volume: 7
  start-page: 67944
  year: 2019
  ident: 10.1016/j.measurement.2020.108067_b0020
  article-title: Detection for incipient damages of wind turbine rolling bearing based on VMD-AMCKD method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2918343
– volume: 72–73
  start-page: 92
  year: 2016
  ident: 10.1016/j.measurement.2020.108067_b0050
  article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2015.11.014
– volume: 38
  start-page: 282
  issue: 3
  year: 2016
  ident: 10.1016/j.measurement.2020.108067_b0165
  article-title: Denoising of hydropower unit vibration signal based on variational mode decomposition and approximate entropy
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/0142331215592064
– volume: 278–280
  start-page: 1027
  year: 2013
  ident: 10.1016/j.measurement.2020.108067_b0170
  article-title: Rolling bearing fault diagnosis using sample entropy and 1.5 dimension spectrum based on EMD
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.278-280.1027
– volume: 21
  start-page: 103
  issue: 1
  year: 2016
  ident: 10.1016/j.measurement.2020.108067_b0015
  article-title: An experimental study on gear diagnosis by using acoustic emission technique
  publication-title: Int. J. Acoust. Vibr.
– volume: 8
  start-page: 2630
  issue: 12
  year: 2018
  ident: 10.1016/j.measurement.2020.108067_b0075
  article-title: Recognition of Acoustic Signals of Commutator Motors
  publication-title: Appl. Sci.
  doi: 10.3390/app8122630
– volume: 7
  start-page: 33583
  year: 2018
  ident: 10.1016/j.measurement.2020.108067_b0100
  article-title: Fault diagnosis of rotation machinery based on support vector machine optimized by quantum genetic algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2789933
– volume: 22
  start-page: 436
  issue: 2
  year: 2008
  ident: 10.1016/j.measurement.2020.108067_b0145
  article-title: Fault diagnosis strategy for incompletely described samples and its application to refrigeration system
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2007.08.004
– volume: 634–638
  start-page: 3958
  year: 2013
  ident: 10.1016/j.measurement.2020.108067_b0120
  article-title: Fault diagnosis of metallurgical machinery based on spectral kurtosis and GA-SVM
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.634-638.3958
– volume: 27
  start-page: 375
  issue: 2
  year: 2016
  ident: 10.1016/j.measurement.2020.108067_b0035
  article-title: Improved shuffled frog leaping algorithm-based BP neural network and its application in bearing early fault diagnosis
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1850-y
– ident: 10.1016/j.measurement.2020.108067_b0155
– volume: 81
  start-page: 329
  year: 2018
  ident: 10.1016/j.measurement.2020.108067_b0085
  article-title: Health condition identification of planetary gearboxes based on variational mode decomposition and generalized composite multi-scale symbolic dynamic entropy
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.06.001
– volume: 384
  start-page: 172
  year: 2004
  ident: 10.1016/j.measurement.2020.108067_b0150
  article-title: Sample Entropy
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(04)84011-4
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 10.1016/j.measurement.2020.108067_b0080
  article-title: Variational Mode Decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 47
  start-page: 576
  issue: 1
  year: 2014
  ident: 10.1016/j.measurement.2020.108067_b0115
  article-title: Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.08.021
– volume: 64–65
  start-page: 100
  year: 2015
  ident: 10.1016/j.measurement.2020.108067_b0160
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2015.04.021
– volume: 28
  start-page: 1215
  issue: 10
  year: 2017
  ident: 10.1016/j.measurement.2020.108067_b0090
  article-title: Integrated VMD denoising and KFCM clustering fault identification method of rolling bearings
  publication-title: China Mech. Eng.
– volume: 36
  start-page: 2901
  issue: 2-part-P2
  year: 2009
  ident: 10.1016/j.measurement.2020.108067_b0105
  article-title: Forecasting volatility based on wavelet support vector machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.01.047
– volume: 35
  start-page: 167
  issue: 1–2
  year: 2013
  ident: 10.1016/j.measurement.2020.108067_b0030
  article-title: An intelligent fault identification method of rolling bearings based on LSSVM optimized by improved PSO
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2012.09.005
– volume: 602–605
  start-page: 1803
  issue: 1
  year: 2014
  ident: 10.1016/j.measurement.2020.108067_b0045
  article-title: A new signal classification method based on EEMD and FCM and its application in bearing fault diagnosis
  publication-title: Appl. Mech. & Mater.
– volume: 7
  start-page: 350
  issue: 2
  year: 2019
  ident: 10.1016/j.measurement.2020.108067_b0110
  article-title: Fault diagnosis of wind turbine bearing based on stochastic subspace identification and multi-kernel support vector machine
  publication-title: J. Mod Power Syst. Clean Energy
  doi: 10.1007/s40565-018-0402-8
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.measurement.2020.108067_b0055
  article-title: A CBA-KELM-Based Recognition Method for Fault Diagnosis of Wind Turbines with Time-Domain Analysis and Multisensor Data Fusion
  publication-title: Shock Vib.
– volume: 117
  start-page: 293
  year: 2019
  ident: 10.1016/j.measurement.2020.108067_b0070
  article-title: A novel deep output kernel learning method for bearing fault structural diagnosis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2018.07.034
– volume: 100
  start-page: 439
  year: 2018
  ident: 10.1016/j.measurement.2020.108067_b0060
  article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2017.06.022
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.measurement.2020.108067_b0130
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 62
  start-page: 3768
  issue: 6
  year: 2015
  ident: 10.1016/j.measurement.2020.108067_b0095
  article-title: A survey of fault diagnosis and fault-tolerant techniques—Part II: Fault Diagnosis with Knowledge-Based and Hybrid/Active Approaches
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2417501
– volume: 108
  start-page: 58
  year: 2018
  ident: 10.1016/j.measurement.2020.108067_b0135
  article-title: A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2017.11.029
– volume: 141
  start-page: 380
  year: 2019
  ident: 10.1016/j.measurement.2020.108067_b0005
  article-title: Fast time-frequency manifold learning and its reconstruction for transient feature extraction in rotating machinery fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.04.030
– volume: 31
  year: 2020
  ident: 10.1016/j.measurement.2020.108067_b0025
  article-title: Detection for weak fault in planetary gear trains based on an improved maximum correlation kurtosis deconvolution
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab43ed
– volume: 46
  start-page: 336
  issue: 1
  year: 2013
  ident: 10.1016/j.measurement.2020.108067_b0010
  article-title: Experimental analysis on fault detection for a direct coupled rotor-bearing system
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.07.005
SSID ssj0006396
Score 2.446623
Snippet •GOA-MSVM method can identify both fault type and fault severity of rolling bearings.•GOA-MSVM is proved to be able to identify weak faults of planetary...
Identifying fault of rotating machinery under different load conditions with high accuracy is a remaining challenge for vibration signal based fault diagnosis....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108067
SubjectTerms Algorithms
Bearings
Design optimization
Diagnostic systems
Fault detection
Fault diagnosis
Fault identification
Gearboxes
Grasshopper optimisation algorithm
Machinery
Mixed kernel-support vector machine
Pattern recognition
Roller bearings
Rotating machinery
Sample entropy
Strategy
Support vector machines
Variational mode decomposition
Title A GOA-MSVM based strategy to achieve high fault identification accuracy for rotating machinery under different load conditions
URI https://dx.doi.org/10.1016/j.measurement.2020.108067
https://www.proquest.com/docview/2455565039
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AKRWK
  dateStart: 19830101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4hEGh7mDZgGhsgT9praOLYaSLxUiFYGSp7YEy8Wc7ZmTqVFqXppL7wt3OXH5RNe0DiJZIjO4p89n139nd3AF8ytrFtgUGIqAJVJGFgrXWBlJEqMJd5HHPs8OgyGV6rbzf6Zg1OulgYplW2ur_R6bW2bt_02tns3Y3HvauQU40TAEk2e8lK4Ah2lTCt7-h-RfMgBE6ac5Y44N5b8HnF8bpdncORqygbxl1dcv6_GPWPtq4h6OwtvGltRzFofu8drPnpNrx-klFwGzZrRifOd-B-IL5-HwSjq58jwVDlxLxJRLsU1UwwhdL_8YKzFYvCLiaVGLuWOFTLinrgorS4FGTVinLGN_bTX-K25l76cik4-KwUXX2VSkxm1glyrl3DAduF67PTHyfDoC22EGCsMi5JX2SOnB-FaRQ7TDXhfpinCSrUiU0KnfKVnydvKadNK20_sjaUPgpdH3WmMX4P69PZ1H8AQS5cLtH5MOHc-t6n_X5MC5aeKHURpXuQdtNrsM1EzgUxJqajnP02TyRjWDKmkcweyMehd006jucMOu5kaP5aW4Zg4znD9zu5m3aDz41UWpMtHMbZx5d9_RO84hbDYaT3Yb0qF_6A7JwqP6wX8iFsDM4vhpcPgZ3_cg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRX1wqAqlKo-2Ruo12sSxs4nUywoBS2GXA1BxsxzbQYuWXZTNVtpLf3tnEoeXekDqJYckE0Uee74Z-5sZgO8Z-di6MEFojAhEkYSB1toGnEeiMDnP45hyh4ejZHApfl7JqxXYb3NhiFbpbX9j02tr7e90_Wh278bj7nlIpcYRgDi5veglvIJVIdEmd2C1f3wyGN0bZAThpNlqiQMSeAN7DzSv24etOIwWeUO6q7vO_xOmnhnsGoUOP8B77z6yfvOH67Diphuw9qio4Aa8rkmdZv4R_vTZ0Vk_GJ7_GjJCK8vmTS3aJatmjFiU7rdjVLCYFXoxqdjYeu5QrS58wyxKbZYMHVtWzujQfnrNbmv6pSuXjPLPSta2WKnYZKYtw_jaNjSwTbg8PLjYHwS-30JgYpFRV_oisxj_CJNGsTWpROgP8zQxwshEJ4VM6dTPYcCU47rluhdpHXIXhbZnZCZN_Ak609nUfQaGUVzOjXVhQuX1nUt7vRjnLF4Nl0WUbkHaDq8yvhg59cSYqJZ1dqMeaUaRZlSjmS3g96J3TUWOlwj9aHWonkwvhcjxEvHdVu_Kr_G54kJKdIfDONv-v69_g7eDi-GpOj0enezAO3pC6BjJXehU5cJ9Qbenyr_6af0XJ50CLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+GOA-MSVM+based+strategy+to+achieve+high+fault+identification+accuracy+for+rotating+machinery+under+different+load+conditions&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Zhang%2C+Jianqun&rft.au=Zhang%2C+Jun&rft.au=Zhong%2C+Min&rft.au=Zheng%2C+Jinde&rft.date=2020-10-15&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=163&rft_id=info:doi/10.1016%2Fj.measurement.2020.108067&rft.externalDocID=S0263224120306059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon