OTUP workflow: target specific optimization of the transmit k‐space trajectory for flexible universal parallel transmit RF pulse design

Purpose To optimize transmit k‐space trajectories for a wide range of excitation targets and to design “universal pTx RF pulses” based on these trajectories. Methods Transmit k‐space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the paramet...

Full description

Saved in:
Bibliographic Details
Published inNMR in biomedicine Vol. 35; no. 8; pp. e4728 - n/a
Main Authors Geldschläger, Ole, Bosch, Dario, Henning, Anke
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.08.2022
Subjects
Online AccessGet full text
ISSN0952-3480
1099-1492
1099-1492
DOI10.1002/nbm.4728

Cover

Abstract Purpose To optimize transmit k‐space trajectories for a wide range of excitation targets and to design “universal pTx RF pulses” based on these trajectories. Methods Transmit k‐space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non‐optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k‐space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T. Results The workflow produced appropriate transmit k‐space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T. Conclusions The proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B0/B1+ map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git). Transmit k‐space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets for pTx RF universal and subject specific tailored pulse design. The workflow produced appropriate transmit k‐space trajectories for each test target. Based on the optimized transmit trajectories it was possible to create target specific universal and tailored pulses with similar performances in simulation and in vivo at 9.4 T.
AbstractList Purpose To optimize transmit k‐space trajectories for a wide range of excitation targets and to design “universal pTx RF pulses” based on these trajectories. Methods Transmit k‐space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non‐optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k‐space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T. Results The workflow produced appropriate transmit k‐space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T. Conclusions The proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B0/B1+ map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git). Transmit k‐space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets for pTx RF universal and subject specific tailored pulse design. The workflow produced appropriate transmit k‐space trajectories for each test target. Based on the optimized transmit trajectories it was possible to create target specific universal and tailored pulses with similar performances in simulation and in vivo at 9.4 T.
To optimize transmit k-space trajectories for a wide range of excitation targets and to design "universal pTx RF pulses" based on these trajectories.PURPOSETo optimize transmit k-space trajectories for a wide range of excitation targets and to design "universal pTx RF pulses" based on these trajectories.Transmit k-space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non-optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k-space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T.METHODSTransmit k-space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non-optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k-space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T.The workflow produced appropriate transmit k-space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T.RESULTSThe workflow produced appropriate transmit k-space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T.The proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B0 /B1+ map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git).CONCLUSIONSThe proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B0 /B1+ map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git).
To optimize transmit k-space trajectories for a wide range of excitation targets and to design "universal pTx RF pulses" based on these trajectories. Transmit k-space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non-optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k-space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T. The workflow produced appropriate transmit k-space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T. The proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B /B map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git).
PurposeTo optimize transmit k‐space trajectories for a wide range of excitation targets and to design “universal pTx RF pulses” based on these trajectories.MethodsTransmit k‐space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non‐optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k‐space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T.ResultsThe workflow produced appropriate transmit k‐space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T.ConclusionsThe proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B0/B1+ map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git).
Author Bosch, Dario
Geldschläger, Ole
Henning, Anke
Author_xml – sequence: 1
  givenname: Ole
  orcidid: 0000-0002-8400-0635
  surname: Geldschläger
  fullname: Geldschläger, Ole
  email: ole.geldschlaeger@tuebingen.mpg.de
  organization: Max Planck Institute for Biological Cybernetics
– sequence: 2
  givenname: Dario
  orcidid: 0000-0002-6537-6370
  surname: Bosch
  fullname: Bosch, Dario
  organization: University Hospital Tübingen
– sequence: 3
  givenname: Anke
  orcidid: 0000-0002-2267-4861
  surname: Henning
  fullname: Henning, Anke
  organization: University of Texas Southwestern Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35297104$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFu1DAQhi1URLcFiSdAlrhwyWI7dmJzg4pCpUIRas-R4x0Xb504tR222xNXbn3GPknTbaFSBafRjL5_ZvT_O2irDz0g9JKSOSWEve3bbs5rJp-gGSVKFZQrtoVmRAlWlFySbbST0pIQInnJnqHtUjBVU8Jn6PfR8ck3vArxzPqweoezjqeQcRrAOOsMDkN2nbvU2YUeB4vzD8A56j51LuOz619XadBmM1qCySGusQ0RWw8XrvWAx979hJi0x4OO2nvwD-rv-3gYfQK8gORO--foqdVT--K-7qKT_Y_He5-Lw6NPB3vvDwtTciWLWmogfEEqLoRsgbQGKlVRreWi5spWUuqKW7BWCyIsbY3RrS21BiipoBUrd9Gbu71DDOcjpNx0LhnwXvcQxtSwipOSMcL5hL5-hC7DGPvpu4mSXIlaMTFRr-6pse1g0QzRdTqumz8mP1w0MaQUwf5FKGlu82um_Jrb_CZ0_gg1Lm_Mn2xz_l-C4k6wch7W_13cfP3wZcPfAP9drlc
CitedBy_id crossref_primary_10_1007_s10334_023_01134_7
Cites_doi 10.1002/mrm.27645
10.1002/mrm.22330
10.1007/s10334‐016‐0561‐4
10.1109/ICNN.1995.488968
10.1016/j.neurobiolaging.2012.10.025
10.1002/mrm.21042
10.1002/mrm.10493
10.1038/s41598‐018‐37381‐1
10.1016/j.jmr.2015.03.013
10.1002/mrm.26148
10.1038/s41598‐019‐48164‐7
10.1002/nbm.3878
10.1002/nbm.3290
10.1145/355984.355989
10.1002/mrm.10171
10.1109/ICEAA.2019.8879180
10.1002/mrm.20695
10.1002/jmri.10334
10.1002/mrm.28643
10.1002/mrm.25677
10.1002/mrm.21485
10.1109/TMI.2011.2178035
10.1109/TMI.2015.2478880
10.1002/mrm.24381
10.1002/mrm.20011
10.1002/mrm.27001
10.1002/mrm.24165
10.1016/j.jmr.2015.10.017
10.1109/TMI.2008.920605
10.1109/TMI.2013.2295465
10.1002/mrm.21513
10.1002/mrm.22927
10.1002/nbm.2844
10.1002/mrm.26315
10.1002/1522-2594(200010)44:4<532::AID-MRM6>3.0.CO;2-Q
10.1002/mrm.28905
10.1002/mrm.1910330510
10.1002/mrm.23118
10.1002/mrm.24263
10.1038/d41586‐018‐07182‐7
10.1002/mrm.10353
10.1016/j.mri.2008.02.003
10.1109/TMI.2014.2362681
10.1016/j.neuroimage.2017.07.007
10.1371/journal.pone.0183562
10.1002/mrm.28667
10.1002/mrm.22512
10.1002/mrm.20978
10.1002/jmri.24850
10.1002/mrm.1910230204
10.1088/0031‐9155/55/2/N01
10.1002/mrm.26021
10.1016/0022‐2364(89)90265‐5
10.1137/S1052623497325107
10.1007/s10334‐017‐0620‐5
10.1002/(SICI)1522-2594(199901)41:1<103::AID-MRM15>3.0.CO;2-M
10.1002/mrm.22978
10.1002/mrm.21262
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd.
2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/nbm.4728
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
EISSN 1099-1492
EndPage n/a
ExternalDocumentID 35297104
10_1002_nbm_4728
NBM4728
Genre article
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG ‐ German Research Foundation) under the Reinhart Kosseleck Programme (DFG SCHE 658/12)
– fundername: European Research Council / SYNAPLAST MR: 679927
– fundername: Cancer Prevention and Research Institute of Texas (CPRIT): RR180056
– fundername: Deutsche Forschungsgemeinschaft (DFG - German Research Foundation) under the Reinhart Kosseleck Programme (DFG SCHE 658/12)
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
NPM
7QO
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3498-78ae04d064558be0bce6961aa8d749f688a64feffa505f1bccabf3aaee3151623
IEDL.DBID DR2
ISSN 0952-3480
1099-1492
IngestDate Fri Jul 11 07:25:23 EDT 2025
Sun Jul 13 05:12:47 EDT 2025
Mon Jul 21 05:34:06 EDT 2025
Thu Apr 24 23:08:54 EDT 2025
Wed Oct 01 03:28:18 EDT 2025
Wed Jan 22 16:24:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords high-field MRI
local excitation
parallel transmit
pTx
9.4 T
gradient optimization
universal pulses
Language English
License Attribution
2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3498-78ae04d064558be0bce6961aa8d749f688a64feffa505f1bccabf3aaee3151623
Notes Funding information
European Research Council / SYNAPLAST MR: 679927; Deutsche Forschungsgemeinschaft (DFG ‐ German Research Foundation) under the Reinhart Kosseleck Programme (DFG SCHE 658/12); Cancer Prevention and Research Institute of Texas (CPRIT): RR180056
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2267-4861
0000-0002-8400-0635
0000-0002-6537-6370
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.4728
PMID 35297104
PQID 2684957925
PQPubID 2029982
PageCount 16
ParticipantIDs proquest_miscellaneous_2640322044
proquest_journals_2684957925
pubmed_primary_35297104
crossref_primary_10_1002_nbm_4728
crossref_citationtrail_10_1002_nbm_4728
wiley_primary_10_1002_nbm_4728_NBM4728
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle NMR in biomedicine
PublicationTitleAlternate NMR Biomed
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 261
2015; 34
2017; 80
2018; 168
2015; 75
2018; 563
1989; 81
2000; 44
1995; 33
2015; 76
2003; 18
1999; 41
2003; 50
2010; 63
2016; 35
2016; 77
2002; 49
2009; 55
2017; 31
2002; 47
2017; 30
2010; 64
2015; 255
2015; 42
2008; 27
2008; 26
2011; 66
1982; 8
2011; 67
2012; 26
2012; 69
2012; 68
2021; 85
2019; 9
2021; 86
2006; 56
2010
2008; 59
1995
2007; 58
2012; 31
1999; 9
2004; 51
2019; 81
2015; 29
2013; 34
2017; 12
2005; 54
2016; 29
1992; 23
2014; 33
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Pedersen ME (e_1_2_9_37_1) 2010
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 56
  start-page: 1163
  issue: 5
  year: 2006
  end-page: 1171
  article-title: Parallel RF transmission with eight channels at 3 Tesla
  publication-title: Magn Reson Med
– volume: 563
  start-page: 24
  issue: 7729
  year: 2018
  end-page: 26
  article-title: The world's strongest MRI machines are pushing human imaging to new limits
  publication-title: Nature
– volume: 168
  start-page: 7
  year: 2018
  end-page: 32
  article-title: Imaging at ultrahigh magnetic fields: history, challenges, and solutions
  publication-title: Neuroimage
– volume: 31
  start-page: 997
  issue: 5
  year: 2012
  end-page: 1007
  article-title: Advanced three‐dimensional tailored RF pulse design in volume selective parallel excitation
  publication-title: IEEE Trans Med Imaging
– volume: 8
  start-page: 43
  issue: 1
  year: 1982
  end-page: 71
  article-title: LSQR: an algorithm for sparse linear equations and sparse least squares
  publication-title: ACM Trans Math Softw
– volume: 55
  start-page: N23
  issue: 2
  year: 2009
  end-page: N38
  article-title: The Virtual Family—development of surface‐based anatomical models of two adults and two children for dosimetric simulations
  publication-title: Phys Med Biol
– volume: 68
  start-page: 1553
  issue: 5
  year: 2012
  end-page: 1562
  article-title: Small‐tip‐angle spokes pulse design using interleaved greedy and local optimization methods
  publication-title: Magn Reson Med
– volume: 41
  start-page: 103
  issue: 1
  year: 1999
  end-page: 112
  article-title: Concomitant gradient field effects in spiral scans
  publication-title: Magn Reson Med
– volume: 77
  start-page: 635
  issue: 2
  year: 2016
  end-page: 643
  article-title: Universal pulses: a new concept for calibration‐free parallel transmission
  publication-title: Magn Reson Med
– volume: 54
  start-page: 1261
  issue: 5
  year: 2005
  end-page: 1267
  article-title: Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 27
  start-page: 1213
  issue: 9
  year: 2008
  end-page: 1229
  article-title: Sparsity‐enforced slice‐selective MRI RF excitation pulse design
  publication-title: IEEE Trans Med Imaging
– volume: 59
  start-page: 547
  issue: 3
  year: 2008
  end-page: 560
  article-title: Designing multichannel, multidimensional, arbitrary flip angle RF pulses using an optimal control approach
  publication-title: Magn Reson Med
– volume: 12
  issue: 8
  year: 2017
  article-title: Homogeneous non‐selective and slice‐selective parallel‐transmit excitations at 7 Tesla with universal pulses: a validation study on two commercial RF coils
  publication-title: PLoS ONE
– volume: 9
  issue: 1
  year: 2019
  article-title: The cortico‐rubral and cerebello‐rubral pathways are topographically organized within the human red nucleus
  publication-title: Sci Rep
– volume: 42
  start-page: 887
  issue: 4
  year: 2015
  end-page: 901
  article-title: Motion artifacts in MRI: a complex problem with many partial solutions
  publication-title: J Magn Reson Med
– volume: 58
  start-page: 598
  issue: 3
  year: 2007
  end-page: 604
  article-title: Joint design of trajectory and RF pulses for parallel excitation
  publication-title: Magn Reson Med
– volume: 80
  start-page: 53
  issue: 1
  year: 2017
  end-page: 65
  article-title: Design of universal parallel‐transmit refocusing k ‐point pulses and application to 3D T ‐weighted imaging at 7T
  publication-title: Magn Reson Med
– volume: 30
  start-page: 473
  issue: 5
  year: 2017
  end-page: 488
  article-title: Correction of parallel transmission using concurrent RF and gradient field monitoring
  publication-title: Magn Reson Mater Phys Biol Med
– volume: 26
  start-page: 1122
  issue: 8
  year: 2008
  end-page: 1132
  article-title: Reducing SAR in parallel excitation using variable‐density spirals: a simulation‐based study
  publication-title: Magn Reson Imaging
– volume: 35
  start-page: 468
  issue: 2
  year: 2016
  end-page: 479
  article-title: Joint design of excitation ‐space trajectory and RF pulse for small‐tip 3D tailored excitation in MRI
  publication-title: IEEE Trans Med Imaging
– volume: 59
  start-page: 908
  issue: 4
  year: 2008
  end-page: 915
  article-title: Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels
  publication-title: Magn Reson Med
– volume: 33
  start-page: 739
  issue: 3
  year: 2014
  end-page: 748
  article-title: On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints
  publication-title: IEEE Trans Med Imaging
– volume: 81
  start-page: 43
  issue: 1
  year: 1989
  end-page: 56
  article-title: A ‐space analysis of small‐tip‐angle excitation
  publication-title: J Magn Reson
– volume: 75
  start-page: 801
  issue: 2
  year: 2015
  end-page: 809
  article-title: Signal‐to‐noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays
  publication-title: Magn Reson Med
– volume: 34
  start-page: 1497
  issue: 5
  year: 2013
  end-page: 1503
  article-title: Higher iron in the red nucleus marks Parkinson's dyskinesia
  publication-title: Neurobiol Aging
– volume: 67
  start-page: 1303
  issue: 5
  year: 2011
  end-page: 1315
  article-title: Tailored excitation in 3D with spiral nonselective (SPINS) RF pulses
  publication-title: Magn Reson Med
– volume: 31
  issue: 2
  year: 2017
  article-title: Combination of surface and ‘vertical’ loop elements improves receive performance of a human head transceiver array at 9.4 T
  publication-title: NMR Biomed
– volume: 63
  start-page: 1280
  issue: 5
  year: 2010
  end-page: 1291
  article-title: Optimal design of multiple‐channel RF pulses under strict power and SAR constraints
  publication-title: Magn Reson Med
– volume: 49
  start-page: 144
  issue: 1
  year: 2002
  end-page: 150
  article-title: Transmit SENSE
  publication-title: Magn Reson Med
– volume: 64
  start-page: 1432
  issue: 5
  year: 2010
  end-page: 1439
  article-title: Minimum envelope roughness pulse design for reduced amplifier distortion in parallel excitation
  publication-title: Magn Reson Med
– volume: 66
  start-page: 1468
  issue: 5
  year: 2011
  end-page: 1476
  article-title: Local specific absorption rate control for parallel transmission by virtual observation points
  publication-title: Magn Reson Med
– volume: 9
  issue: 1
  year: 2019
  article-title: Involvement of the red nucleus in the compensation of Parkinsonism may explain why primates can develop stable Parkinson's disease
  publication-title: Sci Rep
– volume: 18
  start-page: 136
  issue: 1
  year: 2003
  end-page: 141
  article-title: Spatial excitation using variable‐density spiral trajectories
  publication-title: J Magn Reson Imaging
– volume: 69
  start-page: 583
  issue: 2
  year: 2012
  end-page: 593
  article-title: Gradient system characterization by impulse response measurements with a dynamic field camera
  publication-title: Magn Reson Med
– volume: 50
  start-page: 214
  issue: 1
  year: 2003
  end-page: 219
  article-title: Simple analytic variable density spiral design
  publication-title: Magn Reson Med
– volume: 255
  start-page: 59
  year: 2015
  end-page: 67
  article-title: Two‐spoke placement optimization under explicit specific absorption rate and power constraints in parallel transmission at ultra‐high field
  publication-title: J Magn Reson
– volume: 23
  start-page: 224
  issue: 2
  year: 1992
  end-page: 238
  article-title: Effects of RF amplifier distortion on selective excitation and their correction by prewarping
  publication-title: Magn Reson Med
– volume: 77
  start-page: 2250
  issue: 6
  year: 2016
  end-page: 2262
  article-title: Gradient pre‐emphasis to counteract first‐order concomitant fields on asymmetric MRI gradient systems
  publication-title: Magn Reson Med
– volume: 261
  start-page: 181
  year: 2015
  end-page: 189
  article-title: Joint design of k ‐points trajectories and RF pulses under explicit SAR and power constraints in the large flip angle regime
  publication-title: J Magn Reson
– volume: 47
  start-page: 1202
  issue: 6
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 51
  start-page: 775
  issue: 4
  year: 2004
  end-page: 784
  article-title: Parallel excitation with an array of transmit coils
  publication-title: Magn Reson Med
– volume: 76
  start-page: 1170
  issue: 4
  year: 2015
  end-page: 1182
  article-title: Fast three‐dimensional inner volume excitations using parallel transmission and optimized ‐space trajectories
  publication-title: Magn Reson Med
– volume: 85
  start-page: 3140
  issue: 6
  year: 2021
  end-page: 3153
  article-title: Fast online‐customized (FOCUS) parallel transmission pulses: a combination of universal pulses and individual optimization
  publication-title: Magn Reson Med
– volume: 34
  start-page: 564
  issue: 2
  year: 2015
  end-page: 577
  article-title: Fast and robust design of time‐optimal ‐space trajectories in MRI
  publication-title: IEEE Trans Med Imaging
– volume: 33
  start-page: 656
  issue: 5
  year: 1995
  end-page: 662
  article-title: Fast three dimensional magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 81
  start-page: 3202
  issue: 5
  year: 2019
  end-page: 3208
  article-title: Robust nonadiabatic T preparation using universal parallel‐transmit k ‐point pulses for 3D FLAIR imaging at 7 T
  publication-title: Magn Reson Med
– year: 2010
– volume: 67
  start-page: 72
  issue: 1
  year: 2011
  end-page: 80
  article-title: ‐points: short three‐dimensional tailored RF pulses for flip‐angle homogenization over an extended volume
  publication-title: Magn Reson Med
– volume: 29
  start-page: 1131
  issue: 9
  year: 2015
  end-page: 1144
  article-title: Safety testing and operational procedures for self‐developed radiofrequency coils
  publication-title: NMR Biomed
– volume: 29
  start-page: 617
  issue: 3
  year: 2016
  end-page: 639
  article-title: Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale
  publication-title: Magn Reson Mater Phys Biol Med
– volume: 86
  start-page: 2589
  issue: 5
  year: 2021
  end-page: 2603
  article-title: Local excitation universal parallel transmit pulses at 9.4T
  publication-title: Magn Reson Med
– volume: 85
  start-page: 3308
  issue: 6
  year: 2021
  end-page: 3317
  article-title: DeepControl: 2DRF pulses facilitating B inhomogeneity and B off‐resonance compensation in vivo at 7 T
  publication-title: Magn Reson Med
– volume: 9
  start-page: 877
  issue: 4
  year: 1999
  end-page: 900
  article-title: An interior point algorithm for large‐scale nonlinear programming
  publication-title: SIAM J Optim
– year: 1995
– volume: 69
  start-page: 1367
  issue: 5
  year: 2012
  end-page: 1378
  article-title: Inner‐volume imaging in vivo using three‐dimensional parallel spatially selective excitation
  publication-title: Magn Reson Med
– volume: 56
  start-page: 620
  issue: 3
  year: 2006
  end-page: 629
  article-title: Spatial domain method for the design of RF pulses in multicoil parallel excitation
  publication-title: Magn Reson Med
– volume: 44
  start-page: 532
  issue: 4
  year: 2000
  end-page: 536
  article-title: Gradient‐induced acoustic and magnetic field fluctuations in a 4T whole‐body MR imager
  publication-title: Magn Reson Med
– volume: 26
  start-page: 265
  issue: 3
  year: 2012
  end-page: 275
  article-title: A theoretical and experimental comparison of different techniques for mapping at very high fields
  publication-title: NMR Biomed
– ident: e_1_2_9_28_1
  doi: 10.1002/mrm.27645
– ident: e_1_2_9_52_1
  doi: 10.1002/mrm.22330
– ident: e_1_2_9_3_1
  doi: 10.1007/s10334‐016‐0561‐4
– ident: e_1_2_9_21_1
  doi: 10.1109/ICNN.1995.488968
– ident: e_1_2_9_31_1
  doi: 10.1016/j.neurobiolaging.2012.10.025
– ident: e_1_2_9_46_1
  doi: 10.1002/mrm.21042
– ident: e_1_2_9_20_1
  doi: 10.1002/mrm.10493
– ident: e_1_2_9_32_1
  doi: 10.1038/s41598‐018‐37381‐1
– ident: e_1_2_9_47_1
  doi: 10.1016/j.jmr.2015.03.013
– ident: e_1_2_9_24_1
  doi: 10.1002/mrm.26148
– ident: e_1_2_9_30_1
  doi: 10.1038/s41598‐019‐48164‐7
– ident: e_1_2_9_39_1
  doi: 10.1002/nbm.3878
– ident: e_1_2_9_43_1
  doi: 10.1002/nbm.3290
– ident: e_1_2_9_35_1
  doi: 10.1145/355984.355989
– ident: e_1_2_9_41_1
  doi: 10.1002/mrm.10171
– ident: e_1_2_9_26_1
  doi: 10.1109/ICEAA.2019.8879180
– ident: e_1_2_9_56_1
  doi: 10.1002/mrm.20695
– ident: e_1_2_9_22_1
  doi: 10.1002/jmri.10334
– ident: e_1_2_9_19_1
  doi: 10.1002/mrm.28643
– ident: e_1_2_9_5_1
  doi: 10.1002/mrm.25677
– ident: e_1_2_9_45_1
  doi: 10.1002/mrm.21485
– ident: e_1_2_9_15_1
  doi: 10.1109/TMI.2011.2178035
– ident: e_1_2_9_18_1
  doi: 10.1109/TMI.2015.2478880
– ident: e_1_2_9_16_1
  doi: 10.1002/mrm.24381
– ident: e_1_2_9_7_1
  doi: 10.1002/mrm.20011
– ident: e_1_2_9_27_1
  doi: 10.1002/mrm.27001
– ident: e_1_2_9_11_1
  doi: 10.1002/mrm.24165
– ident: e_1_2_9_9_1
  doi: 10.1016/j.jmr.2015.10.017
– ident: e_1_2_9_10_1
  doi: 10.1109/TMI.2008.920605
– ident: e_1_2_9_38_1
  doi: 10.1109/TMI.2013.2295465
– ident: e_1_2_9_36_1
  doi: 10.1002/mrm.21513
– ident: e_1_2_9_42_1
  doi: 10.1002/mrm.22927
– ident: e_1_2_9_60_1
  doi: 10.1002/nbm.2844
– ident: e_1_2_9_54_1
  doi: 10.1002/mrm.26315
– ident: e_1_2_9_55_1
  doi: 10.1002/1522-2594(200010)44:4<532::AID-MRM6>3.0.CO;2-Q
– ident: e_1_2_9_58_1
– ident: e_1_2_9_29_1
  doi: 10.1002/mrm.28905
– ident: e_1_2_9_40_1
– ident: e_1_2_9_13_1
  doi: 10.1002/mrm.1910330510
– ident: e_1_2_9_14_1
  doi: 10.1002/mrm.23118
– ident: e_1_2_9_50_1
  doi: 10.1002/mrm.24263
– ident: e_1_2_9_4_1
  doi: 10.1038/d41586‐018‐07182‐7
– ident: e_1_2_9_6_1
  doi: 10.1002/mrm.10353
– ident: e_1_2_9_23_1
  doi: 10.1016/j.mri.2008.02.003
– ident: e_1_2_9_48_1
  doi: 10.1109/TMI.2014.2362681
– ident: e_1_2_9_2_1
  doi: 10.1016/j.neuroimage.2017.07.007
– volume-title: Good Parameters for Particle Swarm Optimization
  year: 2010
  ident: e_1_2_9_37_1
– ident: e_1_2_9_25_1
  doi: 10.1371/journal.pone.0183562
– ident: e_1_2_9_62_1
  doi: 10.1002/mrm.28667
– ident: e_1_2_9_59_1
  doi: 10.1002/mrm.22512
– ident: e_1_2_9_33_1
  doi: 10.1002/mrm.20978
– ident: e_1_2_9_61_1
  doi: 10.1002/jmri.24850
– ident: e_1_2_9_57_1
  doi: 10.1002/mrm.1910230204
– ident: e_1_2_9_44_1
  doi: 10.1088/0031‐9155/55/2/N01
– ident: e_1_2_9_17_1
  doi: 10.1002/mrm.26021
– ident: e_1_2_9_34_1
  doi: 10.1016/0022‐2364(89)90265‐5
– ident: e_1_2_9_49_1
  doi: 10.1137/S1052623497325107
– ident: e_1_2_9_51_1
  doi: 10.1007/s10334‐017‐0620‐5
– ident: e_1_2_9_53_1
  doi: 10.1002/(SICI)1522-2594(199901)41:1<103::AID-MRM15>3.0.CO;2-M
– ident: e_1_2_9_8_1
  doi: 10.1002/mrm.22978
– ident: e_1_2_9_12_1
  doi: 10.1002/mrm.21262
SSID ssj0008432
Score 2.3725755
Snippet Purpose To optimize transmit k‐space trajectories for a wide range of excitation targets and to design “universal pTx RF pulses” based on these trajectories....
To optimize transmit k-space trajectories for a wide range of excitation targets and to design "universal pTx RF pulses" based on these trajectories. Transmit...
PurposeTo optimize transmit k‐space trajectories for a wide range of excitation targets and to design “universal pTx RF pulses” based on these...
To optimize transmit k-space trajectories for a wide range of excitation targets and to design "universal pTx RF pulses" based on these trajectories.PURPOSETo...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e4728
SubjectTerms 9.4 T
Biological products
Design
Design optimization
Excitation
gradient optimization
high‐field MRI
In vivo methods and tests
local excitation
Optimization
parallel transmit
pTx
Similarity
Spirals
Trajectory optimization
universal pulses
Workflow
Title OTUP workflow: target specific optimization of the transmit k‐space trajectory for flexible universal parallel transmit RF pulse design
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.4728
https://www.ncbi.nlm.nih.gov/pubmed/35297104
https://www.proquest.com/docview/2684957925
https://www.proquest.com/docview/2640322044
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0952-3480
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1492
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008432
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7aQB-XPraPbJIGFUp78saWZa-cWxu6hMKmIWQh0IORZAnSeNcha1PaU6-95Tf2l3RGtjdNH1B6MliSLUuj0Yfnm08AL2wROaEcD1Qsk0DYtAhkZk1AuWlajVOlI8p3nh6k-zPx7iQ56ViVlAvT6kOsfrjRyvD-mha40sudn0RD9XwkxpzyfKM48RHaoyvlKCn82WQIIHgQCxn2urMh3-kbXt-JfoOX19Gq324m9-FD39GWZXI2amo9Ml9-0XD8vy95APc6FMpet2bzEG7YxQDu7PWHvw3g9rSLuQ_glieJmuUj-Pb-eHbIiMnlyurTLmtZ5IySNYlwxCp0P_Mur5NVjiG2ZDXthfPTmp19_3qJ3sv4Wx99rOAzQ8TMHEly6tKypuWIYL9Ij7wsbXnV-mjCzhvcxVnhGSePYTZ5e7y3H3RHOQQmFqRYKpUNRUHieInUNtTGplkaKSWLschcKqVKhbPOKURkLtJoV9rFSlkbIyRBiPYE1hbVwq4Dc3FmQhdrmQguChFpEglTpkDPnboiC4fwqp_W3HQ653TcRpm3Cs08x_HOabyH8HxV87zV9vhDna3eMvJudS9zUsih8CZP8BGrYpwhCraoha0aqiNCdJahEEN42lrU6iUIejNEdljy0tvFX9-eH7yZ0nXjXytuwl1O-RmeobgFa_VFY58haqr1Ntzk4nDbr5IfoKQYJg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIigXBMtroYCREJxCHcfxOnCCitUC3aVCu1JvkZ3YEm12U9FdIW5cufEb-SXMOA-oAIlTpHgcWxl75pM98w3AY1fGXhovIpPoNJJOlZHOXBFRbpo1I2VsTPnO05maLOTbo_RoC150uTANP0R_4EY7I9hr2uB0IL33G2uoXT6TI6EvwEWpBKclLeRhb4a1DNXJEEKIKJGad8yzXOx1Pc_7oj8A5nm8GhzO-BpcbZEie9mo9jpsudUAdva7Am0DuDxt78UHcCkEchZnN-Db-_nikFG0la_qz89ZE-nNKKGSgoJYjSZi2eZestozxH9sTf5q-XHNTn58_Y4WpgivjsN5_heGqJZ5os20lWObJo4D50Wc4VXlql-9P4zZ6QY9LStDVMhNWIxfz_cnUVtuISoSSayi2jguSyKwS7V13BZOZSo2RpcjmXmltVHSO-8NoiYfW9S99YkxziUIGxBG3YLtVb1yd4D5JCu4T6xOpZCljC0ReZmiROuqfJnxITztfnxetFzkVBKjyhsWZZGjinJS0RAe9ZKnDf_GX2R2O93l7Q48y4nFhq4gRYqf6JtRQ3QhYlau3pCM5GjQuJRDuN3ovB8EgWmG6AtbnoRF8M_R89mrKT3v_q_gQ9iZzKcH-cGb2bt7cEVQPkWIKNyF7fWnjbuPKGdtH4TV_BNNSvrX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEaWXAgu0WwoYCcEp2zycrMMNCqvy2KWqulKlHiLbsSXa7GZFEyE4ceXGb-SXMOMkW8pDQpwixXbs2OPxl_ibzwCPTB5YLm3oyUjEHjdJ7onUaI9i05QcJlIFFO88niR7U_76KD5qWZUUC9PoQyx_uNHMcP6aJvgitzs_iYaq2YAPQ3EZrvAEP64IEB2cS0cJ7g4nQwQRehEXfic864c7XcmLS9Fv-PIiXHXrzeg6HHctbWgmp4O6UgP9-RcRx_97lRuw3sJQ9qyxm5twycx7cG23O_2tB6vjdtO9B1cdS1Sf3YKv7w6n-4yoXLYoPz5lDY2cUbQmMY5Yif5n1gZ2stIyBJesosVw9r5ip9-_fEP3pd2tE7dZ8IkhZGaWNDlVYVjdkESwXSRIXhSmOC99MGKLGpdxljvKyW2Yjl4e7u557VkOno44SZYKaXyekzpeLJTxlTZJmgRSinzIU5sIIRNujbUSIZkNFBqWspGUxkSISRCj3YGVeTk3m8BslGrfRkrEPOQ5DxSphEmdo-tObJ76fXjSDWumW6FzOm-jyBqJ5jDD_s6ov_vwcJlz0Yh7_CHPdmcZWTu9zzKSyKH9zTDGRyyTcYRot0XOTVlTHu6jt_Q578NGY1HLShD1pgjtMOWxs4u_1p5Nno_puvWvGR_A6v6LUfb21eTNXVgLKVbDsRW3YaX6UJt7iKAqdd9NlR8PMRoa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OTUP+workflow%3A+target+specific+optimization+of+the+transmit+k-space+trajectory+for+flexible+universal+parallel+transmit+RF+pulse+design&rft.jtitle=NMR+in+biomedicine&rft.au=Geldschl%C3%A4ger%2C+Ole&rft.au=Bosch%2C+Dario&rft.au=Henning%2C+Anke&rft.date=2022-08-01&rft.eissn=1099-1492&rft.spage=e4728&rft_id=info:doi/10.1002%2Fnbm.4728&rft_id=info%3Apmid%2F35297104&rft.externalDocID=35297104
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon