Ultra‐low‐field magnetic resonance angiography at 0.05 T: A preliminary study

We aim to explore the feasibility of head and neck time‐of‐flight (TOF) magnetic resonance angiography (MRA) at ultra‐low‐field (ULF). TOF MRA was conducted on a highly simplified 0.05 T MRI scanner with no radiofrequency (RF) and magnetic shielding. A flow‐compensated three‐dimensional (3D) gradien...

Full description

Saved in:
Bibliographic Details
Published inNMR in biomedicine Vol. 37; no. 11; pp. e5213 - n/a
Main Authors Su, Shi, Hu, Jiahao, Ding, Ye, Zhang, Junhao, Lau, Vick, Zhao, Yujiao, Wu, Ed X.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text
ISSN0952-3480
1099-1492
1099-1492
DOI10.1002/nbm.5213

Cover

Abstract We aim to explore the feasibility of head and neck time‐of‐flight (TOF) magnetic resonance angiography (MRA) at ultra‐low‐field (ULF). TOF MRA was conducted on a highly simplified 0.05 T MRI scanner with no radiofrequency (RF) and magnetic shielding. A flow‐compensated three‐dimensional (3D) gradient echo (GRE) sequence with a tilt‐optimized nonsaturated excitation RF pulse, and a flow‐compensated multislice two‐dimensional (2D) GRE sequence, were implemented for cerebral artery and vein imaging, respectively. For carotid artery and jugular vein imaging, flow‐compensated 2D GRE sequences were utilized with venous and arterial blood presaturation, respectively. MRA was performed on young healthy subjects. Vessel‐to‐background contrast was experimentally observed with strong blood inflow effect and background tissue suppression. The large primary cerebral arteries and veins, carotid arteries, jugular veins, and artery bifurcations could be identified in both raw GRE images and maximum intensity projections. The primary brain and neck arteries were found to be reproducible among multiple examination sessions. These preliminary experimental results demonstrated the possibility of artery TOF MRA on low‐cost 0.05 T scanners for the first time, despite the extremely low MR signal. We expect to improve the quality of ULF TOF MRA in the near future through sequence development and optimization, ongoing advances in ULF hardware and image formation, and the use of vascular T1 contrast agents. The preliminary feasibility of TOF MRA at 0.05 T was demonstrated for the first time despite the extremely low MR signal. The large primary cerebral arteries and veins, carotid arteries, jugular veins, and artery bifurcations could be identified in both raw GRE images and maximum intensity projections.
AbstractList We aim to explore the feasibility of head and neck time-of-flight (TOF) magnetic resonance angiography (MRA) at ultra-low-field (ULF). TOF MRA was conducted on a highly simplified 0.05 T MRI scanner with no radiofrequency (RF) and magnetic shielding. A flow-compensated three-dimensional (3D) gradient echo (GRE) sequence with a tilt-optimized nonsaturated excitation RF pulse, and a flow-compensated multislice two-dimensional (2D) GRE sequence, were implemented for cerebral artery and vein imaging, respectively. For carotid artery and jugular vein imaging, flow-compensated 2D GRE sequences were utilized with venous and arterial blood presaturation, respectively. MRA was performed on young healthy subjects. Vessel-to-background contrast was experimentally observed with strong blood inflow effect and background tissue suppression. The large primary cerebral arteries and veins, carotid arteries, jugular veins, and artery bifurcations could be identified in both raw GRE images and maximum intensity projections. The primary brain and neck arteries were found to be reproducible among multiple examination sessions. These preliminary experimental results demonstrated the possibility of artery TOF MRA on low-cost 0.05 T scanners for the first time, despite the extremely low MR signal. We expect to improve the quality of ULF TOF MRA in the near future through sequence development and optimization, ongoing advances in ULF hardware and image formation, and the use of vascular T1 contrast agents.
We aim to explore the feasibility of head and neck time-of-flight (TOF) magnetic resonance angiography (MRA) at ultra-low-field (ULF). TOF MRA was conducted on a highly simplified 0.05 T MRI scanner with no radiofrequency (RF) and magnetic shielding. A flow-compensated three-dimensional (3D) gradient echo (GRE) sequence with a tilt-optimized nonsaturated excitation RF pulse, and a flow-compensated multislice two-dimensional (2D) GRE sequence, were implemented for cerebral artery and vein imaging, respectively. For carotid artery and jugular vein imaging, flow-compensated 2D GRE sequences were utilized with venous and arterial blood presaturation, respectively. MRA was performed on young healthy subjects. Vessel-to-background contrast was experimentally observed with strong blood inflow effect and background tissue suppression. The large primary cerebral arteries and veins, carotid arteries, jugular veins, and artery bifurcations could be identified in both raw GRE images and maximum intensity projections. The primary brain and neck arteries were found to be reproducible among multiple examination sessions. These preliminary experimental results demonstrated the possibility of artery TOF MRA on low-cost 0.05 T scanners for the first time, despite the extremely low MR signal. We expect to improve the quality of ULF TOF MRA in the near future through sequence development and optimization, ongoing advances in ULF hardware and image formation, and the use of vascular T1 contrast agents.We aim to explore the feasibility of head and neck time-of-flight (TOF) magnetic resonance angiography (MRA) at ultra-low-field (ULF). TOF MRA was conducted on a highly simplified 0.05 T MRI scanner with no radiofrequency (RF) and magnetic shielding. A flow-compensated three-dimensional (3D) gradient echo (GRE) sequence with a tilt-optimized nonsaturated excitation RF pulse, and a flow-compensated multislice two-dimensional (2D) GRE sequence, were implemented for cerebral artery and vein imaging, respectively. For carotid artery and jugular vein imaging, flow-compensated 2D GRE sequences were utilized with venous and arterial blood presaturation, respectively. MRA was performed on young healthy subjects. Vessel-to-background contrast was experimentally observed with strong blood inflow effect and background tissue suppression. The large primary cerebral arteries and veins, carotid arteries, jugular veins, and artery bifurcations could be identified in both raw GRE images and maximum intensity projections. The primary brain and neck arteries were found to be reproducible among multiple examination sessions. These preliminary experimental results demonstrated the possibility of artery TOF MRA on low-cost 0.05 T scanners for the first time, despite the extremely low MR signal. We expect to improve the quality of ULF TOF MRA in the near future through sequence development and optimization, ongoing advances in ULF hardware and image formation, and the use of vascular T1 contrast agents.
We aim to explore the feasibility of head and neck time‐of‐flight (TOF) magnetic resonance angiography (MRA) at ultra‐low‐field (ULF). TOF MRA was conducted on a highly simplified 0.05 T MRI scanner with no radiofrequency (RF) and magnetic shielding. A flow‐compensated three‐dimensional (3D) gradient echo (GRE) sequence with a tilt‐optimized nonsaturated excitation RF pulse, and a flow‐compensated multislice two‐dimensional (2D) GRE sequence, were implemented for cerebral artery and vein imaging, respectively. For carotid artery and jugular vein imaging, flow‐compensated 2D GRE sequences were utilized with venous and arterial blood presaturation, respectively. MRA was performed on young healthy subjects. Vessel‐to‐background contrast was experimentally observed with strong blood inflow effect and background tissue suppression. The large primary cerebral arteries and veins, carotid arteries, jugular veins, and artery bifurcations could be identified in both raw GRE images and maximum intensity projections. The primary brain and neck arteries were found to be reproducible among multiple examination sessions. These preliminary experimental results demonstrated the possibility of artery TOF MRA on low‐cost 0.05 T scanners for the first time, despite the extremely low MR signal. We expect to improve the quality of ULF TOF MRA in the near future through sequence development and optimization, ongoing advances in ULF hardware and image formation, and the use of vascular T1 contrast agents. The preliminary feasibility of TOF MRA at 0.05 T was demonstrated for the first time despite the extremely low MR signal. The large primary cerebral arteries and veins, carotid arteries, jugular veins, and artery bifurcations could be identified in both raw GRE images and maximum intensity projections.
We aim to explore the feasibility of head and neck time‐of‐flight (TOF) magnetic resonance angiography (MRA) at ultra‐low‐field (ULF). TOF MRA was conducted on a highly simplified 0.05 T MRI scanner with no radiofrequency (RF) and magnetic shielding. A flow‐compensated three‐dimensional (3D) gradient echo (GRE) sequence with a tilt‐optimized nonsaturated excitation RF pulse, and a flow‐compensated multislice two‐dimensional (2D) GRE sequence, were implemented for cerebral artery and vein imaging, respectively. For carotid artery and jugular vein imaging, flow‐compensated 2D GRE sequences were utilized with venous and arterial blood presaturation, respectively. MRA was performed on young healthy subjects. Vessel‐to‐background contrast was experimentally observed with strong blood inflow effect and background tissue suppression. The large primary cerebral arteries and veins, carotid arteries, jugular veins, and artery bifurcations could be identified in both raw GRE images and maximum intensity projections. The primary brain and neck arteries were found to be reproducible among multiple examination sessions. These preliminary experimental results demonstrated the possibility of artery TOF MRA on low‐cost 0.05 T scanners for the first time, despite the extremely low MR signal. We expect to improve the quality of ULF TOF MRA in the near future through sequence development and optimization, ongoing advances in ULF hardware and image formation, and the use of vascular T1 contrast agents.
Author Hu, Jiahao
Zhao, Yujiao
Zhang, Junhao
Lau, Vick
Su, Shi
Wu, Ed X.
Ding, Ye
Author_xml – sequence: 1
  givenname: Shi
  surname: Su
  fullname: Su, Shi
  organization: The University of Hong Kong
– sequence: 2
  givenname: Jiahao
  surname: Hu
  fullname: Hu, Jiahao
  organization: The University of Hong Kong
– sequence: 3
  givenname: Ye
  surname: Ding
  fullname: Ding, Ye
  organization: The University of Hong Kong
– sequence: 4
  givenname: Junhao
  surname: Zhang
  fullname: Zhang, Junhao
  organization: The University of Hong Kong
– sequence: 5
  givenname: Vick
  surname: Lau
  fullname: Lau, Vick
  organization: The University of Hong Kong
– sequence: 6
  givenname: Yujiao
  surname: Zhao
  fullname: Zhao, Yujiao
  organization: The University of Hong Kong
– sequence: 7
  givenname: Ed X.
  orcidid: 0000-0001-5581-1546
  surname: Wu
  fullname: Wu, Ed X.
  email: ewu@eee.hku.hk
  organization: The University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39032076$$D View this record in MEDLINE/PubMed
BookMark eNp10cFu1DAQBmALFdFtQeIJkCUuXLKMPXY35tZWFCq1IKT2bHmTyeLKsRc7UbU3HoFn7JOQZdsiIXoZXz6PZuY_YHsxRWLstYC5AJDv47KfaynwGZsJMKYSysg9NgOjZYWqhn12UMoNANQK5Qu2jwZQwuJoxr5dhyG7u5-_QrqdaucptLx3q0iDb3imkqKLDXEXVz6tslt_33A3cJiD5lcf-DFfZwq-99HlDS_D2G5esuedC4Ve3b-H7Prs49Xp5-ri66fz0-OLqkFlsGoNiq6mhWtlJ5zUQnfUklqi1EoqvSStWuGMw1Zho1E1YGByTnYLAbWu8ZC92_Vd5_RjpDLY3peGQnCR0lgsQi2NNiCPJvr2H3qTxhyn6SwKgTWCElv15l6Ny55au86-n7ayD8eawHwHmpxKydTZxg9u8ClOJ_TBCrDbNOyUht2m8XfExw8PPf9Dqx299YE2Tzr75eTyj_8NdCeXRA
CitedBy_id crossref_primary_10_1007_s10334_025_01234_6
Cites_doi 10.1097/00004424‐199311000‐00005
10.1118/1.595535
10.1002/mrm.30046
10.1002/mrm.21122
10.3174/ajnr.A5771
10.1002/mrm.1910100113
10.1002/jmri.20394
10.1148/radiol.220522
10.1002/nbm.4956
10.1038/s41598‐022‐10298‐6
10.1126/sciadv.abb0998
10.1038/s41467‐021‐25441‐6
10.1016/j.jmr.2013.10.013
10.1002/jmri.1880040517
10.1038/s41551‐020‐00641‐5
10.1097/00004728‐199301000‐00002
10.1002/jmri.26942
10.1016/0022‐2364(91)90253‐P
10.1002/mrm.1910250217
10.1109/TIP.2012.2210725
10.1002/jmri.26637
10.1038/d41586‐023‐03531‐3
10.1016/S1064‐9689(21)00251‐8
10.1038/s41467‐021‐27317‐1
10.1126/sciadv.abo5739
10.1148/radiology.190.3.8115646
10.1097/00004424‐199809000‐00012
10.1126/sciadv.abm3952
10.1002/mrm.28738
10.1038/s41598‐022‐14039‐7
10.1016/j.ejrad.2013.08.052
10.1007/s00330‐020‐06682‐3
10.1126/science.adm7168
10.1007/s10334‐023‐01073‐3
10.1038/s41598‐022‐17472‐w
10.1002/jmri.20954
10.1002/mrm.28396
10.2214/ajr.149.6.1097
10.1161/STROKEAHA.107.509877
10.1002/jmri.1880060120
10.1002/mrm.29009
10.1007/s10334‐023‐01104‐z
10.1002/mrm.24550
10.1002/mrm.27861
10.1002/jmri.20767
10.1016/j.jmr.2020.106829
10.1016/0022‐2364(76)90233‐X
10.1002/jmri.26288
10.1002/jmri.26638
10.1038/s41598‐021‐87482‐7
10.1016/j.media.2021.102047
10.1126/sciadv.adi9327
10.3389/fphy.2020.00172
10.1002/jmri.28408
10.1002/mrm.29642
10.1007/s00234‐023‐03271‐1
10.1001/jamaneurol.2020.3263
10.1002/mrm.1910300109
10.1148/radiology.179.3.2027996
10.1038/srep15177
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd.
2024 The Author(s). NMR in Biomedicine published by John Wiley & Sons Ltd.
2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd.
– notice: 2024 The Author(s). NMR in Biomedicine published by John Wiley & Sons Ltd.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/nbm.5213
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
EISSN 1099-1492
EndPage n/a
ExternalDocumentID 39032076
10_1002_nbm_5213
NBM5213
Genre article
Journal Article
GrantInformation_xml – fundername: Lam Woo Foundation
– fundername: Hong Kong Research Grant Council
  funderid: R7003‐19F; HKU17112120; HKU17127121; HKU17127022; HKU17127523
– fundername: Hong Kong Research Grant Council
  grantid: HKU17127523
– fundername: Hong Kong Research Grant Council
  grantid: HKU17127022
– fundername: Hong Kong Research Grant Council
  grantid: HKU17127121
– fundername: Hong Kong Research Grant Council
  grantid: R7003-19F
– fundername: Hong Kong Research Grant Council
  grantid: HKU17112120
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3493-d931f8e7ad2f1a2515fede4b3254245be54d1a9a3d43c534c0901a2a2f7108583
IEDL.DBID DR2
ISSN 0952-3480
1099-1492
IngestDate Fri Jul 11 01:18:45 EDT 2025
Fri Jul 25 09:59:57 EDT 2025
Mon Jul 21 05:49:13 EDT 2025
Tue Jul 01 02:45:50 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
Wed Jan 22 17:16:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords time‐of‐flight
noncontrast enhancement
MRI
ultra‐low‐field
brain
neck
magnetic resonance angiography
Language English
License Attribution-NonCommercial
2024 The Author(s). NMR in Biomedicine published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3493-d931f8e7ad2f1a2515fede4b3254245be54d1a9a3d43c534c0901a2a2f7108583
Notes Funding information
This work was supported by Hong Kong Research Grant Council (R7003‐19F, HKU17112120, HKU17127121, HKU17127022, and HKU17127523), and Lam Woo Foundation to E.X.W.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5581-1546
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.5213
PMID 39032076
PQID 3113830416
PQPubID 2029982
PageCount 12
ParticipantIDs proquest_miscellaneous_3082959026
proquest_journals_3113830416
pubmed_primary_39032076
crossref_citationtrail_10_1002_nbm_5213
crossref_primary_10_1002_nbm_5213
wiley_primary_10_1002_nbm_5213_NBM5213
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-Nov
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle NMR in biomedicine
PublicationTitleAlternate NMR Biomed
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 36
1976; 24
1993; 28
1987; 149
2013; 22
2020; 8:172
2023; 9
2008; 39
2023; 623
2024; 384
2013; 70
2023; 306
2024; 37
2021; 71
2005; 22
1992; 8
2020; 6
2018; 39
2023; 66
2020; 52
2013; 237
1984; 11
1993; 30
1991; 92
2021; 85
2007; 25
1996; 6
2007; 26
2023; 57
2021; 5
2015; 5
1991; 179
1996; 17
2021; 86
1994; 190
2020; 78
2022; 87
1995; 3
2007; 57
2019; 82
2021; 12
1993; 17
2021; 11
1989; 10
2023
2020; 30
2022; 8
2024; 92
2022; 12
2019; 49
2013; 82
1992; 25
2023; 90
1994; 4
1998; 33
2020; 319
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
Su S (e_1_2_9_53_1) 2023
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
Balaban RS (e_1_2_9_55_1) 1992; 8
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Furst G (e_1_2_9_38_1) 1996; 17
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 6
  start-page: 99
  issue: 1
  year: 1996
  end-page: 108
  article-title: Experimental and theoretical studies of vessel contrast‐to‐noise ratio in intracranial time‐of‐flight MR angiography
  publication-title: J Magn Reson Imaging.
– volume: 11
  start-page: 425
  issue: 4
  year: 1984
  end-page: 448
  article-title: A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1‐100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age
  publication-title: Med Phys.
– volume: 17
  start-page: 1749
  issue: 9
  year: 1996
  end-page: 1757
  article-title: Intracranial stenoocclusive disease: MR angiography with magnetization transfer and variable flip angle
  publication-title: Am J Neuroradiol.
– volume: 17
  start-page: 15
  issue: 1
  year: 1993
  end-page: 21
  article-title: Intracranial MRA: single volume vs. multiple thin slab 3D time‐of‐flight acquisition
  publication-title: J Comput Assist Tomogr.
– volume: 37
  issue: 7
  year: 2024
  article-title: Electromagnetic interference elimination via active sensing and deep learning prediction for radiofrequency shielding‐free MRI
  publication-title: NMR Biomed.
– volume: 22
  start-page: 119
  issue: 1
  year: 2013
  end-page: 133
  article-title: Nonlocal transform‐domain filter for volumetric data denoising and reconstruction
  publication-title: IEEE Trans Image Process.
– volume: 190
  start-page: 890
  issue: 3
  year: 1994
  end-page: 894
  article-title: Improved MR angiography: magnetization transfer suppression with variable flip angle excitation and increased resolution
  publication-title: Radiology.
– volume: 82
  start-page: e853
  issue: 12
  year: 2013
  end-page: e859
  article-title: Comparison of 3D TOF‐MRA and 3D CE‐MRA at 3T for imaging of intracranial aneurysms
  publication-title: Eur J Radiol.
– volume: 49
  start-page: 355
  issue: 2
  year: 2019
  end-page: 373
  article-title: Noncontrast MR angiography: an update
  publication-title: J Magn Reson Imaging.
– volume: 92
  start-page: 112
  issue: 1
  year: 2024
  end-page: 127
  article-title: Robust EMI elimination for RF shielding‐free MRI through deep learning direct MR signal prediction
  publication-title: Magn Reson Med.
– volume: 319
  year: 2020
  article-title: Use of 2.1 MHz MRI scanner for brain imaging and its preliminary results in stroke
  publication-title: J Magn Reson.
– volume: 78
  start-page: 41
  issue: 1
  year: 2020
  end-page: 47
  article-title: Assessment of brain injury using portable, low‐field magnetic resonance imaging at the bedside of critically ill patients
  publication-title: JAMA Neurol.
– volume: 9
  issue: 38
  year: 2023
  article-title: Deep learning enabled fast 3D brain MRI at 0.055 Tesla
  publication-title: Sci Adv.
– volume: 384
  issue: 6696
  year: 2024
  article-title: Whole‐body magnetic resonance imaging at 0.05 Tesla
  publication-title: Science.
– volume: 25
  start-page: 372
  issue: 2
  year: 1992
  end-page: 379
  article-title: Magnetization transfer time‐of‐flight magnetic resonance angiography
  publication-title: Magn Reson Med.
– volume: 86
  start-page: 335
  issue: 1
  year: 2021
  end-page: 345
  article-title: Super‐resolution head and neck MRA using deep machine learning
  publication-title: Magn Reson Med.
– volume: 11
  issue: 1
  year: 2021
  article-title: Boosting the signal‐to‐noise of low‐field MRI with deep learning image reconstruction
  publication-title: Sci Rep.
– volume: 90
  start-page: 400
  issue: 2
  year: 2023
  end-page: 416
  article-title: Pushing the limits of low‐cost ultra‐low‐field MRI by dual‐acquisition deep learning 3D superresolution
  publication-title: Magn Reson Med.
– volume: 12
  issue: 1
  year: 2021
  article-title: A low‐cost and shielding‐free ultra‐low‐field brain MRI scanner
  publication-title: Nat Commun.
– volume: 28
  start-page: 1004
  issue: 11
  year: 1993
  end-page: 1009
  article-title: Contrast‐to‐noise‐ratio measurements in three‐dimensional magnetic resonance angiography
  publication-title: Invest Radiol.
– volume: 57
  start-page: 308
  issue: 2
  year: 2007
  end-page: 318
  article-title: Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo
  publication-title: Magn Reson Med.
– volume: 71
  year: 2021
  article-title: Two‐stage deep learning for accelerated 3D time‐of‐flight MRA without matched training data
  publication-title: Med Image Anal.
– volume: 25
  start-page: 13
  issue: 1
  year: 2007
  end-page: 25
  article-title: 3D contrast‐enhanced MR angiography
  publication-title: J Magn Reson Imaging.
– volume: 8:172
  year: 2020
  article-title: Low‐field MRI: how low can we go? A fresh view on an old debate
  publication-title: Front Phys.
– volume: 4
  start-page: 733
  issue: 5
  year: 1994
  end-page: 741
  article-title: Reduction of partial‐volume artifacts with zero‐filled interpolation in three‐dimensional MR angiography
  publication-title: J Magn Reson Imaging.
– volume: 57
  start-page: 25
  issue: 1
  year: 2023
  end-page: 44
  article-title: Low‐field MRI: clinical promise and challenges
  publication-title: J Magn Reson Imaging.
– volume: 237
  start-page: 169
  year: 2013
  end-page: 174
  article-title: Low‐field MRI can be more sensitive than high‐field MRI
  publication-title: J Magn Reson.
– volume: 30
  start-page: 3059
  issue: 6
  year: 2020
  end-page: 3065
  article-title: Highly accelerated compressed sensing time‐of‐flight magnetic resonance angiography may be reliable for diagnosing head and neck arterial steno‐occlusive disease: a comparative study with digital subtraction angiography
  publication-title: Eur Radiol.
– volume: 10
  start-page: 135
  issue: 1
  year: 1989
  end-page: 144
  article-title: Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo
  publication-title: Magn Reson Med.
– volume: 70
  start-page: 1082
  issue: 4
  year: 2013
  end-page: 1086
  article-title: In vivo blood T(1) measurements at 1.5 T, 3 T, and 7 T
  publication-title: Magn Reson Med.
– volume: 623
  start-page: 700
  issue: 7988
  year: 2023
  end-page: 701
  article-title: The deep route to low‐field MRI with high potential
  publication-title: Nature.
– volume: 26
  start-page: 432
  issue: 2
  year: 2007
  end-page: 436
  article-title: TOF‐MRA using multi‐oblique‐stack acquisition (MOSA)
  publication-title: J Magn Reson Imaging.
– volume: 82
  start-page: 1946
  issue: 5
  year: 2019
  end-page: 1960
  article-title: The MR Cap: a single‐sided MRI system designed for potential point‐of‐care limited field‐of‐view brain imaging
  publication-title: Magn Reson Med
– volume: 6
  issue: 29
  year: 2020
  article-title: High‐sensitivity in vivo contrast for ultra‐low field magnetic resonance imaging using superparamagnetic iron oxide nanoparticles
  publication-title: Sci Adv.
– volume: 49
  start-page: 1528
  issue: 6
  year: 2019
  end-page: 1542
  article-title: Low‐field MRI: an MR physics perspective
  publication-title: J Magn Reson Imaging.
– start-page: 5022
  year: 2023
– volume: 66
  start-page: 217
  issue: 2
  year: 2023
  end-page: 226
  article-title: Exploring the impact of super‐resolution deep learning on MR angiography image quality
  publication-title: Neuroradiology.
– volume: 24
  start-page: 71
  issue: 1
  year: 1976
  end-page: 85
  article-title: The signal‐to‐noise ratio of the nuclear magnetic resonance experiment
  publication-title: J Magn Reson.
– volume: 8
  start-page: 116
  issue: 2
  year: 1992
  end-page: 137
  article-title: Magnetization transfer contrast in magnetic resonance imaging
  publication-title: Magn Reson Q.
– volume: 149
  start-page: 1097
  issue: 6
  year: 1987
  end-page: 1109
  article-title: MR angiography of peripheral, carotid, and coronary arteries
  publication-title: Am J Roentgenol.
– volume: 12
  issue: 1
  year: 2022
  article-title: Portable magnetic resonance imaging of patients indoors, outdoors and at home
  publication-title: Sci Rep.
– volume: 22
  start-page: 354
  issue: 3
  year: 2005
  end-page: 360
  article-title: Initial experience with balanced turbo field echo in depicting carotid artery stenosis: comparison with multiple overlapping thin slab acquisition and 3D contrast‐enhanced magnetic resonance angiography
  publication-title: J Magn Reson Imaging.
– volume: 49
  start-page: e65
  issue: 7
  year: 2019
  end-page: e77
  article-title: Accessible magnetic resonance imaging: a review
  publication-title: J Magn Reson Imaging
– volume: 85
  start-page: 495
  issue: 1
  year: 2021
  end-page: 505
  article-title: In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array
  publication-title: Magn Reson Med.
– volume: 36
  start-page: 335
  issue: 3
  year: 2023
  end-page: 346
  article-title: An evolution of low‐field strength MRI
  publication-title: MAGMA.
– volume: 30
  start-page: 51
  issue: 1
  year: 1993
  end-page: 59
  article-title: Quantitative evaluation of several partial Fourier reconstruction algorithms used in MRI
  publication-title: Magn Reson Med.
– volume: 306
  issue: 3
  year: 2023
  article-title: Quantitative brain morphometry of portable low‐field‐strength MRI using super‐resolution machine learning
  publication-title: Radiology.
– volume: 3
  start-page: 391
  issue: 3
  year: 1995
  end-page: 398
  article-title: Time‐of‐flight method of MR angiography
  publication-title: Magn Reson Imaging Clin N Am.
– volume: 179
  start-page: 805
  issue: 3
  year: 1991
  end-page: 811
  article-title: Cerebral MR angiography with multiple overlapping thin slab acquisition. Part I. Quantitative analysis of vessel visibility
  publication-title: Radiology.
– volume: 33
  start-page: 560
  issue: 9
  year: 1998
  end-page: 572
  article-title: Contrast‐enhanced magnetic resonance angiography of cerebral arteries. A review
  publication-title: Invest Radiol.
– volume: 12
  issue: 1
  year: 2022
  article-title: Deep learning‐based single image super‐resolution for low‐field MR brain images
  publication-title: Sci Rep.
– volume: 39
  start-page: 2237
  issue: 8
  year: 2008
  end-page: 2248
  article-title: Diagnostic accuracy of magnetic resonance angiography for internal carotid artery disease: a systematic review and meta‐analysis
  publication-title: Stroke.
– volume: 36
  start-page: 429
  issue: 3
  year: 2023
  end-page: 438
  article-title: Specific absorption rate (SAR) simulations for low‐field (< 0.1 T) MRI systems
  publication-title: MAGMA.
– volume: 5
  year: 2015
  article-title: Low‐cost high‐performance MRI
  publication-title: Sci Rep.
– volume: 8
  issue: 36
  year: 2022
  article-title: Fast acquisition of propagating waves in humans with low‐field MRI: toward accessible MR elastography
  publication-title: Sci Adv.
– volume: 12
  issue: 1
  year: 2022
  article-title: Deep learning for fast low‐field MRI acquisitions
  publication-title: Sci Rep.
– volume: 52
  start-page: 686
  issue: 3
  year: 2020
  end-page: 696
  article-title: Low‐cost and portable MRI
  publication-title: J Magn Reson Imaging.
– volume: 5
  start-page: 229
  issue: 3
  year: 2021
  end-page: 239
  article-title: A portable scanner for magnetic resonance imaging of the brain
  publication-title: Nat Biomed Eng.
– volume: 92
  start-page: 126
  issue: 1
  year: 1991
  end-page: 145
  article-title: A fast, iterative, partial‐Fourier technique capable of local phase recovery
  publication-title: J Magn Reson.
– volume: 87
  start-page: 884
  issue: 2
  year: 2022
  end-page: 895
  article-title: In vivo T(1) and T(2) relaxation time maps of brain tissue, skeletal muscle, and lipid measured in healthy volunteers at 50 mT
  publication-title: Magn Reson Med.
– volume: 12
  issue: 1
  year: 2021
  article-title: Portable, bedside, low‐field magnetic resonance imaging for evaluation of intracerebral hemorrhage
  publication-title: Nat Commun.
– volume: 39
  start-page: 1710
  issue: 9
  year: 2018
  end-page: 1716
  article-title: Value of contrast‐enhanced MRA versus time‐of‐flight MRA in acute ischemic stroke MRI
  publication-title: Am J Neuroradiol.
– volume: 8
  issue: 16
  year: 2022
  article-title: Portable, low‐field magnetic resonance imaging enables highly accessible and dynamic bedside evaluation of ischemic stroke
  publication-title: Sci Adv.
– ident: e_1_2_9_32_1
  doi: 10.1097/00004424‐199311000‐00005
– ident: e_1_2_9_50_1
  doi: 10.1118/1.595535
– ident: e_1_2_9_40_1
  doi: 10.1002/mrm.30046
– ident: e_1_2_9_48_1
  doi: 10.1002/mrm.21122
– ident: e_1_2_9_35_1
  doi: 10.3174/ajnr.A5771
– ident: e_1_2_9_54_1
  doi: 10.1002/mrm.1910100113
– ident: e_1_2_9_37_1
  doi: 10.1002/jmri.20394
– ident: e_1_2_9_18_1
  doi: 10.1148/radiol.220522
– ident: e_1_2_9_39_1
  doi: 10.1002/nbm.4956
– ident: e_1_2_9_17_1
  doi: 10.1038/s41598‐022‐10298‐6
– ident: e_1_2_9_64_1
  doi: 10.1126/sciadv.abb0998
– ident: e_1_2_9_23_1
  doi: 10.1038/s41467‐021‐25441‐6
– ident: e_1_2_9_47_1
  doi: 10.1016/j.jmr.2013.10.013
– ident: e_1_2_9_43_1
  doi: 10.1002/jmri.1880040517
– ident: e_1_2_9_10_1
  doi: 10.1038/s41551‐020‐00641‐5
– ident: e_1_2_9_31_1
  doi: 10.1097/00004728‐199301000‐00002
– ident: e_1_2_9_4_1
  doi: 10.1002/jmri.26942
– ident: e_1_2_9_41_1
  doi: 10.1016/0022‐2364(91)90253‐P
– ident: e_1_2_9_56_1
  doi: 10.1002/mrm.1910250217
– ident: e_1_2_9_44_1
  doi: 10.1109/TIP.2012.2210725
– ident: e_1_2_9_3_1
  doi: 10.1002/jmri.26637
– volume: 8
  start-page: 116
  issue: 2
  year: 1992
  ident: e_1_2_9_55_1
  article-title: Magnetization transfer contrast in magnetic resonance imaging
  publication-title: Magn Reson Q.
– ident: e_1_2_9_7_1
  doi: 10.1038/d41586‐023‐03531‐3
– ident: e_1_2_9_28_1
  doi: 10.1016/S1064‐9689(21)00251‐8
– ident: e_1_2_9_13_1
  doi: 10.1038/s41467‐021‐27317‐1
– ident: e_1_2_9_14_1
  doi: 10.1126/sciadv.abo5739
– ident: e_1_2_9_30_1
  doi: 10.1148/radiology.190.3.8115646
– ident: e_1_2_9_63_1
  doi: 10.1097/00004424‐199809000‐00012
– ident: e_1_2_9_25_1
  doi: 10.1126/sciadv.abm3952
– ident: e_1_2_9_58_1
  doi: 10.1002/mrm.28738
– ident: e_1_2_9_21_1
  doi: 10.1038/s41598‐022‐14039‐7
– ident: e_1_2_9_36_1
  doi: 10.1016/j.ejrad.2013.08.052
– ident: e_1_2_9_57_1
  doi: 10.1007/s00330‐020‐06682‐3
– ident: e_1_2_9_16_1
  doi: 10.1126/science.adm7168
– ident: e_1_2_9_52_1
  doi: 10.1007/s10334‐023‐01073‐3
– ident: e_1_2_9_15_1
  doi: 10.1038/s41598‐022‐17472‐w
– start-page: 5022
  volume-title: 2023 Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM), Annual Meeting & Exhibition
  year: 2023
  ident: e_1_2_9_53_1
– ident: e_1_2_9_61_1
  doi: 10.1002/jmri.20954
– ident: e_1_2_9_11_1
  doi: 10.1002/mrm.28396
– ident: e_1_2_9_27_1
  doi: 10.2214/ajr.149.6.1097
– ident: e_1_2_9_34_1
  doi: 10.1161/STROKEAHA.107.509877
– ident: e_1_2_9_33_1
  doi: 10.1002/jmri.1880060120
– ident: e_1_2_9_51_1
  doi: 10.1002/mrm.29009
– ident: e_1_2_9_6_1
  doi: 10.1007/s10334‐023‐01104‐z
– ident: e_1_2_9_49_1
  doi: 10.1002/mrm.24550
– ident: e_1_2_9_9_1
  doi: 10.1002/mrm.27861
– ident: e_1_2_9_62_1
  doi: 10.1002/jmri.20767
– ident: e_1_2_9_12_1
  doi: 10.1016/j.jmr.2020.106829
– ident: e_1_2_9_45_1
  doi: 10.1016/0022‐2364(76)90233‐X
– ident: e_1_2_9_26_1
  doi: 10.1002/jmri.26288
– ident: e_1_2_9_2_1
  doi: 10.1002/jmri.26638
– ident: e_1_2_9_22_1
  doi: 10.1038/s41598‐021‐87482‐7
– ident: e_1_2_9_60_1
  doi: 10.1016/j.media.2021.102047
– ident: e_1_2_9_20_1
  doi: 10.1126/sciadv.adi9327
– ident: e_1_2_9_46_1
  doi: 10.3389/fphy.2020.00172
– ident: e_1_2_9_5_1
  doi: 10.1002/jmri.28408
– ident: e_1_2_9_19_1
  doi: 10.1002/mrm.29642
– ident: e_1_2_9_59_1
  doi: 10.1007/s00234‐023‐03271‐1
– volume: 17
  start-page: 1749
  issue: 9
  year: 1996
  ident: e_1_2_9_38_1
  article-title: Intracranial stenoocclusive disease: MR angiography with magnetization transfer and variable flip angle
  publication-title: Am J Neuroradiol.
– ident: e_1_2_9_24_1
  doi: 10.1001/jamaneurol.2020.3263
– ident: e_1_2_9_42_1
  doi: 10.1002/mrm.1910300109
– ident: e_1_2_9_29_1
  doi: 10.1148/radiology.179.3.2027996
– ident: e_1_2_9_8_1
  doi: 10.1038/srep15177
SSID ssj0008432
Score 2.4479907
Snippet We aim to explore the feasibility of head and neck time‐of‐flight (TOF) magnetic resonance angiography (MRA) at ultra‐low‐field (ULF). TOF MRA was conducted on...
We aim to explore the feasibility of head and neck time-of-flight (TOF) magnetic resonance angiography (MRA) at ultra-low-field (ULF). TOF MRA was conducted on...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e5213
SubjectTerms Adult
Angiography
Arteries
Bifurcations
Blood
Blood flow
Blood vessels
brain
Carotid arteries
Carotid artery
Cerebral Arteries - diagnostic imaging
Contrast agents
Contrast media
Feasibility studies
Female
Humans
Image contrast
Image quality
Jugular vein
Magnetic resonance
magnetic resonance angiography
Magnetic Resonance Angiography - methods
Magnetic shielding
Male
Medical imaging
MRI
Neck
Neuroimaging
noncontrast enhancement
Radio frequency
Reproducibility of Results
Scanners
Signal quality
Three dimensional flow
time‐of‐flight
Two dimensional flow
ultra‐low‐field
Veins
Veins & arteries
Young Adult
Title Ultra‐low‐field magnetic resonance angiography at 0.05 T: A preliminary study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.5213
https://www.ncbi.nlm.nih.gov/pubmed/39032076
https://www.proquest.com/docview/3113830416
https://www.proquest.com/docview/3082959026
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VSkAvBRb6gFIZCcEpW8ePTcKtlFYV0laAulIlDpEdOxViN1vtZlWpp_6E_kZ-CTNOslAeEuKSHDKxHb_mm3jmG4CXlnuvBopHHnVXRBojyhKvI9wsnTZO2lRSoPDwZHA8Uu_P9FnrVUmxMA0_xPKHG62MsF_TAjd2vvcTaaid9FH3ENFnLAdEm__u0w_mqFSF3GQIIEQkVco73lku9roXb2ui3-DlbbQa1M3RA_jcNbTxMvnaX9S2X1z9wuH4f1_yENZbFMr2m2nzCFZ81YP7B13ytx7cG7Zn7j24G5xEi_lj-Dga1zPz7fpmPL3Ea3B-YxNzXlEgJEO7fUrsHZ6Z6vxLy4TNTM14n2t2-obts4sZtnQSIoBZ4LV9AqOjw9OD46hNyRAVUmUycpmMy9QnxokyNoiNdOmdV1ainSmUtl4rF5vMSKdkoaUqOOINI4woEwpzSOUGrFbTym8BE7xInSzikhhwdFJikWhbpWXmBibx0m7D62548qLlK6e0GeO8YVoWOfZbTv22DS-WkhcNR8cfZHa6Ec7bVTrPZRyjgc4Rk2IRy8fY03RoYio_XaAMBR8Txw3KbDYzY1mJzCj9fIJPXoXx_Wvt-cnbId2f_qvgM1gTiJ6aoMcdWK1nC_8c0U9td-GOUB92w2z_DjNgACU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVlAuFJZXaQEjIThl6_ixSdpTW1Et0F0JtCv1UClyYqdC7GarbVZInPgJ_EZ-SWecZGl5SIhLcvDEdvyab2zPNwAvM-6c6ikeONRdAWmMIImcDnCxtNpYmcWSHIUHw15_rN6d6JMV2Gt9YWp-iOWGG80Mv17TBKcN6Z0rrKHZtIvKR96ANX88R4jo40_uqFj56GQIIUQgVcxb5lkudtovr-ui3wDmdbzqFc7RBpy2Va3vmXzuLqqsm3_9hcXxP__lLtxpgCjbr0fOPVhxZQfWD9v4bx24NWiO3Ttw098TzS_uw4fxpJqbH9--T2Zf8Onvv7GpOSvJF5Kh6T4jAg_HTHn2qSHDZqZivMs1G-2yfXY-x6pOvRMw89S2D2B89GZ02A-aqAxBLlUiA5vIsIhdZKwoQoPwSBfOOpVJNDWF0pnTyoYmMdIqmWupco6Qwwgjiog8HWL5EFbLWekeAxM8j63Mw4JIcHRUYJZoXsVFYnsmcjLbhNdt_6R5Q1lOkTMmaU22LFJst5TabRNeLCXPa5qOP8hst12cNhP1IpVhiDY6R1iKWSyTsaXp3MSUbrZAGfI_JpoblHlUD41lITKhCPQRprzyHfzX0tPhwYDeT_5V8Dms90eD4_T47fD9FtwWCKZqH8htWK3mC_cUwVCVPfOD_hIrQANs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VKh4XVLZQoBRcqSqngOPHJuFGaVfQdldUYiVukRM7qNJudrUs4tqf0N_IL-mM8xCoIHFJDp7Y0ozt-Sb2fAPwKePOqa7igUPfFZDHCJLI6QA3S6uNlVksKVG4P-ieDdX3K31V36qkXJiKH6L94UYrw-_XtMCntjh6QBqajQ_R98gFeK1w2tHsFuqi3YVj5YuTIYIQgVQxb4hnuThqvnzsiv7Dl4_hqvc3vTewVgNFdlJZdh1eubIDK6dNfbYOLPfrY_EOLPl7nPnNW_g1HM1n5v7P39HkDp_-fhobm-uSchUZhtYTIthwzJTXv2uyambmjB9yzS6P2QmbzlAtY5-kyzz17AYMe98uT8-CumpCkEuVyMAmMixiFxkritAgfNGFs05lEkNBoXTmtLKhSYy0SuZaqpwjJDDCiCKiTIRYbsJiOSndFjDB89jKPCyIpEZHBXaJ4U9cJLZrIiezbThoFJjmNaU4VbYYpRUZskhR1Smpehs-tpLTikbjCZndxgZpvZBuUhmGGENzhI3YRduMmqZzDVO6yS3KUH4w0dCgzLvKdu0gMqEK8RG2fPbGfHb0dPClT--dlwruw_LF117683zw4z2sCsQ6VYriLizOZ7fuA2KVebbnJ-U_Z0TiFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra%E2%80%90low%E2%80%90field+magnetic+resonance+angiography+at+0.05+T%3A+A+preliminary+study&rft.jtitle=NMR+in+biomedicine&rft.au=Shi%2C+Su&rft.au=Hu%2C+Jiahao&rft.au=Ding%2C+Ye&rft.au=Zhang%2C+Junhao&rft.date=2024-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0952-3480&rft.eissn=1099-1492&rft.volume=37&rft.issue=11&rft_id=info:doi/10.1002%2Fnbm.5213&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon