Graph neural network and reinforcement learning for multi‐agent cooperative control of connected autonomous vehicles
A connected autonomous vehicle (CAV) network can be defined as a set of connected vehicles including CAVs that operate on a specific spatial scope that may be a road network, corridor, or segment. The spatial scope constitutes an environment where traffic information is shared and instructions are i...
Saved in:
| Published in | Computer-aided civil and infrastructure engineering Vol. 36; no. 7; pp. 838 - 857 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1093-9687 1467-8667 |
| DOI | 10.1111/mice.12702 |
Cover
| Abstract | A connected autonomous vehicle (CAV) network can be defined as a set of connected vehicles including CAVs that operate on a specific spatial scope that may be a road network, corridor, or segment. The spatial scope constitutes an environment where traffic information is shared and instructions are issued for controlling the CAVs movements. Within such a spatial scope, high‐level cooperation among CAVs fostered by joint planning and control of their movements can greatly enhance the safety and mobility performance of their operations. Unfortunately, the highly combinatory and volatile nature of CAV networks due to the dynamic number of agents (vehicles) and the fast‐growing joint action space associated with multi‐agent driving tasks pose difficultly in achieving cooperative control. The problem is NP‐hard and cannot be efficiently resolved using rule‐based control techniques. Also, there is a great deal of information in the literature regarding sensing technologies and control logic in CAV operations but relatively little information on the integration of information from collaborative sensing and connectivity sources. Therefore, we present a novel deep reinforcement learning‐based algorithm that combines graphic convolution neural network with deep Q‐network to form an innovative graphic convolution Q network that serves as the information fusion module and decision processor. In this study, the spatial scope we consider for the CAV network is a multi‐lane road corridor. We demonstrate the proposed control algorithm using the application context of freeway lane‐changing at the approaches to an exit ramp. For purposes of comparison, the proposed model is evaluated vis‐à‐vis traditional rule‐based and long short‐term memory‐based fusion models. The results suggest that the proposed model is capable of aggregating information received from sensing and connectivity sources and prescribing efficient operative lane‐change decisions for multiple CAVs, in a manner that enhances safety and mobility. That way, the operational intentions of individual CAVs can be fulfilled even in partially observed and highly dynamic mixed traffic streams. The paper presents experimental evidence to demonstrate that the proposed algorithm can significantly enhance CAV operations. The proposed algorithm can be deployed at roadside units or cloud platforms or other centralized control facilities. |
|---|---|
| AbstractList | A connected autonomous vehicle (CAV) network can be defined as a set of connected vehicles including CAVs that operate on a specific spatial scope that may be a road network, corridor, or segment. The spatial scope constitutes an environment where traffic information is shared and instructions are issued for controlling the CAVs movements. Within such a spatial scope, high‐level cooperation among CAVs fostered by joint planning and control of their movements can greatly enhance the safety and mobility performance of their operations. Unfortunately, the highly combinatory and volatile nature of CAV networks due to the dynamic number of agents (vehicles) and the fast‐growing joint action space associated with multi‐agent driving tasks pose difficultly in achieving cooperative control. The problem is NP‐hard and cannot be efficiently resolved using rule‐based control techniques. Also, there is a great deal of information in the literature regarding sensing technologies and control logic in CAV operations but relatively little information on the integration of information from collaborative sensing and connectivity sources. Therefore, we present a novel deep reinforcement learning‐based algorithm that combines graphic convolution neural network with deep Q‐network to form an innovative graphic convolution Q network that serves as the information fusion module and decision processor. In this study, the spatial scope we consider for the CAV network is a multi‐lane road corridor. We demonstrate the proposed control algorithm using the application context of freeway lane‐changing at the approaches to an exit ramp. For purposes of comparison, the proposed model is evaluated vis‐à‐vis traditional rule‐based and long short‐term memory‐based fusion models. The results suggest that the proposed model is capable of aggregating information received from sensing and connectivity sources and prescribing efficient operative lane‐change decisions for multiple CAVs, in a manner that enhances safety and mobility. That way, the operational intentions of individual CAVs can be fulfilled even in partially observed and highly dynamic mixed traffic streams. The paper presents experimental evidence to demonstrate that the proposed algorithm can significantly enhance CAV operations. The proposed algorithm can be deployed at roadside units or cloud platforms or other centralized control facilities. |
| Author | Chen, Sikai Dong, Jiqian Labi, Samuel Ha, Paul (Young Joun) Li, Yujie |
| Author_xml | – sequence: 1 givenname: Sikai surname: Chen fullname: Chen, Sikai email: chen1670@purdue.edu, sikaichen@cmu.edu organization: Carnegie Mellon University – sequence: 2 givenname: Jiqian surname: Dong fullname: Dong, Jiqian organization: Purdue University – sequence: 3 givenname: Paul (Young Joun) surname: Ha fullname: Ha, Paul (Young Joun) organization: Purdue University – sequence: 4 givenname: Yujie surname: Li fullname: Li, Yujie organization: Purdue University – sequence: 5 givenname: Samuel surname: Labi fullname: Labi, Samuel organization: Purdue University |
| BookMark | eNp9UMtOwzAQtFCRKIULX2CJG1KKHbt5HFFVSqUiLnCOHHvTuiR2cZxWvfEJfCNfgkM5IcRedrQ7M6udczQw1gBCV5SMaajbRksY0zgl8QkaUp6kUZYk6SBgkrMoT7L0DJ237YaE4pwN0W7uxHaNDXRO1KH5vXWvWBiFHWhTWSehAeNxDcIZbVY4jHDT1V5_vn-IVb-S1m7BCa93ELDxztbYVj00ID0oLDpvjW1s1-IdrLWsob1Ap5WoW7j86SP0cj97nj5Ey6f5Ynq3jCTjeRzFvCxpmimaMyBlrqQSQiacsCytSNgALwnNyglROeXAVJYJpfKkZLECqARhI3R99N06-9ZB64uN7ZwJJ4t4wnKeMZKywLo5sqSzbeugKrZON8IdCkqKPteiz7X4zjWQyS-y1D58338udP23hB4le13D4R_z4nExnR01XzS8kR4 |
| CitedBy_id | crossref_primary_10_1111_mice_13167 crossref_primary_10_3390_s23020559 crossref_primary_10_1111_mice_13286 crossref_primary_10_26599_JICV_2023_9210032 crossref_primary_10_1080_21680566_2024_2333869 crossref_primary_10_1111_mice_12752 crossref_primary_10_1111_mice_12995 crossref_primary_10_1155_2022_4064512 crossref_primary_10_1111_mice_12904 crossref_primary_10_1016_j_eswa_2024_125196 crossref_primary_10_1002_int_22945 crossref_primary_10_1108_JICV_06_2022_0021 crossref_primary_10_1145_3503043 crossref_primary_10_3390_en17215399 crossref_primary_10_1111_mice_13051 crossref_primary_10_1016_j_commtr_2024_100151 crossref_primary_10_1109_TITS_2023_3257759 crossref_primary_10_1109_TITS_2024_3386200 crossref_primary_10_3390_jsan12040059 crossref_primary_10_1016_j_autcon_2022_104620 crossref_primary_10_1145_3604559 crossref_primary_10_1145_3625236 crossref_primary_10_1016_j_commtr_2024_100142 crossref_primary_10_1109_JIOT_2024_3447039 crossref_primary_10_1016_j_trd_2022_103300 crossref_primary_10_1016_j_jcsr_2024_108842 crossref_primary_10_1088_1742_6596_2767_9_092028 crossref_primary_10_1109_TETCI_2022_3222545 crossref_primary_10_1109_JIOT_2024_3479221 crossref_primary_10_1007_s10489_024_05478_y crossref_primary_10_1111_mice_12854 crossref_primary_10_1111_mice_12852 crossref_primary_10_1007_s43684_022_00023_5 crossref_primary_10_1111_mice_13301 crossref_primary_10_1155_2022_7807878 crossref_primary_10_1016_j_trc_2023_104445 crossref_primary_10_1016_j_neucom_2023_127117 crossref_primary_10_3233_ICA_230720 crossref_primary_10_1109_TIV_2023_3250353 crossref_primary_10_1177_09544070231217762 crossref_primary_10_1109_ACCESS_2024_3447056 crossref_primary_10_1109_TVT_2023_3312574 crossref_primary_10_1111_mice_12985 crossref_primary_10_3233_AIC_220316 crossref_primary_10_1016_j_conengprac_2025_106315 crossref_primary_10_1111_mice_13159 crossref_primary_10_1111_mice_13312 crossref_primary_10_3390_app132212366 crossref_primary_10_26599_JICV_2023_9210036 crossref_primary_10_3233_ICA_230698 crossref_primary_10_1002_rnc_7177 crossref_primary_10_1016_j_neucom_2024_128294 crossref_primary_10_1111_mice_13002 crossref_primary_10_1109_TSP_2025_3534685 crossref_primary_10_1109_OJITS_2023_3260624 crossref_primary_10_1021_acs_chemrev_3c00189 crossref_primary_10_1080_19427867_2024_2335084 crossref_primary_10_1109_TTE_2024_3377809 crossref_primary_10_1109_ACCESS_2023_3345795 crossref_primary_10_1111_mice_13402 crossref_primary_10_3390_s23104710 crossref_primary_10_1142_S0129065722500551 crossref_primary_10_1145_3565973 crossref_primary_10_1111_mice_12825 crossref_primary_10_1111_mice_13080 crossref_primary_10_1016_j_neunet_2023_07_027 crossref_primary_10_1109_TIV_2023_3297310 crossref_primary_10_3390_s23198229 crossref_primary_10_1111_mice_13094 crossref_primary_10_1016_j_ifacol_2024_07_443 crossref_primary_10_1016_j_trc_2023_104415 crossref_primary_10_4271_12_06_04_0026 crossref_primary_10_1016_j_trd_2025_104658 crossref_primary_10_1080_21680566_2021_2004954 crossref_primary_10_3233_ICA_230716 crossref_primary_10_3233_ICA_230710 crossref_primary_10_1111_mice_12959 crossref_primary_10_1002_aisy_202300575 crossref_primary_10_1111_mice_12956 crossref_primary_10_3233_ICA_230712 crossref_primary_10_3390_computers11030038 crossref_primary_10_1016_j_eswa_2023_121764 crossref_primary_10_1016_j_physa_2022_128172 crossref_primary_10_3390_app12189156 crossref_primary_10_1016_j_physa_2023_129454 crossref_primary_10_1080_23249935_2023_2215338 crossref_primary_10_1109_JIOT_2024_3429522 crossref_primary_10_3390_fi15080251 crossref_primary_10_3390_app112210870 crossref_primary_10_1111_mice_12893 crossref_primary_10_1016_j_apm_2023_09_012 crossref_primary_10_1016_j_trc_2021_103192 crossref_primary_10_1111_mice_13180 crossref_primary_10_1177_03611981241312916 crossref_primary_10_1016_j_eswa_2025_126679 crossref_primary_10_3390_axioms12111033 crossref_primary_10_1007_s00170_024_14112_7 crossref_primary_10_1016_j_physa_2023_129189 crossref_primary_10_1109_TASE_2023_3334332 crossref_primary_10_1109_TASE_2024_3412239 crossref_primary_10_1111_mice_12820 crossref_primary_10_1016_j_neucom_2023_126327 crossref_primary_10_1111_mice_13115 crossref_primary_10_1007_s12053_024_10238_5 crossref_primary_10_1109_TCNS_2024_3469031 crossref_primary_10_3390_machines12080539 crossref_primary_10_1016_j_geits_2022_100023 crossref_primary_10_1016_j_trc_2024_104497 crossref_primary_10_1109_TCAD_2022_3233019 crossref_primary_10_3390_su151411258 crossref_primary_10_1111_mice_12813 crossref_primary_10_1016_j_trc_2023_104358 crossref_primary_10_1007_s10489_024_06143_0 crossref_primary_10_1016_j_commtr_2024_100127 crossref_primary_10_1108_FEBE_05_2021_0025 crossref_primary_10_2139_ssrn_4021924 crossref_primary_10_1016_j_comnet_2024_110854 |
| Cites_doi | 10.1061/(ASCE)CO.1943-7862.0001570 10.23919/ACC.2019.8814882 10.1111/mice.12440 10.1109/ITSC45102.2020.9294550 10.1109/MCOM.2015.7355568 10.1111/mice.12572 10.14359/51689560 10.1109/ITEC.2017.7993366 10.1109/IISA.2014.6878812 10.1002/9780470168073 10.1080/01441647.2010.543709 10.1016/j.trc.2020.102663 10.1016/j.trc.2019.11.007 10.1109/DSN-W.2019.00022 10.1007/s00521-019-04359-7 10.1109/IROS40897.2019.8968560 10.1111/mice.12533 10.1111/mice.12538 10.1111/mice.12558 10.1111/mice.12559 10.2352/ISSN.2470-1173.2017.19.AVM-023 10.1016/j.soildyn.2017.05.013 10.1016/j.trc.2019.06.002 10.1007/s10458-019-09421-1 10.1109/ITSC.2019.8917306 10.1109/IJCNN48605.2020.9207663 10.1061/(ASCE)CO.1943-7862.0001047 10.1080/15472450.2016.1248288 10.1007/978-3-642-32460-4 10.1007/978-3-319-71682-4_5 10.1145/3308558.3313488 10.1016/j.trc.2018.02.001 10.1109/ICRA40945.2020.9197132 10.1016/j.trc.2021.103192 10.1111/mice.12412 10.1111/mice.12450 10.1111/mice.12289 10.1111/mice.12454 10.1016/j.trc.2019.04.012 10.1609/aaai.v34i04.5747 10.1111/1467-8667.t01-1-00311 10.1109/TITS.2018.2865575 10.1111/mice.12451 10.1109/wivec.2013.6698230 10.1111/mice.12433 10.1177/003803856900300205 10.1007/978-3-319-15024-6_7 10.3233/ICA-2010-0345 10.21595/jve.2017.18924 10.1016/j.trc.2018.04.026 10.1145/3219819.3220077 10.1007/s00521-019-04146-4 10.1287/moor.27.4.819.297 10.1016/j.trc.2019.01.004 10.1061/(ASCE)0733-947X(2005)131:10(771) 10.1609/aaai.v30i1.10295 10.3389/fbuil.2020.590036 10.1111/mice.12495 10.1016/j.trc.2019.02.016 10.1016/j.trc.2020.102659 10.1016/j.neucom.2016.01.031 10.1111/mice.12622 10.1109/TNNLS.2017.2682102 10.1111/mice.12409 10.1021/ci00047a033 10.1111/0885-9507.00112 |
| ContentType | Journal Article |
| Copyright | 2021 2021 Computer‐Aided Civil and Infrastructure Engineering |
| Copyright_xml | – notice: 2021 – notice: 2021 Computer‐Aided Civil and Infrastructure Engineering |
| DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1111/mice.12702 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1467-8667 |
| EndPage | 857 |
| ExternalDocumentID | 10_1111_mice_12702 MICE12702 |
| Genre | article |
| GrantInformation_xml | – fundername: The United States Department of Transportation funderid: 69A3551747105 |
| GroupedDBID | ..I .3N .4S .DC .GA 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABFSI ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 E.L EAD EAP EBS EDO EJD EMK EST ESX F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RJQFR RX1 SAMSI SUPJJ TN5 TUS UB1 VH1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3492-24bb178d193e0b9dcdaac640387f0b17e4b018b50d914e3d88add96b32deefa03 |
| IEDL.DBID | DR2 |
| ISSN | 1093-9687 |
| IngestDate | Sun Jul 13 05:16:00 EDT 2025 Wed Oct 01 04:15:59 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Wed Jan 22 16:30:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3492-24bb178d193e0b9dcdaac640387f0b17e4b018b50d914e3d88add96b32deefa03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2539483073 |
| PQPubID | 2045171 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2539483073 crossref_primary_10_1111_mice_12702 crossref_citationtrail_10_1111_mice_12702 wiley_primary_10_1111_mice_12702_MICE12702 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2021 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Computer-aided civil and infrastructure engineering |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2005; 131 2010; 17 2003; 18 2018; 89 2017; 114 2016; 142 2020; 6 2020; 2 2019; 20 1969; 3 1985 2018; 33 2016; 190 2017a; 100 1998; 13 2018; 144 2011 2019; 33 2017b; 28 2019; 34 2017; 21 2011; 31 2016; 53 2019; 105 1996 2007 2020; 36 2019; 103 2020; 35 2020; 32 2016; 18 2019; 100 2019; 101 2002; 27 2018; 2018 2021 2020 2018; 92 2019 2020; 116 2018 2017 2020; 111 2016 2017; 19 2015 2014 2013 2012; 5 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 FHWA. (e_1_2_7_26_1) 2018 Krajzewicz D. (e_1_2_7_44_1) 2012; 5 e_1_2_7_49_1 e_1_2_7_28_1 Yang Y. (e_1_2_7_82_1) 2018; 2018 Tarko A. (e_1_2_7_72_1) 2011 Zhuo M. (e_1_2_7_89_1) 2016; 18 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 Nilsson F. (e_1_2_7_55_1) 2019 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
| References_xml | – year: 2011 – year: 2013 article-title: Combining adaptive junction control with simultaneous green‐light‐optimal‐speed‐advisory – year: 2019 article-title: Implementation and testing of dynamic and flexible platoons in urban areas – volume: 114 start-page: 237 issue: 2 year: 2017 end-page: 244 article-title: Supervised deep restricted Boltzmann machine for estimation of concrete compressive strength publication-title: ACI Materials Journal – year: 2019 article-title: Model‐free deep reinforcement learning for urban autonomous driving – volume: 33 start-page: 750 year: 2019 end-page: 797 article-title: A survey and critique of multiagent deep reinforcement learning publication-title: Autonomous Agents and Multiagent Systems – year: 2021 – volume: 89 start-page: 364 year: 2018 end-page: 383 article-title: Spatiotemporal intersection control in a connected and automated vehicle environment publication-title: Transportation Research Part C: Emerging Technologies – volume: 116 year: 2020 article-title: Joint optimization of vehicle‐group trajectory and signal timing: Introducing the white phase for mixed‐autonomy traffic stream publication-title: Transportation Research Part C: Emerging Technologies – volume: 31 start-page: 495 issue: 4 year: 2011 end-page: 519 article-title: Applications of graph theory and network science to transit network design publication-title: Transport Reviews – volume: 105 start-page: 405 year: 2019 end-page: 421 article-title: Corridor level cooperative trajectory optimization with connected and automated vehicles publication-title: Transportation Research. Part C: Emerging Technologies – volume: 34 start-page: 3438 issue: 4 year: 2019 end-page: 3445 publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 18 start-page: 325 issue: 5 year: 2003 end-page: 338 article-title: Wavelet‐clustering‐neural network model for freeway incident detection publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 17 start-page: 197 issue: 3 year: 2010 end-page: 210 article-title: Enhanced probabilistic neural network with local decision circles: A robust classifier publication-title: Integrated Computer‐Aided Engineering – volume: 34 start-page: 213 issue: 3 year: 2019 end-page: 229 article-title: Automated pixel‐level pavement crack detection on 3D asphalt surfaces with a recurrent neural network publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2018 – year: 2014 – volume: 6 year: 2020 article-title: Vehicle connectivity and automation: A sibling relationship publication-title: Frontiers in Built Environment – volume: 32 start-page: 8675 issue: 12 year: 2020 end-page: 8690 article-title: A dynamic ensemble learning algorithm for neural networks publication-title: Neural Computing and Applications – volume: 111 start-page: 294 year: 2020 end-page: 317 article-title: Cooperative lane control application for fully connected and automated vehicles at multilane freeways publication-title: Transportation Research Part C: Emerging Technologies – volume: 35 start-page: 1230 issue: 11 year: 2020 end-page: 1245 article-title: Deep reinforcement learning for long‐term pavement maintenance planning publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 36 start-page: 30 issue: 1 year: 2020 end-page: 46 article-title: Dynamic origin‐destination flow estimation using automatic vehicle identification data: A 3D convolutional neural network approach publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 2018 start-page: 8869 issue: 12 year: 2018 end-page: 8886 article-title: Mean field multi‐agent reinforcement learning publication-title: 35th International Conference on Machine Learning, ICML – start-page: 5385 year: 2020 end-page: 5392 – volume: 27 start-page: 819 year: 2002 end-page: 840 article-title: The complexity of decentralized control of Markov decision processes publication-title: Mathematics of Operations Research – volume: 100 start-page: 161 year: 2019 end-page: 176 article-title: A consensus‐based distributed trajectory control in a signal‐free intersection publication-title: Transportation Research Part C: Emerging Technologies – volume: 101 start-page: 111 year: 2019 end-page: 125 article-title: Trajectory optimization of connected and autonomous vehicles at a multilane freeway merging area publication-title: Transportation Research Part C: Emerging Technologies – volume: 3 start-page: 215 issue: 2 year: 1969 end-page: 232 article-title: Graph theory and social networks: A technical comment on connectedness and connectivity publication-title: Sociology – start-page: 3315 year: 2019 end-page: 3320 article-title: Decentralized optimal merging control for connected and automated vehicles – volume: 116 year: 2020 article-title: Cooperative merging control via trajectory optimization in mixed vehicular traffic publication-title: Transportation Research Part C: Emerging Technologies – year: 2016 article-title: Deep reinforcement learning with double Q‐Learning – year: 2019 article-title: Autonomous maneuver coordination via vehicular communication – volume: 144 issue: 12 year: 2018 article-title: Novel machine‐learning model for estimating construction costs considering economic variables and indexes publication-title: Journal of Construction Engineering and Management – volume: 18 start-page: 1422 issue: 6 year: 2016 end-page: 1428 article-title: On the impact of cooperative autonomous vehicles in improving freeway merging: a modified intelligent driver model‐based approach publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 53 start-page: 64 issue: 12 year: 2016 end-page: 70 article-title: Enhancements of V2X communication in support of cooperative autonomous driving publication-title: IEEE Communications Magazine – volume: 103 start-page: 246 year: 2019 end-page: 260 article-title: DCL‐AIM: Decentralized coordination learning of autonomous intersection management for connected and automated vehicles publication-title: Transportation Research Part C: Emerging Technologies – year: 2017 article-title: Deep reinforcement learning framework for autonomous driving – start-page: 195 year: 1996 end-page: 210 article-title: Planning, learning and coordination in multiagent decision processes – year: 2019 article-title: Semi‐supervised classification with graph convolutional networks – year: 2020 article-title: Reinforcement learning‐based bird‐view automated vehicle control to avoid crossing traffic publication-title: Computer‐Aided Civil and Infrastructure Engineering. – year: 2020 article-title: Spatio‐weighted information fusion and DRL‐based control for connected autonomous vehicles – start-page: 6533 year: 2017 end-page: 6542 article-title: Protein interface prediction using graph convolutional networks – volume: 20 start-page: 2220 issue: 6 year: 2019 end-page: 2229 article-title: Consensus‐based cooperative control for multi‐platoon under the connected vehicles environment publication-title: IEEE Transactions on Intelligent Trans‐portation Systems – year: 2019 article-title: Multi‐agent connected autonomous driving using deep reinforcement learning – year: 2019 – year: 2015 – volume: 142 issue: 2 year: 2016 article-title: A novel machine learning model for estimation of sale prices of real estate units publication-title: Journal of Construction Engineering and Management – volume: 35 start-page: 965 issue: 9 year: 2020 end-page: 978 article-title: Combining deep features and activity context to improve recognition of activities of workers in groups publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2007 – year: 2015 article-title: Adam: A method for stochastic optimization – volume: 32 start-page: 6393 issue: 10 year: 2020 end-page: 6404 article-title: FEMa: a finite element machine for fast learning publication-title: Neural Computing and Applications – year: 2019 article-title: Graph neural networks for social recommendation – volume: 13 start-page: 339 issue: 5 year: 1998 end-page: 348 article-title: A comparative analysis of two artificial neural networks using pavement performance prediction publication-title: Computer‐Aided Civil and Infrastructure Engineering – start-page: 1 year: 2019 end-page: 72 – year: 2016 – volume: 5 start-page: 128 issue: 3–4 year: 2012 end-page: 138 article-title: Recent development and applications of SUMO–Simulation of Urban MObility publication-title: International Journal on Advances in Systems and Measurements – volume: 35 start-page: 832 issue: 8 year: 2020 end-page: 849 article-title: Pavement defect detection with fully convolutional network and an uncertainty framework publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 33 start-page: 1090 issue: 12 year: 2018 end-page: 1109 article-title: Automatic pixel‐level crack detection and measurement using fully convolutional network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 34 start-page: 877 issue: 10 year: 2019 end-page: 896 article-title: A graph deep learning method for short‐term traffic forecasting on large road networks publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 1985 article-title: Applications of graph theory in chemistry publication-title: Journal of Chemical Information and Computer Sciences – volume: 100 start-page: 417 issue: 1 year: 2017a end-page: 427 article-title: NEEWS: A novel earthquake early warning system using neural dynamic classification and neural dynamic optimization model publication-title: Soil Dynamics and Earthquake Engineering – volume: 34 start-page: 713 issue: 8 year: 2019 end-page: 727 article-title: Encoder–decoder network for pixel‐level road crack detection in black‐box images publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 92 start-page: 412 year: 2018 end-page: 425 article-title: Development of a signal‐head‐free intersection control logic in a fully connected and autonomous vehicle environment publication-title: Transportation Research Part C: Emerging Technologies – volume: 34 start-page: 654 issue: 8 year: 2019 end-page: 676 article-title: Convolutional sparse coding‐based deep random vector functional link network for distress classification of road structures publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 28 start-page: 3074 issue: 12 year: 2017b end-page: 3083 article-title: A new neural dynamic classification algorithm publication-title: IEEE Transactions on Neural Networks and Learning Systems – start-page: 7566 year: 2020 end-page: 7573 – volume: 19 start-page: 4300 issue: 6 year: 2017 end-page: 4322 article-title: Multi‐agent replicator controller for sustainable vibration control of smart structures publication-title: Journal of Vibroengineering – volume: 34 start-page: 616 issue: 7 year: 2019 end-page: 634 article-title: Automatic pixel‐level multiple damage detection of concrete structure using fully convolutional network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 33 start-page: 262 issue: 4 year: 2018 end-page: 281 article-title: Modeling the proactive driving behavior of connected vehicles: A cell‐based simulation approach publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2020 – volume: 35 start-page: 305 issue: 4 year: 2020 end-page: 321 article-title: A deep learning algorithm for simulating autonomous driving considering prior knowledge and temporal information publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 190 start-page: 82 year: 2016 end-page: 94 article-title: Multi‐agent reinforcement learning as a rehearsal for decentralized planning publication-title: Neurocomputing – volume: 2 start-page: 1291 year: 2020 end-page: 1305 article-title: Automated pavement crack detection and segmentation based on two‐step convolutional neural network publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2018 article-title: DeepInf: Social influence prediction with deep learning – year: 2017 – start-page: 767 year: 2017 end-page: 772 article-title: A smart car model based on autonomous intelligent agents for reducing accidents – volume: 131 start-page: 771 issue: 10 year: 2005 end-page: 779 article-title: Dynamic wavelet neural network model for traffic flow forecasting publication-title: Journal of Transportation Engineering – volume: 21 start-page: 136 issue: 2 year: 2017 end-page: 147 article-title: Collaborative merging strategy for freeway ramp operations in a connected and autonomous vehicles environment publication-title: Journal of Intelligent Transportation Systems – volume: 34 start-page: 897 issue: 10 year: 2019 end-page: 914 article-title: A convolutional neural‐network‐based pedestrian counting model for various crowded scenes publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2013 – ident: e_1_2_7_63_1 doi: 10.1061/(ASCE)CO.1943-7862.0001570 – volume-title: Transportation systems modeling and evaluation: Handbook of transportation engineering. Volume I: Systems and operations year: 2011 ident: e_1_2_7_72_1 – ident: e_1_2_7_78_1 doi: 10.23919/ACC.2019.8814882 – ident: e_1_2_7_6_1 doi: 10.1111/mice.12440 – ident: e_1_2_7_17_1 doi: 10.1109/ITSC45102.2020.9294550 – ident: e_1_2_7_34_1 doi: 10.1109/MCOM.2015.7355568 – ident: e_1_2_7_76_1 doi: 10.1111/mice.12572 – ident: e_1_2_7_64_1 doi: 10.14359/51689560 – ident: e_1_2_7_9_1 doi: 10.1109/ITEC.2017.7993366 – ident: e_1_2_7_4_1 doi: 10.1109/IISA.2014.6878812 – ident: e_1_2_7_69_1 doi: 10.1002/9780470168073 – ident: e_1_2_7_15_1 doi: 10.1080/01441647.2010.543709 – ident: e_1_2_7_25_1 – ident: e_1_2_7_39_1 doi: 10.1016/j.trc.2020.102663 – ident: e_1_2_7_40_1 doi: 10.1016/j.trc.2019.11.007 – ident: e_1_2_7_80_1 doi: 10.1109/DSN-W.2019.00022 – ident: e_1_2_7_2_1 doi: 10.1007/s00521-019-04359-7 – ident: e_1_2_7_36_1 doi: 10.1109/IROS40897.2019.8968560 – ident: e_1_2_7_73_1 doi: 10.1111/mice.12533 – ident: e_1_2_7_50_1 doi: 10.1111/mice.12538 – ident: e_1_2_7_47_1 – ident: e_1_2_7_83_1 doi: 10.1111/mice.12558 – ident: e_1_2_7_71_1 doi: 10.1111/mice.12559 – ident: e_1_2_7_10_1 – ident: e_1_2_7_19_1 doi: 10.2352/ISSN.2470-1173.2017.19.AVM-023 – ident: e_1_2_7_61_1 doi: 10.1016/j.soildyn.2017.05.013 – ident: e_1_2_7_84_1 doi: 10.1016/j.trc.2019.06.002 – ident: e_1_2_7_41_1 – ident: e_1_2_7_13_1 – ident: e_1_2_7_33_1 doi: 10.1007/s10458-019-09421-1 – ident: e_1_2_7_12_1 doi: 10.1109/ITSC.2019.8917306 – ident: e_1_2_7_57_1 doi: 10.1109/IJCNN48605.2020.9207663 – ident: e_1_2_7_27_1 – ident: e_1_2_7_32_1 – ident: e_1_2_7_60_1 doi: 10.1061/(ASCE)CO.1943-7862.0001047 – ident: e_1_2_7_79_1 doi: 10.1080/15472450.2016.1248288 – ident: e_1_2_7_74_1 doi: 10.1007/978-3-642-32460-4 – ident: e_1_2_7_30_1 doi: 10.1007/978-3-319-71682-4_5 – ident: e_1_2_7_46_1 – ident: e_1_2_7_23_1 doi: 10.1145/3308558.3313488 – ident: e_1_2_7_24_1 doi: 10.1016/j.trc.2018.02.001 – volume-title: FHWA National Dialogue on Highway Automation year: 2018 ident: e_1_2_7_26_1 – ident: e_1_2_7_66_1 doi: 10.1109/ICRA40945.2020.9197132 – ident: e_1_2_7_54_1 – ident: e_1_2_7_16_1 doi: 10.1016/j.trc.2021.103192 – ident: e_1_2_7_81_1 doi: 10.1111/mice.12412 – ident: e_1_2_7_87_1 doi: 10.1111/mice.12450 – ident: e_1_2_7_88_1 doi: 10.1111/mice.12289 – ident: e_1_2_7_68_1 doi: 10.1111/mice.12454 – ident: e_1_2_7_37_1 – ident: e_1_2_7_77_1 doi: 10.1016/j.trc.2019.04.012 – ident: e_1_2_7_11_1 doi: 10.1609/aaai.v34i04.5747 – ident: e_1_2_7_29_1 doi: 10.1111/1467-8667.t01-1-00311 – ident: e_1_2_7_48_1 doi: 10.1109/TITS.2018.2865575 – ident: e_1_2_7_51_1 doi: 10.1111/mice.12451 – ident: e_1_2_7_20_1 doi: 10.1109/wivec.2013.6698230 – ident: e_1_2_7_45_1 doi: 10.1111/mice.12433 – ident: e_1_2_7_7_1 doi: 10.1177/003803856900300205 – ident: e_1_2_7_21_1 doi: 10.1007/978-3-319-15024-6_7 – ident: e_1_2_7_22_1 – ident: e_1_2_7_28_1 – ident: e_1_2_7_67_1 – ident: e_1_2_7_3_1 doi: 10.3233/ICA-2010-0345 – ident: e_1_2_7_70_1 doi: 10.21595/jve.2017.18924 – ident: e_1_2_7_52_1 doi: 10.1016/j.trc.2018.04.026 – ident: e_1_2_7_59_1 doi: 10.1145/3219819.3220077 – ident: e_1_2_7_58_1 doi: 10.1007/s00521-019-04146-4 – ident: e_1_2_7_8_1 doi: 10.1287/moor.27.4.819.297 – ident: e_1_2_7_53_1 doi: 10.1016/j.trc.2019.01.004 – ident: e_1_2_7_38_1 doi: 10.1061/(ASCE)0733-947X(2005)131:10(771) – ident: e_1_2_7_75_1 doi: 10.1609/aaai.v30i1.10295 – volume-title: Simulation‐based analysis of partially automated vehicular networks: A parametric analysis utilizing traffic simulation year: 2019 ident: e_1_2_7_55_1 – ident: e_1_2_7_31_1 doi: 10.3389/fbuil.2020.590036 – ident: e_1_2_7_86_1 – ident: e_1_2_7_14_1 doi: 10.1111/mice.12495 – ident: e_1_2_7_35_1 doi: 10.1016/j.trc.2019.02.016 – ident: e_1_2_7_56_1 doi: 10.1016/j.trc.2020.102659 – ident: e_1_2_7_18_1 – ident: e_1_2_7_43_1 doi: 10.1016/j.neucom.2016.01.031 – ident: e_1_2_7_49_1 doi: 10.1111/mice.12622 – ident: e_1_2_7_62_1 doi: 10.1109/TNNLS.2017.2682102 – volume: 2018 start-page: 8869 issue: 12 year: 2018 ident: e_1_2_7_82_1 article-title: Mean field multi‐agent reinforcement learning publication-title: 35th International Conference on Machine Learning, ICML – ident: e_1_2_7_85_1 doi: 10.1111/mice.12409 – volume: 5 start-page: 128 issue: 3 year: 2012 ident: e_1_2_7_44_1 article-title: Recent development and applications of SUMO–Simulation of Urban MObility publication-title: International Journal on Advances in Systems and Measurements – ident: e_1_2_7_5_1 doi: 10.1021/ci00047a033 – ident: e_1_2_7_42_1 – volume: 18 start-page: 1422 issue: 6 year: 2016 ident: e_1_2_7_89_1 article-title: On the impact of cooperative autonomous vehicles in improving freeway merging: a modified intelligent driver model‐based approach publication-title: IEEE Transactions on Intelligent Transportation Systems – ident: e_1_2_7_65_1 doi: 10.1111/0885-9507.00112 |
| SSID | ssj0000443 |
| Score | 2.6367698 |
| Snippet | A connected autonomous vehicle (CAV) network can be defined as a set of connected vehicles including CAVs that operate on a specific spatial scope that may be... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 838 |
| SubjectTerms | Algorithms Artificial neural networks Control algorithms Control theory Convolution Cooperative control Data integration Graph neural networks Machine learning Microprocessors Neural networks Roads Roadsides Safety Traffic information Vehicles |
| Title | Graph neural network and reinforcement learning for multi‐agent cooperative control of connected autonomous vehicles |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12702 https://www.proquest.com/docview/2539483073 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-8667 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0000443 issn: 1093-9687 databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1467-8667 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0000443 issn: 1093-9687 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1093-9687 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-8667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000443 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PSxwxFH8sntqDWltxWyuBelGYJbPJziTQSylupVAPouClDHlJRqEys7i7Hjz1I_Qz9pM0L5PRtUih3kImE_LnvZeX5JffA9jnFtGXucuCsPAs7DdshoKrTKJVWvqyrpFudL-dFMfn8uvF5GIAH_u3MB0_xP2BG2lGtNek4AbnK0pO0dpHdG9KBjgXRdxPna5wR8mErtci04UqEzcpwXgefn28Gj24mKuOalxpphvwvW9jBzD5MVoucGTv_qJvfG4nNmE9uaDsUyczr2Dgmy3YSO4oS8o-D1l9xIc-bwtertAXvobbL8R2zYgSM9TXdIByZhrHbnwkZLXx7JGlyBSXLGSxiGD8_fOXoTddzLbtzHfk4yyh5llbU7IJljg0xywX9OyiXc7Zrb-KGL43cD49Ovt8nKU4Dpkl7sNsLBHzUrngK3qO2llnjC0kXZzXPHzxEnmucMKdzqUXTqlgdHWBYuy8rw0X27DWtI3fAVY79LkJPpgqUWqrDBrPBdYCpVNaFUM46OezsonknGJtXFf9ZodGvIojPoQP92VnHbXHk6V2e7GoknrPq_FEaKnIPA7hMM7vP2qogj4dxdTb_yn8Dl6MCT8TocG7sLa4Wfr3wQFa4F4U9D-0-AYY |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLUQXQAL3qhDB2qJboqUkTP2JPayQgNTXosKJHaRr-1QqVWCmBkWXfUT-Ea-pL6OA1OEkGBnOY6V2L7Xx_bxuYR8YQbA5alN_GBhiV9vmAQ4k4kAI5VweVkCnuienWejS3F8NbiK3By8C9PoQzxuuKFlBH-NBo4b0jNWjuHae3hw6j3wB5H5hQpioh8z6lEi8usVT1Qm86hOikSep3f_n4-eQOYsVA1zzeFKE1B1HCQKkWLyqzedQM_8eSbg-O7fWCXLEYXSb82wWSNzrlonKxGR0mjvY5_VBn1o89bJ0oyC4Qa5O0LBa4qqmL6-quGUU11ZeuuCJqsJ2480Bqe4pj6LBhLjw997jde6qKnrG9foj9NInKd1icnKO2P_OXo6wZsX9XRM79zPQOPbJJeHw4uDURJDOSQG5Q-TvgBIc2k9XHQMlDVWa-O7jMu8ZP6JE8BSCQNmVSoct1J6v6sy4H3rXKkZ3yLzVV25j4SWFlyqPQyTOQhlpAbtGIeSg7BSyaxDvrYdWpioc47hNn4X7XoHW7wILd4he49lbxp1jxdLddtxUUQLHxf9AVdCoofskP3Qwa_UUHiTGobU9lsKfyYLo4uz0-L0-_nJJ7LYRzpNYAp3yfzkdup2PB6awG4Y9f8ACzsKOQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQlRAc-CsVS7dgiV5AysrZeBP7iLps-VeFQOIWeWwHpFbJit3lwIlH4Bl5EjyOA1uEKpWb5UysxJ4Zj-3P3xDynWkAm8UmcsrCIrfe0BEkTEQctJDcZkUBeKJ7epYeXPKjq95VwObgXZiaH-Jlww0tw_trNHA7NMWUlWO69g4enDoP_In3pEBEX_98ij2KB3y9TCKZiiywkyKQ5_Xdv-ej1yBzOlT1c81gqU6oOvIUhQgx-d2ZjKGj798QOH74N5bJYohC6V6tNitkxparZClEpDTY-8hVNUkfmrpVsjDFYPiZ3P1EwmuKrJiuvbLGlFNVGnprPSer9tuPNCSnuKauinoQ49PDo8JrXVRX1dDW_OM0AOdpVWCxdM7YfY6ajPHmRTUZ0Tt742F8a-RysH_x4yAKqRwijfSHUZcDxJkwLly0DKTRRimdcjw7L5h7YjmwWECPGRlzmxghnN-VKSRdY22hWPKFzJZVadcJLQzYWLkwTGTApRYKlGUJFAlwI6RIW2SnGdBcB55zTLfxJ2_WO9jjue_xFtl-kR3W7B7vSrUbvciDhY_ybi-RXKCHbJFdP8D_aCF3JrXvSxv_I7xF5n71B_nJ4dnxVzLfRTSNBwq3yez4dmK_uXBoDJte6Z8BpsoJvQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+neural+network+and+reinforcement+learning+for+multi%E2%80%90agent+cooperative+control+of+connected+autonomous+vehicles&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Chen%2C+Sikai&rft.au=Dong%2C+Jiqian&rft.au=Ha%2C+Paul+%28Young+Joun%29&rft.au=Li%2C+Yujie&rft.date=2021-07-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=36&rft.issue=7&rft.spage=838&rft.epage=857&rft_id=info:doi/10.1111%2Fmice.12702&rft.externalDBID=10.1111%252Fmice.12702&rft.externalDocID=MICE12702 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon |