Personalized optimization strategy for electrode array layout in TTFields of glioblastoma

Tumor treating fields (TTFields) is a novel therapeutic approach for the treatment of glioblastoma. The electric field intensity is a critical factor in the therapeutic efficacy of TTFields, as stronger electric field can more effectively impede the proliferation and survival of tumor cells. In this...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in biomedical engineering Vol. 40; no. 10; pp. e3859 - n/a
Main Authors Wang, Liang, Chen, Chunxiao, Xiao, Yueyue, Gong, Rongfang, Shen, Jun, Lu, Ming
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.10.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN2040-7939
2040-7947
2040-7947
DOI10.1002/cnm.3859

Cover

Abstract Tumor treating fields (TTFields) is a novel therapeutic approach for the treatment of glioblastoma. The electric field intensity is a critical factor in the therapeutic efficacy of TTFields, as stronger electric field can more effectively impede the proliferation and survival of tumor cells. In this study, we aimed to improve the therapeutic effectiveness of TTFields by optimizing the position of electrode arrays, resulting in an increased electric field intensity at the tumor. Three representative head models of real glioblastoma patients were used as the research subjects in this study. The improved subtraction‐average‐based optimization (ISABO) algorithm based on circle chaos mapping, opposition‐based learning and golden sine strategy, was employed to optimize the positions of the four sets of electrode arrays on the scalp. The electrode positions are dynamically adjusted through iterative search to maximize the electric field intensity at the tumor. The experimental results indicate that, in comparison to the conventional layout, the positions of the electrode arrays obtained by the ISABO algorithm can achieve average electric field intensity of 1.7887, 2.0058, and 1.3497 V/cm at the tumor of three glioblastoma patients, which are 23.6%, 29.4%, and 8.5% higher than the conventional layout, respectively. This study demonstrates that optimizing the location of the TTFields electrode array using the ISABO algorithm can effectively enhance the electric field intensity and treatment coverage in the tumor area, offering a more effective approach for personalized TTFields treatment. The ISABO algorithm has been developed to optimize the positioning of electrode arrays, enhancing the efficacy of tumor treating fields (TTFields). By dynamically adjusting the positions of electrodes on the scalp, the algorithm increases the electric field intensity in the tumor region. This optimization approach improves treatment coverage, thereby enhancing therapeutic outcomes for glioblastoma patients and enabling more effective personalized TTFields therapy.
AbstractList Tumor treating fields (TTFields) is a novel therapeutic approach for the treatment of glioblastoma. The electric field intensity is a critical factor in the therapeutic efficacy of TTFields, as stronger electric field can more effectively impede the proliferation and survival of tumor cells. In this study, we aimed to improve the therapeutic effectiveness of TTFields by optimizing the position of electrode arrays, resulting in an increased electric field intensity at the tumor. Three representative head models of real glioblastoma patients were used as the research subjects in this study. The improved subtraction-average-based optimization (ISABO) algorithm based on circle chaos mapping, opposition-based learning and golden sine strategy, was employed to optimize the positions of the four sets of electrode arrays on the scalp. The electrode positions are dynamically adjusted through iterative search to maximize the electric field intensity at the tumor. The experimental results indicate that, in comparison to the conventional layout, the positions of the electrode arrays obtained by the ISABO algorithm can achieve average electric field intensity of 1.7887, 2.0058, and 1.3497 V/cm at the tumor of three glioblastoma patients, which are 23.6%, 29.4%, and 8.5% higher than the conventional layout, respectively. This study demonstrates that optimizing the location of the TTFields electrode array using the ISABO algorithm can effectively enhance the electric field intensity and treatment coverage in the tumor area, offering a more effective approach for personalized TTFields treatment.Tumor treating fields (TTFields) is a novel therapeutic approach for the treatment of glioblastoma. The electric field intensity is a critical factor in the therapeutic efficacy of TTFields, as stronger electric field can more effectively impede the proliferation and survival of tumor cells. In this study, we aimed to improve the therapeutic effectiveness of TTFields by optimizing the position of electrode arrays, resulting in an increased electric field intensity at the tumor. Three representative head models of real glioblastoma patients were used as the research subjects in this study. The improved subtraction-average-based optimization (ISABO) algorithm based on circle chaos mapping, opposition-based learning and golden sine strategy, was employed to optimize the positions of the four sets of electrode arrays on the scalp. The electrode positions are dynamically adjusted through iterative search to maximize the electric field intensity at the tumor. The experimental results indicate that, in comparison to the conventional layout, the positions of the electrode arrays obtained by the ISABO algorithm can achieve average electric field intensity of 1.7887, 2.0058, and 1.3497 V/cm at the tumor of three glioblastoma patients, which are 23.6%, 29.4%, and 8.5% higher than the conventional layout, respectively. This study demonstrates that optimizing the location of the TTFields electrode array using the ISABO algorithm can effectively enhance the electric field intensity and treatment coverage in the tumor area, offering a more effective approach for personalized TTFields treatment.
Tumor treating fields (TTFields) is a novel therapeutic approach for the treatment of glioblastoma. The electric field intensity is a critical factor in the therapeutic efficacy of TTFields, as stronger electric field can more effectively impede the proliferation and survival of tumor cells. In this study, we aimed to improve the therapeutic effectiveness of TTFields by optimizing the position of electrode arrays, resulting in an increased electric field intensity at the tumor. Three representative head models of real glioblastoma patients were used as the research subjects in this study. The improved subtraction‐average‐based optimization (ISABO) algorithm based on circle chaos mapping, opposition‐based learning and golden sine strategy, was employed to optimize the positions of the four sets of electrode arrays on the scalp. The electrode positions are dynamically adjusted through iterative search to maximize the electric field intensity at the tumor. The experimental results indicate that, in comparison to the conventional layout, the positions of the electrode arrays obtained by the ISABO algorithm can achieve average electric field intensity of 1.7887, 2.0058, and 1.3497 V/cm at the tumor of three glioblastoma patients, which are 23.6%, 29.4%, and 8.5% higher than the conventional layout, respectively. This study demonstrates that optimizing the location of the TTFields electrode array using the ISABO algorithm can effectively enhance the electric field intensity and treatment coverage in the tumor area, offering a more effective approach for personalized TTFields treatment. The ISABO algorithm has been developed to optimize the positioning of electrode arrays, enhancing the efficacy of tumor treating fields (TTFields). By dynamically adjusting the positions of electrodes on the scalp, the algorithm increases the electric field intensity in the tumor region. This optimization approach improves treatment coverage, thereby enhancing therapeutic outcomes for glioblastoma patients and enabling more effective personalized TTFields therapy.
Tumor treating fields (TTFields) is a novel therapeutic approach for the treatment of glioblastoma. The electric field intensity is a critical factor in the therapeutic efficacy of TTFields, as stronger electric field can more effectively impede the proliferation and survival of tumor cells. In this study, we aimed to improve the therapeutic effectiveness of TTFields by optimizing the position of electrode arrays, resulting in an increased electric field intensity at the tumor. Three representative head models of real glioblastoma patients were used as the research subjects in this study. The improved subtraction‐average‐based optimization (ISABO) algorithm based on circle chaos mapping, opposition‐based learning and golden sine strategy, was employed to optimize the positions of the four sets of electrode arrays on the scalp. The electrode positions are dynamically adjusted through iterative search to maximize the electric field intensity at the tumor. The experimental results indicate that, in comparison to the conventional layout, the positions of the electrode arrays obtained by the ISABO algorithm can achieve average electric field intensity of 1.7887, 2.0058, and 1.3497 V/cm at the tumor of three glioblastoma patients, which are 23.6%, 29.4%, and 8.5% higher than the conventional layout, respectively. This study demonstrates that optimizing the location of the TTFields electrode array using the ISABO algorithm can effectively enhance the electric field intensity and treatment coverage in the tumor area, offering a more effective approach for personalized TTFields treatment.
Author Shen, Jun
Gong, Rongfang
Xiao, Yueyue
Wang, Liang
Chen, Chunxiao
Lu, Ming
Author_xml – sequence: 1
  givenname: Liang
  surname: Wang
  fullname: Wang, Liang
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 2
  givenname: Chunxiao
  surname: Chen
  fullname: Chen, Chunxiao
  email: ccxbme@nuaa.edu.cn
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 3
  givenname: Yueyue
  surname: Xiao
  fullname: Xiao, Yueyue
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 4
  givenname: Rongfang
  surname: Gong
  fullname: Gong, Rongfang
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 5
  givenname: Jun
  surname: Shen
  fullname: Shen, Jun
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 6
  givenname: Ming
  surname: Lu
  fullname: Lu, Ming
  email: swhfsk@163.com
  organization: GuiQian International General Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39154656$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1r3DAQhkXZ0my2gf6CIuglF28ly5Y1x7LkC5K0h-2hJyPL46AgW1tJJji_Ps5nYWnmMnN43hnmfQ_JYvADEvKFszVnLP9uhn4tVAkfyDJnBcsqKKrF2yzggBzFeMvmygGgEp_IgQBeFrKUS_LnF4boB-3sPbbU75Lt7b1O1g80pqAT3ky084GiQ5OCb5HqEPREnZ78mKgd6HZ7atG1kfqO3jjrG6dj8r3-TD522kU8eukr8vv0ZLs5zy5_nl1sflxmRhQAWa40diUgF9BqQIOyAG5aLJVkJpegsJQcKqbyvKsUlFwVnTGSyaZREptWrMjx895d8H9HjKnubTTonB7Qj7EWDIpCgijVjH7bQ2_9GObnZ4pzXuVMMD5TX1-osemxrXfB9jpM9atp_y6a4GMM2L0hnNWPkdRzJPVjJDO63kONTU_2zuZa9z9B9iy4sw6ndxfXm-urJ_4BeImbew
CitedBy_id crossref_primary_10_1016_j_compeleceng_2025_110223
Cites_doi 10.1002/cnm.3734
10.4316/AECE.2017.02010
10.3390/biomimetics8020149
10.1371/journal.pone.0179214
10.1007/s40042‐022‐00575‐y
10.1016/j.ijrobp.2015.11.042
10.1002/mp.14496
10.1186/s13014‐020‐01521‐7
10.1002/cam4.5037
10.1002/cnm.3506
10.2174/2666255813999201007165454
10.3389/fonc.2020.00411
10.1016/j.lungcan.2021.08.011
10.21236/ADA303903
10.1088/1741‐2552/aaa14b
10.1002/mp.15825
10.1016/j.critrevonc.2021.103535
10.1109/RBME.2017.2765282
10.3390/electronics11223678
10.1007/s11042‐020‐10139‐6
10.3390/cancers14153669
10.3390/app13052811
10.1016/j.eswa.2023.120069
10.1007/s00371‐022‐02622‐y
10.1038/s41531‐022‐00396‐7
10.1038/s41598‐023‐28769‐9
10.1002/cnm.3642
10.3390/cancers11020174
10.1007/s10462‐022‐10343‐w
10.1002/cnm.3635
10.1371/journal.pone.0201957
10.1038/s41420‐022‐01206‐y
10.1016/j.biopha.2021.111810
10.1007/s11831‐022‐09849‐x
10.1136/jnnp‐2020‐325334
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/cnm.3859
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Civil Engineering Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2040-7947
EndPage n/a
ExternalDocumentID 39154656
10_1002_cnm_3859
CNM3859
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12071215
– fundername: National Natural Science Foundation of China
  grantid: 12071215
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
4.4
50Z
51W
51X
52N
52O
52P
52S
52T
52U
52W
52X
53G
66C
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3499-28aef59e139da9ece6491cde5860c2698e561970822f7895184fcc606bb86ebd3
IEDL.DBID DR2
ISSN 2040-7939
2040-7947
IngestDate Wed Oct 01 10:19:55 EDT 2025
Wed Aug 13 11:29:03 EDT 2025
Thu Apr 03 07:05:30 EDT 2025
Wed Oct 01 02:33:40 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Wed Jan 22 17:16:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords TTFields
electric field intensity
improved subtraction‐average‐based optimization
electrode arrays
Language English
License 2024 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3499-28aef59e139da9ece6491cde5860c2698e561970822f7895184fcc606bb86ebd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 39154656
PQID 3111720301
PQPubID 2034586
PageCount 18
ParticipantIDs proquest_miscellaneous_3094469358
proquest_journals_3111720301
pubmed_primary_39154656
crossref_primary_10_1002_cnm_3859
crossref_citationtrail_10_1002_cnm_3859
wiley_primary_10_1002_cnm_3859_CNM3859
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
2024-Oct
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: Chichester
PublicationTitle International journal for numerical methods in biomedical engineering
PublicationTitleAlternate Int J Numer Method Biomed Eng
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2023; 30
2023; 13
2023; 56
2023; 12
2023; 39
2021; 168
2019; 11
2023; 8
2021; 160
2020; 15
2019; 19
2023; 225
1996
2016; 94
2021; 141
2020; 10
2022; 49
2021; 92
2021; 37
2022; 81
2017; 17
2022; 8
2017; 12
2022; 14
2022; 15
2020; 47
2022; 11
2018; 11
2022; 38
2018; 15
1989
2018; 13
2021; 80
e_1_2_9_30_1
Haus HA (e_1_2_9_36_1) 1989
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
Yu LIN (e_1_2_9_12_1) 2019; 19
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 160
  start-page: 99
  year: 2021
  end-page: 110
  article-title: Tumor treating fields (TTFields) downregulate the Fanconi anemia‐BRCA pathway and increase the efficacy of chemotherapy in malignant pleural mesothelioma preclinical models[J]
  publication-title: Lung Cancer
– volume: 19
  start-page: 931
  issue: 12
  year: 2019
  end-page: 935
  article-title: Application of tumor‐treating fields method in the treatment of glioblastoma: from basic to clinical[J]
  publication-title: Chin J Contemp Neurol Neurosurg
– volume: 39
  issue: 7
  year: 2023
  article-title: An adaptive semi‐implicit finite element solver for brain cancer progression modeling[J]
  publication-title: Int J Numer Method Biomed Eng
– volume: 8
  start-page: 144
  issue: 1
  year: 2022
  article-title: Multiple input algorithm‐guided deep brain stimulation‐programming for Parkinson's disease patients[J]. Npj
  publication-title: Parkinson's Disease
– volume: 15
  start-page: 83
  issue: 1
  year: 2020
  article-title: Combined radiotherapy and concurrent tumor treating fields (TTFields) for glioblastoma: Dosimetric consequences on non‐coplanar IMRT as initial results from a phase I trial[J]
  publication-title: Radiat Oncol
– volume: 56
  start-page: 7633
  issue: 8
  year: 2023
  end-page: 7663
  article-title: Greedy opposition‐based learning for chimp optimization algorithm[J]
  publication-title: Artif Intell Rev
– volume: 17
  start-page: 71
  issue: 2
  year: 2017
  end-page: 78
  article-title: Golden sine algorithm: a novel math‐inspired algorithm[J]
  publication-title: Adv Elect Comput Eng
– volume: 15
  issue: 2
  year: 2018
  article-title: Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes[J]
  publication-title: J Neural Eng
– volume: 47
  start-page: 5441
  issue: 11
  year: 2020
  end-page: 5454
  article-title: Optimization of multi‐electrode implant configurations and programming for the delivery of non‐ablative electric fields in intratumoral modulation therapy[J]
  publication-title: Med Phys
– volume: 12
  issue: 6
  year: 2017
  article-title: Impact of tumor position, conductivity distribution and tissue homogeneity on the distribution of tumor treating fields in a human brain: a computer modeling study[J]
  publication-title: PLoS One
– volume: 11
  start-page: 3678
  issue: 22
  year: 2022
  end-page: 3708
  article-title: An improved nonlinear tuna swarm optimization algorithm based on circle chaos map and levy flight operator[J]
  publication-title: Electr
– volume: 39
  start-page: 4737
  issue: 10
  year: 2023
  end-page: 4749
  article-title: A novel DAVnet3+ method for precise segmentation of bladder cancer in MRI[J]
  publication-title: Vis Comput
– year: 1989
– volume: 11
  start-page: 174
  issue: 2
  year: 2019
  end-page: 186
  article-title: Treatment of glioblastoma (GBM) with the addition of tumor‐treating fields (TTF): a review[J]
  publication-title: Cancer
– year: 1996
– volume: 8
  start-page: 149
  issue: 2
  year: 2023
  end-page: 191
  article-title: Subtraction‐average‐based optimizer: a new swarm‐inspired metaheuristic algorithm for solving optimization problems[J]
  publication-title: Biomimetics
– volume: 8
  start-page: 416
  issue: 1
  year: 2022
  end-page: 431
  article-title: The schemes, mechanisms and molecular pathway changes of tumor treating fields (TTFields) alone or in combination with radiotherapy and chemotherapy[J]
  publication-title: Cell Death Discovery
– volume: 92
  start-page: 1103
  issue: 10
  year: 2021
  end-page: 1111
  article-title: Advances in the management of glioblastoma[J]
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 94
  start-page: 1137
  issue: 5
  year: 2016
  end-page: 1143
  article-title: Improving tumor treating fields treatment efficacy in patients with glioblastoma using personalized array layouts[J]. International journal of radiation oncology* biology*
  publication-title: Phys Ther
– volume: 30
  start-page: 1663
  issue: 3
  year: 2023
  end-page: 1725
  article-title: 25 years of particle swarm optimization: flourishing voyage of two decades[J]
  publication-title: Arch Comput Eng
– volume: 80
  start-page: 8091
  year: 2021
  end-page: 8126
  article-title: A review on genetic algorithm: past, present, and future[J]
  publication-title: Multimed Tools Appl
– volume: 15
  start-page: 323
  issue: 3
  year: 2022
  end-page: 333
  article-title: A comprehensive survey on grey wolf optimization[J]
  publication-title: Recent Pat Comput Sci
– volume: 38
  issue: 11
  year: 2022
  article-title: Magnetic resonance imaging image analysis of the therapeutic effect and neuroprotective effect of deep brain stimulation in Parkinson's disease based on a deep learning algorithm[J]
  publication-title: Int J Numer Method Biomed Eng
– volume: 10
  start-page: 411
  year: 2020
  article-title: Concurrent tumor treating fields (TTFields) and radiation therapy for newly diagnosed glioblastoma: a prospective safety and feasibility study[J]
  publication-title: Front Oncol
– volume: 168
  year: 2021
  article-title: Tumor‐treating fields: a fourth modality in cancer treatment, new practice updates[J]
  publication-title: Crit Rev Oncol Hematol
– volume: 13
  start-page: 1
  issue: 8
  year: 2018
  end-page: 16
  article-title: Importance of electrode position for the distribution of tumor treating fields (TTFields) in a human brain. Identification of effective layouts through systematic analysis of array positions for multiple tumor locations[J]
  publication-title: PLoS One
– volume: 12
  start-page: 1461
  issue: 2
  year: 2023
  end-page: 1470
  article-title: Skull defect increases the tumor treating fields strength without detrimental thermogenic effect: a computational simulating research[J]
  publication-title: Cancer Med
– volume: 225
  year: 2023
  article-title: Snow ablation optimizer: a novel metaheuristic technique for numerical optimization and engineering design[J]
  publication-title: Expert Syst Appl
– volume: 14
  start-page: 3669
  issue: 15
  year: 2022
  end-page: 3692
  article-title: Tumor‐treating fields in glioblastomas: past, present, and future[J]
  publication-title: Cancer
– volume: 13
  start-page: 1636
  issue: 1
  year: 2023
  article-title: Modeling of intracranial tumor treating fields for the treatment of complex high‐grade gliomas[J]
  publication-title: Sci Rep
– volume: 11
  start-page: 195
  year: 2018
  end-page: 207
  article-title: A review on tumor‐treating fields (TTFields): clinical implications inferred from computational modeling[J]
  publication-title: IEEE Rev Biomed Eng
– volume: 141
  year: 2021
  article-title: Progress and prospect in tumor treating fields treatment of glioblastoma[J]
  publication-title: Biomed Pharmacother
– volume: 13
  start-page: 2811
  issue: 5
  year: 2023
  end-page: 2829
  article-title: Tool Wear prediction in glass fiber reinforced polymer small‐hole drilling based on an improved circle chaotic mapping Grey wolf algorithm for BP neural network[J]
  publication-title: Appl Sci
– volume: 49
  start-page: 6055
  issue: 9
  year: 2022
  end-page: 6067
  article-title: Planning system for the optimization of electric field delivery using implanted electrodes for brain tumor control[J]
  publication-title: Med Phys
– volume: 37
  issue: 9
  year: 2021
  article-title: Improved particle swarm optimized deep convolutional neural network with super‐pixel clustering for multiple sclerosis lesion segmentation in brain MRI imaging[J]
  publication-title: Int J Numer Method Biomed Eng
– volume: 38
  issue: 9
  year: 2022
  article-title: Convection‐enhanced delivery with controlled catheter movement: a parametric finite element analysis[J]
  publication-title: Int J Numer Method Biomed Eng
– volume: 81
  start-page: 1020
  issue: 11
  year: 2022
  end-page: 1028
  article-title: Feasibility of a method for optimizing the electrode array structure in tumor‐treating fields therapy[J]
  publication-title: J Korean Phys Soc
– ident: e_1_2_9_2_1
  doi: 10.1002/cnm.3734
– ident: e_1_2_9_31_1
  doi: 10.4316/AECE.2017.02010
– ident: e_1_2_9_23_1
  doi: 10.3390/biomimetics8020149
– ident: e_1_2_9_33_1
  doi: 10.1371/journal.pone.0179214
– ident: e_1_2_9_37_1
  doi: 10.1007/s40042‐022‐00575‐y
– ident: e_1_2_9_16_1
  doi: 10.1016/j.ijrobp.2015.11.042
– volume: 19
  start-page: 931
  issue: 12
  year: 2019
  ident: e_1_2_9_12_1
  article-title: Application of tumor‐treating fields method in the treatment of glioblastoma: from basic to clinical[J]
  publication-title: Chin J Contemp Neurol Neurosurg
– ident: e_1_2_9_28_1
  doi: 10.1002/mp.14496
– ident: e_1_2_9_3_1
  doi: 10.1186/s13014‐020‐01521‐7
– ident: e_1_2_9_38_1
  doi: 10.1002/cam4.5037
– ident: e_1_2_9_18_1
  doi: 10.1002/cnm.3506
– ident: e_1_2_9_21_1
  doi: 10.2174/2666255813999201007165454
– ident: e_1_2_9_8_1
  doi: 10.3389/fonc.2020.00411
– ident: e_1_2_9_10_1
  doi: 10.1016/j.lungcan.2021.08.011
– ident: e_1_2_9_34_1
  doi: 10.21236/ADA303903
– ident: e_1_2_9_25_1
  doi: 10.1088/1741‐2552/aaa14b
– ident: e_1_2_9_27_1
  doi: 10.1002/mp.15825
– ident: e_1_2_9_7_1
  doi: 10.1016/j.critrevonc.2021.103535
– ident: e_1_2_9_14_1
  doi: 10.1109/RBME.2017.2765282
– ident: e_1_2_9_35_1
  doi: 10.3390/electronics11223678
– ident: e_1_2_9_20_1
  doi: 10.1007/s11042‐020‐10139‐6
– ident: e_1_2_9_9_1
  doi: 10.3390/cancers14153669
– ident: e_1_2_9_29_1
  doi: 10.3390/app13052811
– ident: e_1_2_9_22_1
  doi: 10.1016/j.eswa.2023.120069
– ident: e_1_2_9_32_1
  doi: 10.1007/s00371‐022‐02622‐y
– ident: e_1_2_9_26_1
  doi: 10.1038/s41531‐022‐00396‐7
– ident: e_1_2_9_17_1
  doi: 10.1038/s41598‐023‐28769‐9
– ident: e_1_2_9_24_1
  doi: 10.1002/cnm.3642
– ident: e_1_2_9_13_1
  doi: 10.3390/cancers11020174
– ident: e_1_2_9_30_1
  doi: 10.1007/s10462‐022‐10343‐w
– ident: e_1_2_9_4_1
  doi: 10.1002/cnm.3635
– ident: e_1_2_9_15_1
  doi: 10.1371/journal.pone.0201957
– volume-title: Electromagnetic Fields and Energy[M]
  year: 1989
  ident: e_1_2_9_36_1
– ident: e_1_2_9_11_1
  doi: 10.1038/s41420‐022‐01206‐y
– ident: e_1_2_9_6_1
  doi: 10.1016/j.biopha.2021.111810
– ident: e_1_2_9_19_1
  doi: 10.1007/s11831‐022‐09849‐x
– ident: e_1_2_9_5_1
  doi: 10.1136/jnnp‐2020‐325334
SSID ssj0000299973
Score 2.3723376
Snippet Tumor treating fields (TTFields) is a novel therapeutic approach for the treatment of glioblastoma. The electric field intensity is a critical factor in the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e3859
SubjectTerms Algorithms
Arrays
Brain Neoplasms - therapy
Cell proliferation
Customization
Effectiveness
electric field intensity
Electric fields
Electric Stimulation Therapy - instrumentation
Electric Stimulation Therapy - methods
electrode arrays
Electrodes
Glioblastoma
Glioblastoma - therapy
Glioma
Humans
improved subtraction‐average‐based optimization
Layouts
Machine learning
Optimization
Precision Medicine - methods
TTFields
Tumor cells
Tumors
Title Personalized optimization strategy for electrode array layout in TTFields of glioblastoma
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.3859
https://www.ncbi.nlm.nih.gov/pubmed/39154656
https://www.proquest.com/docview/3111720301
https://www.proquest.com/docview/3094469358
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2040-7947
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000299973
  issn: 2040-7939
  databaseCode: ABDBF
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 2040-7939
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 2040-7947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000299973
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG6MJy--H-srNTF6YgUKpT0a48aYaIxZE40HUkoxxl0wC3tYf70zUDC-EuMJAgOFttN-05n5SshhxKHTKmiBgIvUwS2NHSVZ5qBtoJTL_EhggvPVNb-4Cy7vw3sbVYm5MA0_RLfghppRj9eo4CopTz5IQ3U-7jMRYu6ex3htTd363fKKC8OsrP3Lfh0zJ5lsqWdd_6R99vNk9A1hfgas9YwzWCKP7bc2gSYv_WmV9PXbFxrH__3MMlm0QJSeNj1nhcyZfJUsWVBKrcqXa-ThpoXrb3C9gBFmbFM3adkw284oAF9q99NJDVWTiZrRkZoV04o-53Q4HGCYXEmLjD6NnosEAHtVjNU6uRucD88uHLsfg6MZGEaOL5TJQmkANKZKGm14ID2dmlBwV_tcCgNgTEbIIZ9FAqCbCDKtwUJKEsFNkrINMp8Xudki1KTMZJGC9yoVwInyTJaxhEsvTUOwYXrkuG2YWFuyctwzYxQ3NMt-DDUWY431yEEn-doQdPwgs9u2bWxVtIwZjPLog3Y9eEV3G5QLPSYqN8UUZMD4DTi6intks-kTXSHIrI9kcz1yVLfsr6XHZ9dXeNz-q-AOWfABOjUhg7tkvppMzR5AnyrZrzv5O7Y8AFo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4x9sBeBgPGusFmJARPKWmcOLZ4mhBVB7RCqEggIUWO40xobTK16UP563eXXxNsSNOeEiWXOPH5zt_Z588AB6HARqtRA76QiUNbGjta8dSh2EBrl3uhpAXOw5EY3Pjnt8HtCpw0a2Eqfoh2wI0so_TXZOA0IH38mzXUZNMul4F6Ba99gWEKIaJrrx1gcdHRqnKG2Suz5hRXDfms6x03Dz_tjv7AmE8ha9nn9NfhvvnaKtXkR3dRxF3z-IzI8T9_ZwPe1liUfa0azztYsdkmrNe4lNVWP9-Cu6sGsT_i9RydzLRevcnmFbntkiH2ZfWWOollejbTSzbRy3xRsIeMjcd9ypSbszxl3ycPeYyYvcinehtu-mfj04FTb8ngGI6xkeNJbdNAWcSNiVbWWOGrnklsIIVrPKGkRTymQqKRT0OJ6E36qTEYJMWxFDZO-HtYzfLMfgBmE27TUON7tfbxRPdsmvJYqF6SBBjGdOCo0Uxkar5y2jZjElVMy16ENRZRjXVgv5X8WXF0_EVmt1FuVFvpPOLo6Gka2u3hK9rbaF80aaIzmy9QBuNfX9BscQd2qkbRFkLk-sQ314HDUrUvlh6djoZ0_Pivgl9gbTAeXkaX30YXn-CNh0iqyiDchdVitrB7iISK-HPZ4n8Bu3EEew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6Dspe1m1tt3TtpkLZnpw6li1L7Km0C91HQhkJZDAwsj5GaWKXxHlI__qd_FWydlD2ZGOfLVunk36nO_0EcBwzbLQSNRAyrj23pbEnBbWe8w2k9GkQc7fAeTBkF-Pw6ySabMCnZi1MxQ_RTrg5yyj7a2fg5kbbkzvWUJXNupRH4gk8DSPBXT7f-Y-gnWDxsaMVZYQ5KLPmBBUN-awfnDQPrw9H9zDmOmQtx5z-NvxqvrZKNbnuLou0q27_InL8z995Ac9rLEpOq8bzEjZM9gq2a1xKaqtf7MDPywax3-L1HDuZWb16kywqctsVQexL6i11tCFyPpcrMpWrfFmQq4yMRn2XKbcguSW_p1d5ipi9yGdyF8b9z6OzC6_eksFTFH0jL-DS2EgYxI1aCqMMC0VPaRNx5quACW4Qj4nY0cjbmCN646FVCp2kNOXMpJruwWaWZ-YNEKOpsbHE90oZ4onsGWtpykRP6wjdmA58bDSTqJqv3G2bMU0qpuUgwRpLXI114KiVvKk4Oh6QOWiUm9RWukgodvQuDO338BXtbbQvFzSRmcmXKIP-b8hctLgDr6tG0RbiyPUd31wHPpSq_Wfpydlw4I77jxV8D1uX5_3k-5fht7fwLEAgVSUQHsBmMV-aQwRCRfqubPB_AF46A_8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+optimization+strategy+for+electrode+array+layout+in+TTFields+of+glioblastoma&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Wang%2C+Liang&rft.au=Chen%2C+Chunxiao&rft.au=Xiao%2C+Yueyue&rft.au=Gong%2C+Rongfang&rft.date=2024-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=40&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcnm.3859&rft.externalDBID=10.1002%252Fcnm.3859&rft.externalDocID=CNM3859
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon