Estimation of group means in generalized linear mixed models

Summary In this study, we investigate the concept of the mean response for a treatment group mean as well as its estimation and prediction for generalized linear models with a subject‐wise random effect. Generalized linear models are commonly used to analyze categorical data. The model‐based mean fo...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutical statistics : the journal of the pharmaceutical industry Vol. 19; no. 5; pp. 646 - 661
Main Authors Duan, Jiexin, Levine, Michael, Luo, Junxiang, Qu, Yongming
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Inc 01.09.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1539-1604
1539-1612
1539-1612
DOI10.1002/pst.2022

Cover

More Information
Summary:Summary In this study, we investigate the concept of the mean response for a treatment group mean as well as its estimation and prediction for generalized linear models with a subject‐wise random effect. Generalized linear models are commonly used to analyze categorical data. The model‐based mean for a treatment group usually estimates the response at the mean covariate. However, the mean response for the treatment group for studied population is at least equally important in the context of clinical trials. New methods were proposed to estimate such a mean response in generalized linear models; however, this has only been done when there are no random effects in the model. We suggest that, in a generalized linear mixed model (GLMM), there are at least two possible definitions of a treatment group mean response that can serve as estimation/prediction targets. The estimation of these treatment group means is important for healthcare professionals to be able to understand the absolute benefit vs risk. For both of these treatment group means, we propose a new set of methods that suggests how to estimate/predict both of them in a GLMMs with a univariate subject‐wise random effect. Our methods also suggest an easy way of constructing corresponding confidence and prediction intervals for both possible treatment group means. Simulations show that proposed confidence and prediction intervals provide correct empirical coverage probability under most circumstances. Proposed methods have also been applied to analyze hypoglycemia data from diabetes clinical trials.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1539-1604
1539-1612
1539-1612
DOI:10.1002/pst.2022