Real time monitoring and prediction of time to endpoint maturation in clinical trials

In clinical trials, almost all key milestone dates can be defined in terms of time to endpoint maturation (TTEM). The real time monitoring and accurate prediction of TTEM have a significant impact on clinical trial planning and execution and can bring significant value to clinical trial practitioner...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 41; no. 18; pp. 3596 - 3611
Main Authors Wang, Li, Liu, Yang, Chen, Xiaotian, Pulkstenis, Erik
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 15.08.2022
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.9436

Cover

Abstract In clinical trials, almost all key milestone dates can be defined in terms of time to endpoint maturation (TTEM). The real time monitoring and accurate prediction of TTEM have a significant impact on clinical trial planning and execution and can bring significant value to clinical trial practitioners. TTEM is defined as the time to achieve or observe a certain number or percentage of some endpoint of interest. It is a combination of time to site initiation, time to subject enrollment after site initiation and time to event of interest after subject enrollment. To better predict TTEM during the trial, the future site initiation and subject enrollment have to be taken into account while predicting the number of events. In this article, we propose a novel simulation‐based framework combining time to site initiation, time to subject enrollment and time to event in order to predict TTEM. A nonhomogeneous Poisson process with a quadratic time‐varying rate function is used to model site initiation and subject enrollment and more advanced time to event models had been explored and integrated on top of them, such as Weibull, piecewise exponential, and model averaging which is equivalent to a Bayesian model selection strategy. To evaluate the predictive performance of the proposed methodology, we conducted extensive simulations and applied the methodology to 14 randomly selected real oncology phase 2 and phase 3 studies in both solid tumor and hematology with a total 31 study‐endpoint combinations. The predictive performance of the proposed methodology was then compared with popular and commonly available commercial software, for example, East (Cytel, Cambridge, MA, USA). From both simulation and real data, the proposed methodology can significantly improve the prediction accuracy by up to 54% compared to the commonly available method.
AbstractList In clinical trials, almost all key milestone dates can be defined in terms of time to endpoint maturation (TTEM). The real time monitoring and accurate prediction of TTEM have a significant impact on clinical trial planning and execution and can bring significant value to clinical trial practitioners. TTEM is defined as the time to achieve or observe a certain number or percentage of some endpoint of interest. It is a combination of time to site initiation, time to subject enrollment after site initiation and time to event of interest after subject enrollment. To better predict TTEM during the trial, the future site initiation and subject enrollment have to be taken into account while predicting the number of events. In this article, we propose a novel simulation‐based framework combining time to site initiation, time to subject enrollment and time to event in order to predict TTEM. A nonhomogeneous Poisson process with a quadratic time‐varying rate function is used to model site initiation and subject enrollment and more advanced time to event models had been explored and integrated on top of them, such as Weibull, piecewise exponential, and model averaging which is equivalent to a Bayesian model selection strategy. To evaluate the predictive performance of the proposed methodology, we conducted extensive simulations and applied the methodology to 14 randomly selected real oncology phase 2 and phase 3 studies in both solid tumor and hematology with a total 31 study‐endpoint combinations. The predictive performance of the proposed methodology was then compared with popular and commonly available commercial software, for example, East (Cytel, Cambridge, MA, USA). From both simulation and real data, the proposed methodology can significantly improve the prediction accuracy by up to 54% compared to the commonly available method.
In clinical trials, almost all key milestone dates can be defined in terms of time to endpoint maturation (TTEM). The real time monitoring and accurate prediction of TTEM have a significant impact on clinical trial planning and execution and can bring significant value to clinical trial practitioners. TTEM is defined as the time to achieve or observe a certain number or percentage of some endpoint of interest. It is a combination of time to site initiation, time to subject enrollment after site initiation and time to event of interest after subject enrollment. To better predict TTEM during the trial, the future site initiation and subject enrollment have to be taken into account while predicting the number of events. In this article, we propose a novel simulation-based framework combining time to site initiation, time to subject enrollment and time to event in order to predict TTEM. A nonhomogeneous Poisson process with a quadratic time-varying rate function is used to model site initiation and subject enrollment and more advanced time to event models had been explored and integrated on top of them, such as Weibull, piecewise exponential, and model averaging which is equivalent to a Bayesian model selection strategy. To evaluate the predictive performance of the proposed methodology, we conducted extensive simulations and applied the methodology to 14 randomly selected real oncology phase 2 and phase 3 studies in both solid tumor and hematology with a total 31 study-endpoint combinations. The predictive performance of the proposed methodology was then compared with popular and commonly available commercial software, for example, East (Cytel, Cambridge, MA, USA). From both simulation and real data, the proposed methodology can significantly improve the prediction accuracy by up to 54% compared to the commonly available method.In clinical trials, almost all key milestone dates can be defined in terms of time to endpoint maturation (TTEM). The real time monitoring and accurate prediction of TTEM have a significant impact on clinical trial planning and execution and can bring significant value to clinical trial practitioners. TTEM is defined as the time to achieve or observe a certain number or percentage of some endpoint of interest. It is a combination of time to site initiation, time to subject enrollment after site initiation and time to event of interest after subject enrollment. To better predict TTEM during the trial, the future site initiation and subject enrollment have to be taken into account while predicting the number of events. In this article, we propose a novel simulation-based framework combining time to site initiation, time to subject enrollment and time to event in order to predict TTEM. A nonhomogeneous Poisson process with a quadratic time-varying rate function is used to model site initiation and subject enrollment and more advanced time to event models had been explored and integrated on top of them, such as Weibull, piecewise exponential, and model averaging which is equivalent to a Bayesian model selection strategy. To evaluate the predictive performance of the proposed methodology, we conducted extensive simulations and applied the methodology to 14 randomly selected real oncology phase 2 and phase 3 studies in both solid tumor and hematology with a total 31 study-endpoint combinations. The predictive performance of the proposed methodology was then compared with popular and commonly available commercial software, for example, East (Cytel, Cambridge, MA, USA). From both simulation and real data, the proposed methodology can significantly improve the prediction accuracy by up to 54% compared to the commonly available method.
Author Pulkstenis, Erik
Liu, Yang
Wang, Li
Chen, Xiaotian
Author_xml – sequence: 1
  givenname: Li
  surname: Wang
  fullname: Wang, Li
  organization: AbbVie Inc
– sequence: 2
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: AbbVie Inc
– sequence: 3
  givenname: Xiaotian
  orcidid: 0000-0002-3094-8922
  surname: Chen
  fullname: Chen, Xiaotian
  email: justinchen87@gmail.com
  organization: AbbVie Inc
– sequence: 4
  givenname: Erik
  surname: Pulkstenis
  fullname: Pulkstenis, Erik
  organization: AbbVie Inc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35587584$$D View this record in MEDLINE/PubMed
BookMark eNp10U1LxDAQBuAgiq6r4C-QghcvXZOmaZqjiF-gCH6cQ9pMJdIma5Ii--_N7roKoqcJ5JlhmHcfbVtnAaEjgmcE4-IsmGEmSlptoQnBgue4YPU2muCC87zihO2h_RDeMCaEFXwX7VHGas7qcoJeHkH1WTQDZIOzJjpv7GumrM7mHrRpo3E2c91aRJeB1XNnbMwGFUevVt_GZm1vrGmXk7xRfThAO10qcPhVp-jl6vL54ia_e7i-vTi_y1taiiovtWaqqTgWrCJlJxQHSusOVHoXVEAJpGpU0xCmVa1r2ibLMWs6DmWthaZTdLqeO_fufYQQ5WBCC32vLLgxyKJKDTWjpEj05Bd9c6O3abukBCYU80okdfylxmYALefeDMov5OZgCczWoPUuBA-dbE1cnSF6ZXpJsFwmIlMicpnIz4rfDZuZf9B8TT9MD4t_nXy6vV_5TyYQmZ4
CitedBy_id crossref_primary_10_1002_pst_2343
crossref_primary_10_1088_1361_6560_acfa5e
crossref_primary_10_1007_s43441_023_00564_8
Cites_doi 10.1002/sim.2956
10.1002/sim.1576
10.1002/sim.8036
10.1016/j.cct.2015.07.010
10.1177/1740774517750633
10.1002/pst.525
10.1080/10543400600609445
10.1016/j.cct.2015.11.008
10.1191/1740774504cn030oa
10.1002/sim.843
10.1080/03610926.2011.581189
10.1002/pst.271
10.1016/j.cct.2011.05.013
10.1002/bimj.201100180
10.1007/978-3-7908-1952-6_1
10.2307/2533197
10.1007/978-0-387-84858-7
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/sim.9436
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 3611
ExternalDocumentID 35587584
10_1002_sim_9436
SIM9436
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
NPM
K9.
7X8
ID FETCH-LOGICAL-c3496-4dd5ab67095614f9a7e338fea4f9239e4e16babb15da8d83cb67705bf7e48d9d3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Jul 10 17:50:09 EDT 2025
Sat Sep 06 17:43:13 EDT 2025
Mon Jul 21 06:00:24 EDT 2025
Thu Apr 24 22:53:13 EDT 2025
Wed Oct 01 04:09:09 EDT 2025
Wed Jan 22 16:23:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords time to event
Poisson process
Bayesian
enrollment
Language English
License 2022 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3496-4dd5ab67095614f9a7e338fea4f9239e4e16babb15da8d83cb67705bf7e48d9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3094-8922
PMID 35587584
PQID 2690130769
PQPubID 48361
PageCount 16
ParticipantIDs proquest_miscellaneous_2667785312
proquest_journals_2690130769
pubmed_primary_35587584
crossref_citationtrail_10_1002_sim_9436
crossref_primary_10_1002_sim_9436
wiley_primary_10_1002_sim_9436_SIM9436
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 August 2022
PublicationDateYYYYMMDD 2022-08-15
PublicationDate_xml – month: 08
  year: 2022
  text: 15 August 2022
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 45
2020
2006; 16
2011; 40
2009
2019; 38
2007
2008; 7
2011; 10
2011; 32
2004; 1
1994; 50
2012; 54
2018; 15
2016; 46
2001; 20
2007; 26
2003; 22
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
Anisimov VV (e_1_2_8_7_1) 2020
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 38
  start-page: 945
  issue: 6
  year: 2019
  end-page: 955
  article-title: Statistical modeling and prediction of clinical trial recruitment
  publication-title: Stat Med
– year: 2009
– volume: 22
  start-page: 3431
  issue: 22
  year: 2003
  end-page: 3447
  article-title: Methods for mid‐course corrections in clinical trials with survival outcomes
  publication-title: Stat Med
– start-page: 1
  year: 2007
  end-page: 8
– volume: 10
  start-page: 517
  issue: 6
  year: 2011
  end-page: 522
  article-title: Predictive event modelling in multicenter clinical trials with waiting time to response
  publication-title: Pharm Stat
– volume: 7
  start-page: 107
  issue: 2
  year: 2008
  end-page: 120
  article-title: Weibull prediction of event times in clinical trials
  publication-title: Pharm Stat
– volume: 15
  start-page: 159
  issue: 2
  year: 2018
  end-page: 168
  article-title: Adaptive parametric prediction of event times in clinical trials
  publication-title: Clin Trials
– volume: 1
  start-page: 352
  issue: 4
  year: 2004
  end-page: 361
  article-title: Nonparametric prediction of event times in randomized clinical trials
  publication-title: Clin Trial
– volume: 46
  start-page: 7
  year: 2016
  end-page: 10
  article-title: Discussion on the paper "Real‐time prediction of clinical trial enrollment and event counts: a review", by DF Heitjan, Z Ge, and GS Ying
  publication-title: Contemp Clin Trials
– volume: 32
  start-page: 755
  issue: 5
  year: 2011
  end-page: 759
  article-title: A hybrid approach to predicting events in clinical trials with time‐to‐event outcomes
  publication-title: Contemp Clin Trials
– volume: 50
  start-page: 61
  issue: 1
  year: 1994
  end-page: 76
  article-title: Hazard rate estimation under random censoring with varying kernels and bandwidths
  publication-title: Biometrics
– volume: 40
  start-page: 3684
  issue: 19‐20
  year: 2011
  end-page: 3699
  article-title: Statistical modeling of clinical trials (recruitment and randomization)
  publication-title: Commun Stat Theory Methods
– volume: 16
  start-page: 343
  issue: 3
  year: 2006
  end-page: 356
  article-title: Predicting event times in clinical trials when treatment arm is masked
  publication-title: J Biopharm Stat
– volume: 26
  start-page: 4958
  issue: 27
  year: 2007
  end-page: 4975
  article-title: Modelling, prediction and adaptive adjustment of recruitment in multicentre trials
  publication-title: Stat Med
– volume: 54
  start-page: 735
  issue: 6
  year: 2012
  end-page: 749
  article-title: Joint monitoring and prediction of accrual and event times in clinical trials
  publication-title: Biometr J
– volume: 20
  start-page: 2055
  issue: 14
  year: 2001
  end-page: 2063
  article-title: Predicting analysis times in randomized clinical trials
  publication-title: Stat Med
– start-page: 361
  year: 2020
  end-page: 408
– volume: 45
  start-page: 26
  year: 2015
  article-title: Real‐time prediction of clinical trial enrollment and event counts: a review
  publication-title: Contemp Clin Trials
– ident: e_1_2_8_4_1
  doi: 10.1002/sim.2956
– ident: e_1_2_8_19_1
  doi: 10.1002/sim.1576
– start-page: 361
  volume-title: Modern Analytic Techniques for Predictive Modeling of Clinical Trial Operations
  year: 2020
  ident: e_1_2_8_7_1
– ident: e_1_2_8_8_1
  doi: 10.1002/sim.8036
– ident: e_1_2_8_2_1
  doi: 10.1016/j.cct.2015.07.010
– ident: e_1_2_8_11_1
  doi: 10.1177/1740774517750633
– ident: e_1_2_8_14_1
– ident: e_1_2_8_9_1
  doi: 10.1002/pst.525
– ident: e_1_2_8_13_1
  doi: 10.1080/10543400600609445
– ident: e_1_2_8_20_1
  doi: 10.1016/j.cct.2015.11.008
– ident: e_1_2_8_18_1
  doi: 10.1191/1740774504cn030oa
– ident: e_1_2_8_3_1
  doi: 10.1002/sim.843
– ident: e_1_2_8_6_1
  doi: 10.1080/03610926.2011.581189
– ident: e_1_2_8_12_1
  doi: 10.1002/pst.271
– ident: e_1_2_8_10_1
  doi: 10.1016/j.cct.2011.05.013
– ident: e_1_2_8_15_1
  doi: 10.1002/bimj.201100180
– ident: e_1_2_8_5_1
  doi: 10.1007/978-3-7908-1952-6_1
– ident: e_1_2_8_16_1
  doi: 10.2307/2533197
– ident: e_1_2_8_17_1
  doi: 10.1007/978-0-387-84858-7
SSID ssj0011527
Score 2.4053319
Snippet In clinical trials, almost all key milestone dates can be defined in terms of time to endpoint maturation (TTEM). The real time monitoring and accurate...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3596
SubjectTerms Bayesian
Clinical trials
enrollment
Poisson process
time to event
Title Real time monitoring and prediction of time to endpoint maturation in clinical trials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.9436
https://www.ncbi.nlm.nih.gov/pubmed/35587584
https://www.proquest.com/docview/2690130769
https://www.proquest.com/docview/2667785312
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0277-6715
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEIAH8SAL4mN91RcRRE9d2zTptkcRRYX1oC4IHkrSpLDotstu9-KvN9O0FV8gnlra6XMmk2nS-Qbg2FM8VlxEbiQ8z2UpY24URr5LY6ozLwvSlGOi8OAuvB6y2yf-VP9Vibkwlg_RDrhhy6j8NTZwIWdnH9DQ2Wjci1mAtG0_4NUM7X1LjvKbaq04Qxn2fd5wZz161hz4uSf6Fl5-jlar7uZqFZ6bG7V_mbz05qXspW9fGI7_e5I1WKmjUHJuzWYdFnTehaVBPc_ehWU7mkdsklIXOhiTWqTzBgzvzVaCRenJuPIIODRIRK7IZIpnQFWTIrMSZUF0ribFKC_JGCGilSWQUU6anExSFQ6ZbcLw6vLx4tqtqzO4KULmXaaMjiXi3xAmmsWir83nbqaFWadBrJn2Qymk9LkSkYqC1Mj2PS6zvmaRilWwBYt5kesdIMIT2uOailBIpnxfiNj44SALAyaMJYUOnDaaStIaXY4VNF4TC12miXmFCb5CB45ayYnFdfwgs98oO6kb7CyhWJjL-LswNqdod5umhvMnItfFHGWQtmecFnVg2xpJexGk1JtPL-bASaXqX6-ePNwMcLn7V8E96FBMuUAML9-HxXI61wcmECrlYWXy7-bIBMY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9BJwES2kbHR8fHjITgKSVxbDcRT2hbVTbKA1CJB6TIiR2pgiYVTV_46_HFSRCwSYinRMnFTnwfPp9zvwM4cBUPFZeBE0jXdVjCmBOIwHNoSHXqpn6ScEwUHl6IwYj9ueE3C3BS58JYfIgm4IaaUdprVHAMSB8_o4bOxpNuyHyxCJ9wew618tdlgx3l1fVacY9S9DxeI8-69Lh-8uVc9MbBfOmvlhNO_wvc1q9q_zO5686LuJs8vkJx_OC3fIXPlSNKTq3krMGCztqwNKy22tuwagN6xOYptWEF3VKL6vwNRpfmKsG69GRSGgWMDhKZKTJ9wBaQ2yRPLUWRE52paT7OCjJBHNFSGMg4I3VaJilrh8zWYdT_ff1z4FQFGpwEceYdpgybY0SAQzzRNJQ9bVa8qZbmnPqhZtoTsYxjjysZqMBPDG3P5XHa0yxQofI3oJXlmd4CIl2pXa6pFDJmyvOkDI0p9lPhM2mESXTgqGZVlFTo5VhE4z6yuMs0MkMY4RB2YL-hnFrEjn_Q7NTcjiqdnUUUa3MZkydC00Rz22gbbqHITOdzpEHAPWO3aAc2rZQ0nSBQvVl9sQ4clrz-b-_R1dkQj9_fS_gDlgfXw_Po_Ozi7zasUMzAQFRevgOt4mGud41fVMR7pfw_ASV-COI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dS-QwEMAHT0EEOXU9vfUzgnhPXds0ybaPoi5-rYi6IPhQ0iaFxdt2cbsv99ebadqKHwfiU0s7_ZzJdJJ0fgOw7yoeKi4DJ5Cu67CEMScQgefQkOrUTf0k4Zgo3L8WZwN28cAfqr8qMRfG8iGaATdsGaW_xgY-VunhKzR0Mhx1QuaLHzDHhOlcYUB026CjvLpcK05Riq7Ha_CsSw_rI99-ij7El2_D1fJ701uCx_pO7W8mT51pEXeSf-8gjt97lGX4WYWh5MjazQrM6KwF8_1qor0Fi3Y4j9gspRYsYFBqmc6rMLg1WwlWpSej0iXg2CCRmSLjZzwD6prkqZUocqIzNc6HWUFGSBEtTYEMM1InZZKycsjkFwx6p_fHZ05VnsFJkDLvMGWUHCP_DWmiaSi72vR3Uy3NOvVDzbQnYhnHHlcyUIGfGNmuy-O0q1mgQuWvwWyWZ_o3EOlK7XJNpZAxU54nZWgcsZ8Kn0ljSqINf2pNRUnFLscSGn8jS12mkXmFEb7CNuw1kmPL6_hEZqtWdlS12ElEsTKXcXgiNKdodpu2hhMoMtP5FGUQt2e8Fm3DujWS5iKIqTd9L9aGg1LV_716dHfex-XGVwV3Yf7mpBddnV9fbsICxfQLRPLyLZgtnqd62wRFRbxTWv8LC04HkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real+time+monitoring+and+prediction+of+time+to+endpoint+maturation+in+clinical+trials&rft.jtitle=Statistics+in+medicine&rft.au=Wang%2C+Li&rft.au=Liu%2C+Yang&rft.au=Chen%2C+Xiaotian&rft.au=Pulkstenis%2C+Erik&rft.date=2022-08-15&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=41&rft.issue=18&rft.spage=3596&rft.epage=3611&rft_id=info:doi/10.1002%2Fsim.9436&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_9436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon