OTUP workflow: target specific optimization of the transmit k‐space trajectory for flexible universal parallel transmit RF pulse design
Purpose To optimize transmit k‐space trajectories for a wide range of excitation targets and to design “universal pTx RF pulses” based on these trajectories. Methods Transmit k‐space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the paramet...
Saved in:
Published in | NMR in biomedicine Vol. 35; no. 8; pp. e4728 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0952-3480 1099-1492 1099-1492 |
DOI | 10.1002/nbm.4728 |
Cover
Abstract | Purpose
To optimize transmit k‐space trajectories for a wide range of excitation targets and to design “universal pTx RF pulses” based on these trajectories.
Methods
Transmit k‐space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non‐optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k‐space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T.
Results
The workflow produced appropriate transmit k‐space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T.
Conclusions
The proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B0/B1+ map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git).
Transmit k‐space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets for pTx RF universal and subject specific tailored pulse design. The workflow produced appropriate transmit k‐space trajectories for each test target. Based on the optimized transmit trajectories it was possible to create target specific universal and tailored pulses with similar performances in simulation and in vivo at 9.4 T. |
---|---|
AbstractList | Purpose
To optimize transmit k‐space trajectories for a wide range of excitation targets and to design “universal pTx RF pulses” based on these trajectories.
Methods
Transmit k‐space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non‐optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k‐space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T.
Results
The workflow produced appropriate transmit k‐space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T.
Conclusions
The proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B0/B1+ map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git).
Transmit k‐space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets for pTx RF universal and subject specific tailored pulse design. The workflow produced appropriate transmit k‐space trajectories for each test target. Based on the optimized transmit trajectories it was possible to create target specific universal and tailored pulses with similar performances in simulation and in vivo at 9.4 T. To optimize transmit k-space trajectories for a wide range of excitation targets and to design "universal pTx RF pulses" based on these trajectories.PURPOSETo optimize transmit k-space trajectories for a wide range of excitation targets and to design "universal pTx RF pulses" based on these trajectories.Transmit k-space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non-optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k-space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T.METHODSTransmit k-space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non-optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k-space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T.The workflow produced appropriate transmit k-space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T.RESULTSThe workflow produced appropriate transmit k-space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T.The proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B0 /B1+ map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git).CONCLUSIONSThe proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B0 /B1+ map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git). To optimize transmit k-space trajectories for a wide range of excitation targets and to design "universal pTx RF pulses" based on these trajectories. Transmit k-space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non-optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k-space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T. The workflow produced appropriate transmit k-space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T. The proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B /B map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git). PurposeTo optimize transmit k‐space trajectories for a wide range of excitation targets and to design “universal pTx RF pulses” based on these trajectories.MethodsTransmit k‐space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non‐optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k‐space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T.ResultsThe workflow produced appropriate transmit k‐space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T.ConclusionsThe proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B0/B1+ map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git). |
Author | Bosch, Dario Geldschläger, Ole Henning, Anke |
Author_xml | – sequence: 1 givenname: Ole orcidid: 0000-0002-8400-0635 surname: Geldschläger fullname: Geldschläger, Ole email: ole.geldschlaeger@tuebingen.mpg.de organization: Max Planck Institute for Biological Cybernetics – sequence: 2 givenname: Dario orcidid: 0000-0002-6537-6370 surname: Bosch fullname: Bosch, Dario organization: University Hospital Tübingen – sequence: 3 givenname: Anke orcidid: 0000-0002-2267-4861 surname: Henning fullname: Henning, Anke organization: University of Texas Southwestern Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35297104$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFu1DAQhi1URLcFiSdAlrhwyWI7dmJzg4pCpUIRas-R4x0Xb504tR222xNXbn3GPknTbaFSBafRjL5_ZvT_O2irDz0g9JKSOSWEve3bbs5rJp-gGSVKFZQrtoVmRAlWlFySbbST0pIQInnJnqHtUjBVU8Jn6PfR8ck3vArxzPqweoezjqeQcRrAOOsMDkN2nbvU2YUeB4vzD8A56j51LuOz619XadBmM1qCySGusQ0RWw8XrvWAx979hJi0x4OO2nvwD-rv-3gYfQK8gORO--foqdVT--K-7qKT_Y_He5-Lw6NPB3vvDwtTciWLWmogfEEqLoRsgbQGKlVRreWi5spWUuqKW7BWCyIsbY3RrS21BiipoBUrd9Gbu71DDOcjpNx0LhnwXvcQxtSwipOSMcL5hL5-hC7DGPvpu4mSXIlaMTFRr-6pse1g0QzRdTqumz8mP1w0MaQUwf5FKGlu82um_Jrb_CZ0_gg1Lm_Mn2xz_l-C4k6wch7W_13cfP3wZcPfAP9drlc |
CitedBy_id | crossref_primary_10_1007_s10334_023_01134_7 |
Cites_doi | 10.1002/mrm.27645 10.1002/mrm.22330 10.1007/s10334‐016‐0561‐4 10.1109/ICNN.1995.488968 10.1016/j.neurobiolaging.2012.10.025 10.1002/mrm.21042 10.1002/mrm.10493 10.1038/s41598‐018‐37381‐1 10.1016/j.jmr.2015.03.013 10.1002/mrm.26148 10.1038/s41598‐019‐48164‐7 10.1002/nbm.3878 10.1002/nbm.3290 10.1145/355984.355989 10.1002/mrm.10171 10.1109/ICEAA.2019.8879180 10.1002/mrm.20695 10.1002/jmri.10334 10.1002/mrm.28643 10.1002/mrm.25677 10.1002/mrm.21485 10.1109/TMI.2011.2178035 10.1109/TMI.2015.2478880 10.1002/mrm.24381 10.1002/mrm.20011 10.1002/mrm.27001 10.1002/mrm.24165 10.1016/j.jmr.2015.10.017 10.1109/TMI.2008.920605 10.1109/TMI.2013.2295465 10.1002/mrm.21513 10.1002/mrm.22927 10.1002/nbm.2844 10.1002/mrm.26315 10.1002/1522-2594(200010)44:4<532::AID-MRM6>3.0.CO;2-Q 10.1002/mrm.28905 10.1002/mrm.1910330510 10.1002/mrm.23118 10.1002/mrm.24263 10.1038/d41586‐018‐07182‐7 10.1002/mrm.10353 10.1016/j.mri.2008.02.003 10.1109/TMI.2014.2362681 10.1016/j.neuroimage.2017.07.007 10.1371/journal.pone.0183562 10.1002/mrm.28667 10.1002/mrm.22512 10.1002/mrm.20978 10.1002/jmri.24850 10.1002/mrm.1910230204 10.1088/0031‐9155/55/2/N01 10.1002/mrm.26021 10.1016/0022‐2364(89)90265‐5 10.1137/S1052623497325107 10.1007/s10334‐017‐0620‐5 10.1002/(SICI)1522-2594(199901)41:1<103::AID-MRM15>3.0.CO;2-M 10.1002/mrm.22978 10.1002/mrm.21262 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd. 2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd. – notice: 2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7QO 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/nbm.4728 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Physics |
EISSN | 1099-1492 |
EndPage | n/a |
ExternalDocumentID | 35297104 10_1002_nbm_4728 NBM4728 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (DFG ‐ German Research Foundation) under the Reinhart Kosseleck Programme (DFG SCHE 658/12) – fundername: European Research Council / SYNAPLAST MR: 679927 – fundername: Cancer Prevention and Research Institute of Texas (CPRIT): RR180056 – fundername: Deutsche Forschungsgemeinschaft (DFG - German Research Foundation) under the Reinhart Kosseleck Programme (DFG SCHE 658/12) |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52V 52W 52X 53G 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXSBR XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION NPM 7QO 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c3498-78ae04d064558be0bce6961aa8d749f688a64feffa505f1bccabf3aaee3151623 |
IEDL.DBID | DR2 |
ISSN | 0952-3480 1099-1492 |
IngestDate | Fri Jul 11 07:25:23 EDT 2025 Sun Jul 13 05:12:47 EDT 2025 Mon Jul 21 05:34:06 EDT 2025 Thu Apr 24 23:08:54 EDT 2025 Wed Oct 01 03:28:18 EDT 2025 Wed Jan 22 16:24:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | high-field MRI local excitation parallel transmit pTx 9.4 T gradient optimization universal pulses |
Language | English |
License | Attribution 2022 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3498-78ae04d064558be0bce6961aa8d749f688a64feffa505f1bccabf3aaee3151623 |
Notes | Funding information European Research Council / SYNAPLAST MR: 679927; Deutsche Forschungsgemeinschaft (DFG ‐ German Research Foundation) under the Reinhart Kosseleck Programme (DFG SCHE 658/12); Cancer Prevention and Research Institute of Texas (CPRIT): RR180056 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2267-4861 0000-0002-8400-0635 0000-0002-6537-6370 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.4728 |
PMID | 35297104 |
PQID | 2684957925 |
PQPubID | 2029982 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2640322044 proquest_journals_2684957925 pubmed_primary_35297104 crossref_primary_10_1002_nbm_4728 crossref_citationtrail_10_1002_nbm_4728 wiley_primary_10_1002_nbm_4728_NBM4728 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | NMR in biomedicine |
PublicationTitleAlternate | NMR Biomed |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 261 2015; 34 2017; 80 2018; 168 2015; 75 2018; 563 1989; 81 2000; 44 1995; 33 2015; 76 2003; 18 1999; 41 2003; 50 2010; 63 2016; 35 2016; 77 2002; 49 2009; 55 2017; 31 2002; 47 2017; 30 2010; 64 2015; 255 2015; 42 2008; 27 2008; 26 2011; 66 1982; 8 2011; 67 2012; 26 2012; 69 2012; 68 2021; 85 2019; 9 2021; 86 2006; 56 2010 2008; 59 1995 2007; 58 2012; 31 1999; 9 2004; 51 2019; 81 2015; 29 2013; 34 2017; 12 2005; 54 2016; 29 1992; 23 2014; 33 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Pedersen ME (e_1_2_9_37_1) 2010 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 56 start-page: 1163 issue: 5 year: 2006 end-page: 1171 article-title: Parallel RF transmission with eight channels at 3 Tesla publication-title: Magn Reson Med – volume: 563 start-page: 24 issue: 7729 year: 2018 end-page: 26 article-title: The world's strongest MRI machines are pushing human imaging to new limits publication-title: Nature – volume: 168 start-page: 7 year: 2018 end-page: 32 article-title: Imaging at ultrahigh magnetic fields: history, challenges, and solutions publication-title: Neuroimage – volume: 31 start-page: 997 issue: 5 year: 2012 end-page: 1007 article-title: Advanced three‐dimensional tailored RF pulse design in volume selective parallel excitation publication-title: IEEE Trans Med Imaging – volume: 8 start-page: 43 issue: 1 year: 1982 end-page: 71 article-title: LSQR: an algorithm for sparse linear equations and sparse least squares publication-title: ACM Trans Math Softw – volume: 55 start-page: N23 issue: 2 year: 2009 end-page: N38 article-title: The Virtual Family—development of surface‐based anatomical models of two adults and two children for dosimetric simulations publication-title: Phys Med Biol – volume: 68 start-page: 1553 issue: 5 year: 2012 end-page: 1562 article-title: Small‐tip‐angle spokes pulse design using interleaved greedy and local optimization methods publication-title: Magn Reson Med – volume: 41 start-page: 103 issue: 1 year: 1999 end-page: 112 article-title: Concomitant gradient field effects in spiral scans publication-title: Magn Reson Med – volume: 77 start-page: 635 issue: 2 year: 2016 end-page: 643 article-title: Universal pulses: a new concept for calibration‐free parallel transmission publication-title: Magn Reson Med – volume: 54 start-page: 1261 issue: 5 year: 2005 end-page: 1267 article-title: Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging publication-title: Magn Reson Med – volume: 27 start-page: 1213 issue: 9 year: 2008 end-page: 1229 article-title: Sparsity‐enforced slice‐selective MRI RF excitation pulse design publication-title: IEEE Trans Med Imaging – volume: 59 start-page: 547 issue: 3 year: 2008 end-page: 560 article-title: Designing multichannel, multidimensional, arbitrary flip angle RF pulses using an optimal control approach publication-title: Magn Reson Med – volume: 12 issue: 8 year: 2017 article-title: Homogeneous non‐selective and slice‐selective parallel‐transmit excitations at 7 Tesla with universal pulses: a validation study on two commercial RF coils publication-title: PLoS ONE – volume: 9 issue: 1 year: 2019 article-title: The cortico‐rubral and cerebello‐rubral pathways are topographically organized within the human red nucleus publication-title: Sci Rep – volume: 42 start-page: 887 issue: 4 year: 2015 end-page: 901 article-title: Motion artifacts in MRI: a complex problem with many partial solutions publication-title: J Magn Reson Med – volume: 58 start-page: 598 issue: 3 year: 2007 end-page: 604 article-title: Joint design of trajectory and RF pulses for parallel excitation publication-title: Magn Reson Med – volume: 80 start-page: 53 issue: 1 year: 2017 end-page: 65 article-title: Design of universal parallel‐transmit refocusing k ‐point pulses and application to 3D T ‐weighted imaging at 7T publication-title: Magn Reson Med – volume: 30 start-page: 473 issue: 5 year: 2017 end-page: 488 article-title: Correction of parallel transmission using concurrent RF and gradient field monitoring publication-title: Magn Reson Mater Phys Biol Med – volume: 26 start-page: 1122 issue: 8 year: 2008 end-page: 1132 article-title: Reducing SAR in parallel excitation using variable‐density spirals: a simulation‐based study publication-title: Magn Reson Imaging – volume: 35 start-page: 468 issue: 2 year: 2016 end-page: 479 article-title: Joint design of excitation ‐space trajectory and RF pulse for small‐tip 3D tailored excitation in MRI publication-title: IEEE Trans Med Imaging – volume: 59 start-page: 908 issue: 4 year: 2008 end-page: 915 article-title: Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels publication-title: Magn Reson Med – volume: 33 start-page: 739 issue: 3 year: 2014 end-page: 748 article-title: On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints publication-title: IEEE Trans Med Imaging – volume: 81 start-page: 43 issue: 1 year: 1989 end-page: 56 article-title: A ‐space analysis of small‐tip‐angle excitation publication-title: J Magn Reson – volume: 75 start-page: 801 issue: 2 year: 2015 end-page: 809 article-title: Signal‐to‐noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays publication-title: Magn Reson Med – volume: 34 start-page: 1497 issue: 5 year: 2013 end-page: 1503 article-title: Higher iron in the red nucleus marks Parkinson's dyskinesia publication-title: Neurobiol Aging – volume: 67 start-page: 1303 issue: 5 year: 2011 end-page: 1315 article-title: Tailored excitation in 3D with spiral nonselective (SPINS) RF pulses publication-title: Magn Reson Med – volume: 31 issue: 2 year: 2017 article-title: Combination of surface and ‘vertical’ loop elements improves receive performance of a human head transceiver array at 9.4 T publication-title: NMR Biomed – volume: 63 start-page: 1280 issue: 5 year: 2010 end-page: 1291 article-title: Optimal design of multiple‐channel RF pulses under strict power and SAR constraints publication-title: Magn Reson Med – volume: 49 start-page: 144 issue: 1 year: 2002 end-page: 150 article-title: Transmit SENSE publication-title: Magn Reson Med – volume: 64 start-page: 1432 issue: 5 year: 2010 end-page: 1439 article-title: Minimum envelope roughness pulse design for reduced amplifier distortion in parallel excitation publication-title: Magn Reson Med – volume: 66 start-page: 1468 issue: 5 year: 2011 end-page: 1476 article-title: Local specific absorption rate control for parallel transmission by virtual observation points publication-title: Magn Reson Med – volume: 9 issue: 1 year: 2019 article-title: Involvement of the red nucleus in the compensation of Parkinsonism may explain why primates can develop stable Parkinson's disease publication-title: Sci Rep – volume: 18 start-page: 136 issue: 1 year: 2003 end-page: 141 article-title: Spatial excitation using variable‐density spiral trajectories publication-title: J Magn Reson Imaging – volume: 69 start-page: 583 issue: 2 year: 2012 end-page: 593 article-title: Gradient system characterization by impulse response measurements with a dynamic field camera publication-title: Magn Reson Med – volume: 50 start-page: 214 issue: 1 year: 2003 end-page: 219 article-title: Simple analytic variable density spiral design publication-title: Magn Reson Med – volume: 255 start-page: 59 year: 2015 end-page: 67 article-title: Two‐spoke placement optimization under explicit specific absorption rate and power constraints in parallel transmission at ultra‐high field publication-title: J Magn Reson – volume: 23 start-page: 224 issue: 2 year: 1992 end-page: 238 article-title: Effects of RF amplifier distortion on selective excitation and their correction by prewarping publication-title: Magn Reson Med – volume: 77 start-page: 2250 issue: 6 year: 2016 end-page: 2262 article-title: Gradient pre‐emphasis to counteract first‐order concomitant fields on asymmetric MRI gradient systems publication-title: Magn Reson Med – volume: 261 start-page: 181 year: 2015 end-page: 189 article-title: Joint design of k ‐points trajectories and RF pulses under explicit SAR and power constraints in the large flip angle regime publication-title: J Magn Reson – volume: 47 start-page: 1202 issue: 6 year: 2002 end-page: 1210 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Med – volume: 51 start-page: 775 issue: 4 year: 2004 end-page: 784 article-title: Parallel excitation with an array of transmit coils publication-title: Magn Reson Med – volume: 76 start-page: 1170 issue: 4 year: 2015 end-page: 1182 article-title: Fast three‐dimensional inner volume excitations using parallel transmission and optimized ‐space trajectories publication-title: Magn Reson Med – volume: 85 start-page: 3140 issue: 6 year: 2021 end-page: 3153 article-title: Fast online‐customized (FOCUS) parallel transmission pulses: a combination of universal pulses and individual optimization publication-title: Magn Reson Med – volume: 34 start-page: 564 issue: 2 year: 2015 end-page: 577 article-title: Fast and robust design of time‐optimal ‐space trajectories in MRI publication-title: IEEE Trans Med Imaging – volume: 33 start-page: 656 issue: 5 year: 1995 end-page: 662 article-title: Fast three dimensional magnetic resonance imaging publication-title: Magn Reson Med – volume: 81 start-page: 3202 issue: 5 year: 2019 end-page: 3208 article-title: Robust nonadiabatic T preparation using universal parallel‐transmit k ‐point pulses for 3D FLAIR imaging at 7 T publication-title: Magn Reson Med – year: 2010 – volume: 67 start-page: 72 issue: 1 year: 2011 end-page: 80 article-title: ‐points: short three‐dimensional tailored RF pulses for flip‐angle homogenization over an extended volume publication-title: Magn Reson Med – volume: 29 start-page: 1131 issue: 9 year: 2015 end-page: 1144 article-title: Safety testing and operational procedures for self‐developed radiofrequency coils publication-title: NMR Biomed – volume: 29 start-page: 617 issue: 3 year: 2016 end-page: 639 article-title: Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale publication-title: Magn Reson Mater Phys Biol Med – volume: 86 start-page: 2589 issue: 5 year: 2021 end-page: 2603 article-title: Local excitation universal parallel transmit pulses at 9.4T publication-title: Magn Reson Med – volume: 85 start-page: 3308 issue: 6 year: 2021 end-page: 3317 article-title: DeepControl: 2DRF pulses facilitating B inhomogeneity and B off‐resonance compensation in vivo at 7 T publication-title: Magn Reson Med – volume: 9 start-page: 877 issue: 4 year: 1999 end-page: 900 article-title: An interior point algorithm for large‐scale nonlinear programming publication-title: SIAM J Optim – year: 1995 – volume: 69 start-page: 1367 issue: 5 year: 2012 end-page: 1378 article-title: Inner‐volume imaging in vivo using three‐dimensional parallel spatially selective excitation publication-title: Magn Reson Med – volume: 56 start-page: 620 issue: 3 year: 2006 end-page: 629 article-title: Spatial domain method for the design of RF pulses in multicoil parallel excitation publication-title: Magn Reson Med – volume: 44 start-page: 532 issue: 4 year: 2000 end-page: 536 article-title: Gradient‐induced acoustic and magnetic field fluctuations in a 4T whole‐body MR imager publication-title: Magn Reson Med – volume: 26 start-page: 265 issue: 3 year: 2012 end-page: 275 article-title: A theoretical and experimental comparison of different techniques for mapping at very high fields publication-title: NMR Biomed – ident: e_1_2_9_28_1 doi: 10.1002/mrm.27645 – ident: e_1_2_9_52_1 doi: 10.1002/mrm.22330 – ident: e_1_2_9_3_1 doi: 10.1007/s10334‐016‐0561‐4 – ident: e_1_2_9_21_1 doi: 10.1109/ICNN.1995.488968 – ident: e_1_2_9_31_1 doi: 10.1016/j.neurobiolaging.2012.10.025 – ident: e_1_2_9_46_1 doi: 10.1002/mrm.21042 – ident: e_1_2_9_20_1 doi: 10.1002/mrm.10493 – ident: e_1_2_9_32_1 doi: 10.1038/s41598‐018‐37381‐1 – ident: e_1_2_9_47_1 doi: 10.1016/j.jmr.2015.03.013 – ident: e_1_2_9_24_1 doi: 10.1002/mrm.26148 – ident: e_1_2_9_30_1 doi: 10.1038/s41598‐019‐48164‐7 – ident: e_1_2_9_39_1 doi: 10.1002/nbm.3878 – ident: e_1_2_9_43_1 doi: 10.1002/nbm.3290 – ident: e_1_2_9_35_1 doi: 10.1145/355984.355989 – ident: e_1_2_9_41_1 doi: 10.1002/mrm.10171 – ident: e_1_2_9_26_1 doi: 10.1109/ICEAA.2019.8879180 – ident: e_1_2_9_56_1 doi: 10.1002/mrm.20695 – ident: e_1_2_9_22_1 doi: 10.1002/jmri.10334 – ident: e_1_2_9_19_1 doi: 10.1002/mrm.28643 – ident: e_1_2_9_5_1 doi: 10.1002/mrm.25677 – ident: e_1_2_9_45_1 doi: 10.1002/mrm.21485 – ident: e_1_2_9_15_1 doi: 10.1109/TMI.2011.2178035 – ident: e_1_2_9_18_1 doi: 10.1109/TMI.2015.2478880 – ident: e_1_2_9_16_1 doi: 10.1002/mrm.24381 – ident: e_1_2_9_7_1 doi: 10.1002/mrm.20011 – ident: e_1_2_9_27_1 doi: 10.1002/mrm.27001 – ident: e_1_2_9_11_1 doi: 10.1002/mrm.24165 – ident: e_1_2_9_9_1 doi: 10.1016/j.jmr.2015.10.017 – ident: e_1_2_9_10_1 doi: 10.1109/TMI.2008.920605 – ident: e_1_2_9_38_1 doi: 10.1109/TMI.2013.2295465 – ident: e_1_2_9_36_1 doi: 10.1002/mrm.21513 – ident: e_1_2_9_42_1 doi: 10.1002/mrm.22927 – ident: e_1_2_9_60_1 doi: 10.1002/nbm.2844 – ident: e_1_2_9_54_1 doi: 10.1002/mrm.26315 – ident: e_1_2_9_55_1 doi: 10.1002/1522-2594(200010)44:4<532::AID-MRM6>3.0.CO;2-Q – ident: e_1_2_9_58_1 – ident: e_1_2_9_29_1 doi: 10.1002/mrm.28905 – ident: e_1_2_9_40_1 – ident: e_1_2_9_13_1 doi: 10.1002/mrm.1910330510 – ident: e_1_2_9_14_1 doi: 10.1002/mrm.23118 – ident: e_1_2_9_50_1 doi: 10.1002/mrm.24263 – ident: e_1_2_9_4_1 doi: 10.1038/d41586‐018‐07182‐7 – ident: e_1_2_9_6_1 doi: 10.1002/mrm.10353 – ident: e_1_2_9_23_1 doi: 10.1016/j.mri.2008.02.003 – ident: e_1_2_9_48_1 doi: 10.1109/TMI.2014.2362681 – ident: e_1_2_9_2_1 doi: 10.1016/j.neuroimage.2017.07.007 – volume-title: Good Parameters for Particle Swarm Optimization year: 2010 ident: e_1_2_9_37_1 – ident: e_1_2_9_25_1 doi: 10.1371/journal.pone.0183562 – ident: e_1_2_9_62_1 doi: 10.1002/mrm.28667 – ident: e_1_2_9_59_1 doi: 10.1002/mrm.22512 – ident: e_1_2_9_33_1 doi: 10.1002/mrm.20978 – ident: e_1_2_9_61_1 doi: 10.1002/jmri.24850 – ident: e_1_2_9_57_1 doi: 10.1002/mrm.1910230204 – ident: e_1_2_9_44_1 doi: 10.1088/0031‐9155/55/2/N01 – ident: e_1_2_9_17_1 doi: 10.1002/mrm.26021 – ident: e_1_2_9_34_1 doi: 10.1016/0022‐2364(89)90265‐5 – ident: e_1_2_9_49_1 doi: 10.1137/S1052623497325107 – ident: e_1_2_9_51_1 doi: 10.1007/s10334‐017‐0620‐5 – ident: e_1_2_9_53_1 doi: 10.1002/(SICI)1522-2594(199901)41:1<103::AID-MRM15>3.0.CO;2-M – ident: e_1_2_9_8_1 doi: 10.1002/mrm.22978 – ident: e_1_2_9_12_1 doi: 10.1002/mrm.21262 |
SSID | ssj0008432 |
Score | 2.3725755 |
Snippet | Purpose
To optimize transmit k‐space trajectories for a wide range of excitation targets and to design “universal pTx RF pulses” based on these trajectories.... To optimize transmit k-space trajectories for a wide range of excitation targets and to design "universal pTx RF pulses" based on these trajectories. Transmit... PurposeTo optimize transmit k‐space trajectories for a wide range of excitation targets and to design “universal pTx RF pulses” based on these... To optimize transmit k-space trajectories for a wide range of excitation targets and to design "universal pTx RF pulses" based on these trajectories.PURPOSETo... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e4728 |
SubjectTerms | 9.4 T Biological products Design Design optimization Excitation gradient optimization high‐field MRI In vivo methods and tests local excitation Optimization parallel transmit pTx Similarity Spirals Trajectory optimization universal pulses Workflow |
Title | OTUP workflow: target specific optimization of the transmit k‐space trajectory for flexible universal parallel transmit RF pulse design |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.4728 https://www.ncbi.nlm.nih.gov/pubmed/35297104 https://www.proquest.com/docview/2684957925 https://www.proquest.com/docview/2640322044 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0952-3480 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1492 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008432 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7aQB-XPraPbJIGFUp78saWZa-cWxu6hMKmIWQh0IORZAnSeNcha1PaU6-95Tf2l3RGtjdNH1B6MliSLUuj0Yfnm08AL2wROaEcD1Qsk0DYtAhkZk1AuWlajVOlI8p3nh6k-zPx7iQ56ViVlAvT6kOsfrjRyvD-mha40sudn0RD9XwkxpzyfKM48RHaoyvlKCn82WQIIHgQCxn2urMh3-kbXt-JfoOX19Gq324m9-FD39GWZXI2amo9Ml9-0XD8vy95APc6FMpet2bzEG7YxQDu7PWHvw3g9rSLuQ_glieJmuUj-Pb-eHbIiMnlyurTLmtZ5IySNYlwxCp0P_Mur5NVjiG2ZDXthfPTmp19_3qJ3sv4Wx99rOAzQ8TMHEly6tKypuWIYL9Ij7wsbXnV-mjCzhvcxVnhGSePYTZ5e7y3H3RHOQQmFqRYKpUNRUHieInUNtTGplkaKSWLschcKqVKhbPOKURkLtJoV9rFSlkbIyRBiPYE1hbVwq4Dc3FmQhdrmQguChFpEglTpkDPnboiC4fwqp_W3HQ653TcRpm3Cs08x_HOabyH8HxV87zV9vhDna3eMvJudS9zUsih8CZP8BGrYpwhCraoha0aqiNCdJahEEN42lrU6iUIejNEdljy0tvFX9-eH7yZ0nXjXytuwl1O-RmeobgFa_VFY58haqr1Ntzk4nDbr5IfoKQYJg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIigXBMtroYCREJxCHcfxOnCCitUC3aVCu1JvkZ3YEm12U9FdIW5cufEb-SXMOA-oAIlTpHgcWxl75pM98w3AY1fGXhovIpPoNJJOlZHOXBFRbpo1I2VsTPnO05maLOTbo_RoC150uTANP0R_4EY7I9hr2uB0IL33G2uoXT6TI6EvwEWpBKclLeRhb4a1DNXJEEKIKJGad8yzXOx1Pc_7oj8A5nm8GhzO-BpcbZEie9mo9jpsudUAdva7Am0DuDxt78UHcCkEchZnN-Db-_nikFG0la_qz89ZE-nNKKGSgoJYjSZi2eZestozxH9sTf5q-XHNTn58_Y4WpgivjsN5_heGqJZ5os20lWObJo4D50Wc4VXlql-9P4zZ6QY9LStDVMhNWIxfz_cnUVtuISoSSayi2jguSyKwS7V13BZOZSo2RpcjmXmltVHSO-8NoiYfW9S99YkxziUIGxBG3YLtVb1yd4D5JCu4T6xOpZCljC0ReZmiROuqfJnxITztfnxetFzkVBKjyhsWZZGjinJS0RAe9ZKnDf_GX2R2O93l7Q48y4nFhq4gRYqf6JtRQ3QhYlau3pCM5GjQuJRDuN3ovB8EgWmG6AtbnoRF8M_R89mrKT3v_q_gQ9iZzKcH-cGb2bt7cEVQPkWIKNyF7fWnjbuPKGdtH4TV_BNNSvrX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEaWXAgu0WwoYCcEp2zycrMMNCqvy2KWqulKlHiLbsSXa7GZFEyE4ceXGb-SXMOMkW8pDQpwixXbs2OPxl_ibzwCPTB5YLm3oyUjEHjdJ7onUaI9i05QcJlIFFO88niR7U_76KD5qWZUUC9PoQyx_uNHMcP6aJvgitzs_iYaq2YAPQ3EZrvAEP64IEB2cS0cJ7g4nQwQRehEXfic864c7XcmLS9Fv-PIiXHXrzeg6HHctbWgmp4O6UgP9-RcRx_97lRuw3sJQ9qyxm5twycx7cG23O_2tB6vjdtO9B1cdS1Sf3YKv7w6n-4yoXLYoPz5lDY2cUbQmMY5Yif5n1gZ2stIyBJesosVw9r5ip9-_fEP3pd2tE7dZ8IkhZGaWNDlVYVjdkESwXSRIXhSmOC99MGKLGpdxljvKyW2Yjl4e7u557VkOno44SZYKaXyekzpeLJTxlTZJmgRSinzIU5sIIRNujbUSIZkNFBqWspGUxkSISRCj3YGVeTk3m8BslGrfRkrEPOQ5DxSphEmdo-tObJ76fXjSDWumW6FzOm-jyBqJ5jDD_s6ov_vwcJlz0Yh7_CHPdmcZWTu9zzKSyKH9zTDGRyyTcYRot0XOTVlTHu6jt_Q578NGY1HLShD1pgjtMOWxs4u_1p5Nno_puvWvGR_A6v6LUfb21eTNXVgLKVbDsRW3YaX6UJt7iKAqdd9NlR8PMRoa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OTUP+workflow%3A+target+specific+optimization+of+the+transmit+k-space+trajectory+for+flexible+universal+parallel+transmit+RF+pulse+design&rft.jtitle=NMR+in+biomedicine&rft.au=Geldschl%C3%A4ger%2C+Ole&rft.au=Bosch%2C+Dario&rft.au=Henning%2C+Anke&rft.date=2022-08-01&rft.eissn=1099-1492&rft.spage=e4728&rft_id=info:doi/10.1002%2Fnbm.4728&rft_id=info%3Apmid%2F35297104&rft.externalDocID=35297104 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon |