Graph neural network and reinforcement learning for multi‐agent cooperative control of connected autonomous vehicles

A connected autonomous vehicle (CAV) network can be defined as a set of connected vehicles including CAVs that operate on a specific spatial scope that may be a road network, corridor, or segment. The spatial scope constitutes an environment where traffic information is shared and instructions are i...

Full description

Saved in:
Bibliographic Details
Published inComputer-aided civil and infrastructure engineering Vol. 36; no. 7; pp. 838 - 857
Main Authors Chen, Sikai, Dong, Jiqian, Ha, Paul (Young Joun), Li, Yujie, Labi, Samuel
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2021
Subjects
Online AccessGet full text
ISSN1093-9687
1467-8667
DOI10.1111/mice.12702

Cover

Abstract A connected autonomous vehicle (CAV) network can be defined as a set of connected vehicles including CAVs that operate on a specific spatial scope that may be a road network, corridor, or segment. The spatial scope constitutes an environment where traffic information is shared and instructions are issued for controlling the CAVs movements. Within such a spatial scope, high‐level cooperation among CAVs fostered by joint planning and control of their movements can greatly enhance the safety and mobility performance of their operations. Unfortunately, the highly combinatory and volatile nature of CAV networks due to the dynamic number of agents (vehicles) and the fast‐growing joint action space associated with multi‐agent driving tasks pose difficultly in achieving cooperative control. The problem is NP‐hard and cannot be efficiently resolved using rule‐based control techniques. Also, there is a great deal of information in the literature regarding sensing technologies and control logic in CAV operations but relatively little information on the integration of information from collaborative sensing and connectivity sources. Therefore, we present a novel deep reinforcement learning‐based algorithm that combines graphic convolution neural network with deep Q‐network to form an innovative graphic convolution Q network that serves as the information fusion module and decision processor. In this study, the spatial scope we consider for the CAV network is a multi‐lane road corridor. We demonstrate the proposed control algorithm using the application context of freeway lane‐changing at the approaches to an exit ramp. For purposes of comparison, the proposed model is evaluated vis‐à‐vis traditional rule‐based and long short‐term memory‐based fusion models. The results suggest that the proposed model is capable of aggregating information received from sensing and connectivity sources and prescribing efficient operative lane‐change decisions for multiple CAVs, in a manner that enhances safety and mobility. That way, the operational intentions of individual CAVs can be fulfilled even in partially observed and highly dynamic mixed traffic streams. The paper presents experimental evidence to demonstrate that the proposed algorithm can significantly enhance CAV operations. The proposed algorithm can be deployed at roadside units or cloud platforms or other centralized control facilities.
AbstractList A connected autonomous vehicle (CAV) network can be defined as a set of connected vehicles including CAVs that operate on a specific spatial scope that may be a road network, corridor, or segment. The spatial scope constitutes an environment where traffic information is shared and instructions are issued for controlling the CAVs movements. Within such a spatial scope, high‐level cooperation among CAVs fostered by joint planning and control of their movements can greatly enhance the safety and mobility performance of their operations. Unfortunately, the highly combinatory and volatile nature of CAV networks due to the dynamic number of agents (vehicles) and the fast‐growing joint action space associated with multi‐agent driving tasks pose difficultly in achieving cooperative control. The problem is NP‐hard and cannot be efficiently resolved using rule‐based control techniques. Also, there is a great deal of information in the literature regarding sensing technologies and control logic in CAV operations but relatively little information on the integration of information from collaborative sensing and connectivity sources. Therefore, we present a novel deep reinforcement learning‐based algorithm that combines graphic convolution neural network with deep Q‐network to form an innovative graphic convolution Q network that serves as the information fusion module and decision processor. In this study, the spatial scope we consider for the CAV network is a multi‐lane road corridor. We demonstrate the proposed control algorithm using the application context of freeway lane‐changing at the approaches to an exit ramp. For purposes of comparison, the proposed model is evaluated vis‐à‐vis traditional rule‐based and long short‐term memory‐based fusion models. The results suggest that the proposed model is capable of aggregating information received from sensing and connectivity sources and prescribing efficient operative lane‐change decisions for multiple CAVs, in a manner that enhances safety and mobility. That way, the operational intentions of individual CAVs can be fulfilled even in partially observed and highly dynamic mixed traffic streams. The paper presents experimental evidence to demonstrate that the proposed algorithm can significantly enhance CAV operations. The proposed algorithm can be deployed at roadside units or cloud platforms or other centralized control facilities.
Author Chen, Sikai
Dong, Jiqian
Labi, Samuel
Ha, Paul (Young Joun)
Li, Yujie
Author_xml – sequence: 1
  givenname: Sikai
  surname: Chen
  fullname: Chen, Sikai
  email: chen1670@purdue.edu, sikaichen@cmu.edu
  organization: Carnegie Mellon University
– sequence: 2
  givenname: Jiqian
  surname: Dong
  fullname: Dong, Jiqian
  organization: Purdue University
– sequence: 3
  givenname: Paul (Young Joun)
  surname: Ha
  fullname: Ha, Paul (Young Joun)
  organization: Purdue University
– sequence: 4
  givenname: Yujie
  surname: Li
  fullname: Li, Yujie
  organization: Purdue University
– sequence: 5
  givenname: Samuel
  surname: Labi
  fullname: Labi, Samuel
  organization: Purdue University
BookMark eNp9UMtOwzAQtFCRKIULX2CJG1KKHbt5HFFVSqUiLnCOHHvTuiR2cZxWvfEJfCNfgkM5IcRedrQ7M6udczQw1gBCV5SMaajbRksY0zgl8QkaUp6kUZYk6SBgkrMoT7L0DJ237YaE4pwN0W7uxHaNDXRO1KH5vXWvWBiFHWhTWSehAeNxDcIZbVY4jHDT1V5_vn-IVb-S1m7BCa93ELDxztbYVj00ID0oLDpvjW1s1-IdrLWsob1Ap5WoW7j86SP0cj97nj5Ey6f5Ynq3jCTjeRzFvCxpmimaMyBlrqQSQiacsCytSNgALwnNyglROeXAVJYJpfKkZLECqARhI3R99N06-9ZB64uN7ZwJJ4t4wnKeMZKywLo5sqSzbeugKrZON8IdCkqKPteiz7X4zjWQyS-y1D58338udP23hB4le13D4R_z4nExnR01XzS8kR4
CitedBy_id crossref_primary_10_1111_mice_13167
crossref_primary_10_3390_s23020559
crossref_primary_10_1111_mice_13286
crossref_primary_10_26599_JICV_2023_9210032
crossref_primary_10_1080_21680566_2024_2333869
crossref_primary_10_1111_mice_12752
crossref_primary_10_1111_mice_12995
crossref_primary_10_1155_2022_4064512
crossref_primary_10_1111_mice_12904
crossref_primary_10_1016_j_eswa_2024_125196
crossref_primary_10_1002_int_22945
crossref_primary_10_1108_JICV_06_2022_0021
crossref_primary_10_1145_3503043
crossref_primary_10_3390_en17215399
crossref_primary_10_1111_mice_13051
crossref_primary_10_1016_j_commtr_2024_100151
crossref_primary_10_1109_TITS_2023_3257759
crossref_primary_10_1109_TITS_2024_3386200
crossref_primary_10_3390_jsan12040059
crossref_primary_10_1016_j_autcon_2022_104620
crossref_primary_10_1145_3604559
crossref_primary_10_1145_3625236
crossref_primary_10_1016_j_commtr_2024_100142
crossref_primary_10_1109_JIOT_2024_3447039
crossref_primary_10_1016_j_trd_2022_103300
crossref_primary_10_1016_j_jcsr_2024_108842
crossref_primary_10_1088_1742_6596_2767_9_092028
crossref_primary_10_1109_TETCI_2022_3222545
crossref_primary_10_1109_JIOT_2024_3479221
crossref_primary_10_1007_s10489_024_05478_y
crossref_primary_10_1111_mice_12854
crossref_primary_10_1111_mice_12852
crossref_primary_10_1007_s43684_022_00023_5
crossref_primary_10_1111_mice_13301
crossref_primary_10_1155_2022_7807878
crossref_primary_10_1016_j_trc_2023_104445
crossref_primary_10_1016_j_neucom_2023_127117
crossref_primary_10_3233_ICA_230720
crossref_primary_10_1109_TIV_2023_3250353
crossref_primary_10_1177_09544070231217762
crossref_primary_10_1109_ACCESS_2024_3447056
crossref_primary_10_1109_TVT_2023_3312574
crossref_primary_10_1111_mice_12985
crossref_primary_10_3233_AIC_220316
crossref_primary_10_1016_j_conengprac_2025_106315
crossref_primary_10_1111_mice_13159
crossref_primary_10_1111_mice_13312
crossref_primary_10_3390_app132212366
crossref_primary_10_26599_JICV_2023_9210036
crossref_primary_10_3233_ICA_230698
crossref_primary_10_1002_rnc_7177
crossref_primary_10_1016_j_neucom_2024_128294
crossref_primary_10_1111_mice_13002
crossref_primary_10_1109_TSP_2025_3534685
crossref_primary_10_1109_OJITS_2023_3260624
crossref_primary_10_1021_acs_chemrev_3c00189
crossref_primary_10_1080_19427867_2024_2335084
crossref_primary_10_1109_TTE_2024_3377809
crossref_primary_10_1109_ACCESS_2023_3345795
crossref_primary_10_1111_mice_13402
crossref_primary_10_3390_s23104710
crossref_primary_10_1142_S0129065722500551
crossref_primary_10_1145_3565973
crossref_primary_10_1111_mice_12825
crossref_primary_10_1111_mice_13080
crossref_primary_10_1016_j_neunet_2023_07_027
crossref_primary_10_1109_TIV_2023_3297310
crossref_primary_10_3390_s23198229
crossref_primary_10_1111_mice_13094
crossref_primary_10_1016_j_ifacol_2024_07_443
crossref_primary_10_1016_j_trc_2023_104415
crossref_primary_10_4271_12_06_04_0026
crossref_primary_10_1016_j_trd_2025_104658
crossref_primary_10_1080_21680566_2021_2004954
crossref_primary_10_3233_ICA_230716
crossref_primary_10_3233_ICA_230710
crossref_primary_10_1111_mice_12959
crossref_primary_10_1002_aisy_202300575
crossref_primary_10_1111_mice_12956
crossref_primary_10_3233_ICA_230712
crossref_primary_10_3390_computers11030038
crossref_primary_10_1016_j_eswa_2023_121764
crossref_primary_10_1016_j_physa_2022_128172
crossref_primary_10_3390_app12189156
crossref_primary_10_1016_j_physa_2023_129454
crossref_primary_10_1080_23249935_2023_2215338
crossref_primary_10_1109_JIOT_2024_3429522
crossref_primary_10_3390_fi15080251
crossref_primary_10_3390_app112210870
crossref_primary_10_1111_mice_12893
crossref_primary_10_1016_j_apm_2023_09_012
crossref_primary_10_1016_j_trc_2021_103192
crossref_primary_10_1111_mice_13180
crossref_primary_10_1177_03611981241312916
crossref_primary_10_1016_j_eswa_2025_126679
crossref_primary_10_3390_axioms12111033
crossref_primary_10_1007_s00170_024_14112_7
crossref_primary_10_1016_j_physa_2023_129189
crossref_primary_10_1109_TASE_2023_3334332
crossref_primary_10_1109_TASE_2024_3412239
crossref_primary_10_1111_mice_12820
crossref_primary_10_1016_j_neucom_2023_126327
crossref_primary_10_1111_mice_13115
crossref_primary_10_1007_s12053_024_10238_5
crossref_primary_10_1109_TCNS_2024_3469031
crossref_primary_10_3390_machines12080539
crossref_primary_10_1016_j_geits_2022_100023
crossref_primary_10_1016_j_trc_2024_104497
crossref_primary_10_1109_TCAD_2022_3233019
crossref_primary_10_3390_su151411258
crossref_primary_10_1111_mice_12813
crossref_primary_10_1016_j_trc_2023_104358
crossref_primary_10_1007_s10489_024_06143_0
crossref_primary_10_1016_j_commtr_2024_100127
crossref_primary_10_1108_FEBE_05_2021_0025
crossref_primary_10_2139_ssrn_4021924
crossref_primary_10_1016_j_comnet_2024_110854
Cites_doi 10.1061/(ASCE)CO.1943-7862.0001570
10.23919/ACC.2019.8814882
10.1111/mice.12440
10.1109/ITSC45102.2020.9294550
10.1109/MCOM.2015.7355568
10.1111/mice.12572
10.14359/51689560
10.1109/ITEC.2017.7993366
10.1109/IISA.2014.6878812
10.1002/9780470168073
10.1080/01441647.2010.543709
10.1016/j.trc.2020.102663
10.1016/j.trc.2019.11.007
10.1109/DSN-W.2019.00022
10.1007/s00521-019-04359-7
10.1109/IROS40897.2019.8968560
10.1111/mice.12533
10.1111/mice.12538
10.1111/mice.12558
10.1111/mice.12559
10.2352/ISSN.2470-1173.2017.19.AVM-023
10.1016/j.soildyn.2017.05.013
10.1016/j.trc.2019.06.002
10.1007/s10458-019-09421-1
10.1109/ITSC.2019.8917306
10.1109/IJCNN48605.2020.9207663
10.1061/(ASCE)CO.1943-7862.0001047
10.1080/15472450.2016.1248288
10.1007/978-3-642-32460-4
10.1007/978-3-319-71682-4_5
10.1145/3308558.3313488
10.1016/j.trc.2018.02.001
10.1109/ICRA40945.2020.9197132
10.1016/j.trc.2021.103192
10.1111/mice.12412
10.1111/mice.12450
10.1111/mice.12289
10.1111/mice.12454
10.1016/j.trc.2019.04.012
10.1609/aaai.v34i04.5747
10.1111/1467-8667.t01-1-00311
10.1109/TITS.2018.2865575
10.1111/mice.12451
10.1109/wivec.2013.6698230
10.1111/mice.12433
10.1177/003803856900300205
10.1007/978-3-319-15024-6_7
10.3233/ICA-2010-0345
10.21595/jve.2017.18924
10.1016/j.trc.2018.04.026
10.1145/3219819.3220077
10.1007/s00521-019-04146-4
10.1287/moor.27.4.819.297
10.1016/j.trc.2019.01.004
10.1061/(ASCE)0733-947X(2005)131:10(771)
10.1609/aaai.v30i1.10295
10.3389/fbuil.2020.590036
10.1111/mice.12495
10.1016/j.trc.2019.02.016
10.1016/j.trc.2020.102659
10.1016/j.neucom.2016.01.031
10.1111/mice.12622
10.1109/TNNLS.2017.2682102
10.1111/mice.12409
10.1021/ci00047a033
10.1111/0885-9507.00112
ContentType Journal Article
Copyright 2021
2021 Computer‐Aided Civil and Infrastructure Engineering
Copyright_xml – notice: 2021
– notice: 2021 Computer‐Aided Civil and Infrastructure Engineering
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1111/mice.12702
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 857
ExternalDocumentID 10_1111_mice_12702
MICE12702
Genre article
GrantInformation_xml – fundername: The United States Department of Transportation
  funderid: 69A3551747105
GroupedDBID ..I
.3N
.4S
.DC
.GA
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABFSI
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
E.L
EAD
EAP
EBS
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RJQFR
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3492-24bb178d193e0b9dcdaac640387f0b17e4b018b50d914e3d88add96b32deefa03
IEDL.DBID DR2
ISSN 1093-9687
IngestDate Sun Jul 13 05:16:00 EDT 2025
Wed Oct 01 04:15:59 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
Wed Jan 22 16:30:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3492-24bb178d193e0b9dcdaac640387f0b17e4b018b50d914e3d88add96b32deefa03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2539483073
PQPubID 2045171
PageCount 20
ParticipantIDs proquest_journals_2539483073
crossref_primary_10_1111_mice_12702
crossref_citationtrail_10_1111_mice_12702
wiley_primary_10_1111_mice_12702_MICE12702
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2005; 131
2010; 17
2003; 18
2018; 89
2017; 114
2016; 142
2020; 6
2020; 2
2019; 20
1969; 3
1985
2018; 33
2016; 190
2017a; 100
1998; 13
2018; 144
2011
2019; 33
2017b; 28
2019; 34
2017; 21
2011; 31
2016; 53
2019; 105
1996
2007
2020; 36
2019; 103
2020; 35
2020; 32
2016; 18
2019; 100
2019; 101
2002; 27
2018; 2018
2021
2020
2018; 92
2019
2020; 116
2018
2017
2020; 111
2016
2017; 19
2015
2014
2013
2012; 5
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
FHWA. (e_1_2_7_26_1) 2018
Krajzewicz D. (e_1_2_7_44_1) 2012; 5
e_1_2_7_49_1
e_1_2_7_28_1
Yang Y. (e_1_2_7_82_1) 2018; 2018
Tarko A. (e_1_2_7_72_1) 2011
Zhuo M. (e_1_2_7_89_1) 2016; 18
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
Nilsson F. (e_1_2_7_55_1) 2019
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – year: 2011
– year: 2013
  article-title: Combining adaptive junction control with simultaneous green‐light‐optimal‐speed‐advisory
– year: 2019
  article-title: Implementation and testing of dynamic and flexible platoons in urban areas
– volume: 114
  start-page: 237
  issue: 2
  year: 2017
  end-page: 244
  article-title: Supervised deep restricted Boltzmann machine for estimation of concrete compressive strength
  publication-title: ACI Materials Journal
– year: 2019
  article-title: Model‐free deep reinforcement learning for urban autonomous driving
– volume: 33
  start-page: 750
  year: 2019
  end-page: 797
  article-title: A survey and critique of multiagent deep reinforcement learning
  publication-title: Autonomous Agents and Multiagent Systems
– year: 2021
– volume: 89
  start-page: 364
  year: 2018
  end-page: 383
  article-title: Spatiotemporal intersection control in a connected and automated vehicle environment
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 116
  year: 2020
  article-title: Joint optimization of vehicle‐group trajectory and signal timing: Introducing the white phase for mixed‐autonomy traffic stream
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 31
  start-page: 495
  issue: 4
  year: 2011
  end-page: 519
  article-title: Applications of graph theory and network science to transit network design
  publication-title: Transport Reviews
– volume: 105
  start-page: 405
  year: 2019
  end-page: 421
  article-title: Corridor level cooperative trajectory optimization with connected and automated vehicles
  publication-title: Transportation Research. Part C: Emerging Technologies
– volume: 34
  start-page: 3438
  issue: 4
  year: 2019
  end-page: 3445
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 18
  start-page: 325
  issue: 5
  year: 2003
  end-page: 338
  article-title: Wavelet‐clustering‐neural network model for freeway incident detection
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 17
  start-page: 197
  issue: 3
  year: 2010
  end-page: 210
  article-title: Enhanced probabilistic neural network with local decision circles: A robust classifier
  publication-title: Integrated Computer‐Aided Engineering
– volume: 34
  start-page: 213
  issue: 3
  year: 2019
  end-page: 229
  article-title: Automated pixel‐level pavement crack detection on 3D asphalt surfaces with a recurrent neural network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2018
– year: 2014
– volume: 6
  year: 2020
  article-title: Vehicle connectivity and automation: A sibling relationship
  publication-title: Frontiers in Built Environment
– volume: 32
  start-page: 8675
  issue: 12
  year: 2020
  end-page: 8690
  article-title: A dynamic ensemble learning algorithm for neural networks
  publication-title: Neural Computing and Applications
– volume: 111
  start-page: 294
  year: 2020
  end-page: 317
  article-title: Cooperative lane control application for fully connected and automated vehicles at multilane freeways
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 35
  start-page: 1230
  issue: 11
  year: 2020
  end-page: 1245
  article-title: Deep reinforcement learning for long‐term pavement maintenance planning
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 36
  start-page: 30
  issue: 1
  year: 2020
  end-page: 46
  article-title: Dynamic origin‐destination flow estimation using automatic vehicle identification data: A 3D convolutional neural network approach
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 2018
  start-page: 8869
  issue: 12
  year: 2018
  end-page: 8886
  article-title: Mean field multi‐agent reinforcement learning
  publication-title: 35th International Conference on Machine Learning, ICML
– start-page: 5385
  year: 2020
  end-page: 5392
– volume: 27
  start-page: 819
  year: 2002
  end-page: 840
  article-title: The complexity of decentralized control of Markov decision processes
  publication-title: Mathematics of Operations Research
– volume: 100
  start-page: 161
  year: 2019
  end-page: 176
  article-title: A consensus‐based distributed trajectory control in a signal‐free intersection
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 101
  start-page: 111
  year: 2019
  end-page: 125
  article-title: Trajectory optimization of connected and autonomous vehicles at a multilane freeway merging area
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 3
  start-page: 215
  issue: 2
  year: 1969
  end-page: 232
  article-title: Graph theory and social networks: A technical comment on connectedness and connectivity
  publication-title: Sociology
– start-page: 3315
  year: 2019
  end-page: 3320
  article-title: Decentralized optimal merging control for connected and automated vehicles
– volume: 116
  year: 2020
  article-title: Cooperative merging control via trajectory optimization in mixed vehicular traffic
  publication-title: Transportation Research Part C: Emerging Technologies
– year: 2016
  article-title: Deep reinforcement learning with double Q‐Learning
– year: 2019
  article-title: Autonomous maneuver coordination via vehicular communication
– volume: 144
  issue: 12
  year: 2018
  article-title: Novel machine‐learning model for estimating construction costs considering economic variables and indexes
  publication-title: Journal of Construction Engineering and Management
– volume: 18
  start-page: 1422
  issue: 6
  year: 2016
  end-page: 1428
  article-title: On the impact of cooperative autonomous vehicles in improving freeway merging: a modified intelligent driver model‐based approach
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 53
  start-page: 64
  issue: 12
  year: 2016
  end-page: 70
  article-title: Enhancements of V2X communication in support of cooperative autonomous driving
  publication-title: IEEE Communications Magazine
– volume: 103
  start-page: 246
  year: 2019
  end-page: 260
  article-title: DCL‐AIM: Decentralized coordination learning of autonomous intersection management for connected and automated vehicles
  publication-title: Transportation Research Part C: Emerging Technologies
– year: 2017
  article-title: Deep reinforcement learning framework for autonomous driving
– start-page: 195
  year: 1996
  end-page: 210
  article-title: Planning, learning and coordination in multiagent decision processes
– year: 2019
  article-title: Semi‐supervised classification with graph convolutional networks
– year: 2020
  article-title: Reinforcement learning‐based bird‐view automated vehicle control to avoid crossing traffic
  publication-title: Computer‐Aided Civil and Infrastructure Engineering.
– year: 2020
  article-title: Spatio‐weighted information fusion and DRL‐based control for connected autonomous vehicles
– start-page: 6533
  year: 2017
  end-page: 6542
  article-title: Protein interface prediction using graph convolutional networks
– volume: 20
  start-page: 2220
  issue: 6
  year: 2019
  end-page: 2229
  article-title: Consensus‐based cooperative control for multi‐platoon under the connected vehicles environment
  publication-title: IEEE Transactions on Intelligent Trans‐portation Systems
– year: 2019
  article-title: Multi‐agent connected autonomous driving using deep reinforcement learning
– year: 2019
– year: 2015
– volume: 142
  issue: 2
  year: 2016
  article-title: A novel machine learning model for estimation of sale prices of real estate units
  publication-title: Journal of Construction Engineering and Management
– volume: 35
  start-page: 965
  issue: 9
  year: 2020
  end-page: 978
  article-title: Combining deep features and activity context to improve recognition of activities of workers in groups
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2007
– year: 2015
  article-title: Adam: A method for stochastic optimization
– volume: 32
  start-page: 6393
  issue: 10
  year: 2020
  end-page: 6404
  article-title: FEMa: a finite element machine for fast learning
  publication-title: Neural Computing and Applications
– year: 2019
  article-title: Graph neural networks for social recommendation
– volume: 13
  start-page: 339
  issue: 5
  year: 1998
  end-page: 348
  article-title: A comparative analysis of two artificial neural networks using pavement performance prediction
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 1
  year: 2019
  end-page: 72
– year: 2016
– volume: 5
  start-page: 128
  issue: 3–4
  year: 2012
  end-page: 138
  article-title: Recent development and applications of SUMO–Simulation of Urban MObility
  publication-title: International Journal on Advances in Systems and Measurements
– volume: 35
  start-page: 832
  issue: 8
  year: 2020
  end-page: 849
  article-title: Pavement defect detection with fully convolutional network and an uncertainty framework
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 33
  start-page: 1090
  issue: 12
  year: 2018
  end-page: 1109
  article-title: Automatic pixel‐level crack detection and measurement using fully convolutional network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 34
  start-page: 877
  issue: 10
  year: 2019
  end-page: 896
  article-title: A graph deep learning method for short‐term traffic forecasting on large road networks
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 1985
  article-title: Applications of graph theory in chemistry
  publication-title: Journal of Chemical Information and Computer Sciences
– volume: 100
  start-page: 417
  issue: 1
  year: 2017a
  end-page: 427
  article-title: NEEWS: A novel earthquake early warning system using neural dynamic classification and neural dynamic optimization model
  publication-title: Soil Dynamics and Earthquake Engineering
– volume: 34
  start-page: 713
  issue: 8
  year: 2019
  end-page: 727
  article-title: Encoder–decoder network for pixel‐level road crack detection in black‐box images
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 92
  start-page: 412
  year: 2018
  end-page: 425
  article-title: Development of a signal‐head‐free intersection control logic in a fully connected and autonomous vehicle environment
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 34
  start-page: 654
  issue: 8
  year: 2019
  end-page: 676
  article-title: Convolutional sparse coding‐based deep random vector functional link network for distress classification of road structures
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 28
  start-page: 3074
  issue: 12
  year: 2017b
  end-page: 3083
  article-title: A new neural dynamic classification algorithm
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 7566
  year: 2020
  end-page: 7573
– volume: 19
  start-page: 4300
  issue: 6
  year: 2017
  end-page: 4322
  article-title: Multi‐agent replicator controller for sustainable vibration control of smart structures
  publication-title: Journal of Vibroengineering
– volume: 34
  start-page: 616
  issue: 7
  year: 2019
  end-page: 634
  article-title: Automatic pixel‐level multiple damage detection of concrete structure using fully convolutional network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 33
  start-page: 262
  issue: 4
  year: 2018
  end-page: 281
  article-title: Modeling the proactive driving behavior of connected vehicles: A cell‐based simulation approach
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2020
– volume: 35
  start-page: 305
  issue: 4
  year: 2020
  end-page: 321
  article-title: A deep learning algorithm for simulating autonomous driving considering prior knowledge and temporal information
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 190
  start-page: 82
  year: 2016
  end-page: 94
  article-title: Multi‐agent reinforcement learning as a rehearsal for decentralized planning
  publication-title: Neurocomputing
– volume: 2
  start-page: 1291
  year: 2020
  end-page: 1305
  article-title: Automated pavement crack detection and segmentation based on two‐step convolutional neural network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2018
  article-title: DeepInf: Social influence prediction with deep learning
– year: 2017
– start-page: 767
  year: 2017
  end-page: 772
  article-title: A smart car model based on autonomous intelligent agents for reducing accidents
– volume: 131
  start-page: 771
  issue: 10
  year: 2005
  end-page: 779
  article-title: Dynamic wavelet neural network model for traffic flow forecasting
  publication-title: Journal of Transportation Engineering
– volume: 21
  start-page: 136
  issue: 2
  year: 2017
  end-page: 147
  article-title: Collaborative merging strategy for freeway ramp operations in a connected and autonomous vehicles environment
  publication-title: Journal of Intelligent Transportation Systems
– volume: 34
  start-page: 897
  issue: 10
  year: 2019
  end-page: 914
  article-title: A convolutional neural‐network‐based pedestrian counting model for various crowded scenes
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2013
– ident: e_1_2_7_63_1
  doi: 10.1061/(ASCE)CO.1943-7862.0001570
– volume-title: Transportation systems modeling and evaluation: Handbook of transportation engineering. Volume I: Systems and operations
  year: 2011
  ident: e_1_2_7_72_1
– ident: e_1_2_7_78_1
  doi: 10.23919/ACC.2019.8814882
– ident: e_1_2_7_6_1
  doi: 10.1111/mice.12440
– ident: e_1_2_7_17_1
  doi: 10.1109/ITSC45102.2020.9294550
– ident: e_1_2_7_34_1
  doi: 10.1109/MCOM.2015.7355568
– ident: e_1_2_7_76_1
  doi: 10.1111/mice.12572
– ident: e_1_2_7_64_1
  doi: 10.14359/51689560
– ident: e_1_2_7_9_1
  doi: 10.1109/ITEC.2017.7993366
– ident: e_1_2_7_4_1
  doi: 10.1109/IISA.2014.6878812
– ident: e_1_2_7_69_1
  doi: 10.1002/9780470168073
– ident: e_1_2_7_15_1
  doi: 10.1080/01441647.2010.543709
– ident: e_1_2_7_25_1
– ident: e_1_2_7_39_1
  doi: 10.1016/j.trc.2020.102663
– ident: e_1_2_7_40_1
  doi: 10.1016/j.trc.2019.11.007
– ident: e_1_2_7_80_1
  doi: 10.1109/DSN-W.2019.00022
– ident: e_1_2_7_2_1
  doi: 10.1007/s00521-019-04359-7
– ident: e_1_2_7_36_1
  doi: 10.1109/IROS40897.2019.8968560
– ident: e_1_2_7_73_1
  doi: 10.1111/mice.12533
– ident: e_1_2_7_50_1
  doi: 10.1111/mice.12538
– ident: e_1_2_7_47_1
– ident: e_1_2_7_83_1
  doi: 10.1111/mice.12558
– ident: e_1_2_7_71_1
  doi: 10.1111/mice.12559
– ident: e_1_2_7_10_1
– ident: e_1_2_7_19_1
  doi: 10.2352/ISSN.2470-1173.2017.19.AVM-023
– ident: e_1_2_7_61_1
  doi: 10.1016/j.soildyn.2017.05.013
– ident: e_1_2_7_84_1
  doi: 10.1016/j.trc.2019.06.002
– ident: e_1_2_7_41_1
– ident: e_1_2_7_13_1
– ident: e_1_2_7_33_1
  doi: 10.1007/s10458-019-09421-1
– ident: e_1_2_7_12_1
  doi: 10.1109/ITSC.2019.8917306
– ident: e_1_2_7_57_1
  doi: 10.1109/IJCNN48605.2020.9207663
– ident: e_1_2_7_27_1
– ident: e_1_2_7_32_1
– ident: e_1_2_7_60_1
  doi: 10.1061/(ASCE)CO.1943-7862.0001047
– ident: e_1_2_7_79_1
  doi: 10.1080/15472450.2016.1248288
– ident: e_1_2_7_74_1
  doi: 10.1007/978-3-642-32460-4
– ident: e_1_2_7_30_1
  doi: 10.1007/978-3-319-71682-4_5
– ident: e_1_2_7_46_1
– ident: e_1_2_7_23_1
  doi: 10.1145/3308558.3313488
– ident: e_1_2_7_24_1
  doi: 10.1016/j.trc.2018.02.001
– volume-title: FHWA National Dialogue on Highway Automation
  year: 2018
  ident: e_1_2_7_26_1
– ident: e_1_2_7_66_1
  doi: 10.1109/ICRA40945.2020.9197132
– ident: e_1_2_7_54_1
– ident: e_1_2_7_16_1
  doi: 10.1016/j.trc.2021.103192
– ident: e_1_2_7_81_1
  doi: 10.1111/mice.12412
– ident: e_1_2_7_87_1
  doi: 10.1111/mice.12450
– ident: e_1_2_7_88_1
  doi: 10.1111/mice.12289
– ident: e_1_2_7_68_1
  doi: 10.1111/mice.12454
– ident: e_1_2_7_37_1
– ident: e_1_2_7_77_1
  doi: 10.1016/j.trc.2019.04.012
– ident: e_1_2_7_11_1
  doi: 10.1609/aaai.v34i04.5747
– ident: e_1_2_7_29_1
  doi: 10.1111/1467-8667.t01-1-00311
– ident: e_1_2_7_48_1
  doi: 10.1109/TITS.2018.2865575
– ident: e_1_2_7_51_1
  doi: 10.1111/mice.12451
– ident: e_1_2_7_20_1
  doi: 10.1109/wivec.2013.6698230
– ident: e_1_2_7_45_1
  doi: 10.1111/mice.12433
– ident: e_1_2_7_7_1
  doi: 10.1177/003803856900300205
– ident: e_1_2_7_21_1
  doi: 10.1007/978-3-319-15024-6_7
– ident: e_1_2_7_22_1
– ident: e_1_2_7_28_1
– ident: e_1_2_7_67_1
– ident: e_1_2_7_3_1
  doi: 10.3233/ICA-2010-0345
– ident: e_1_2_7_70_1
  doi: 10.21595/jve.2017.18924
– ident: e_1_2_7_52_1
  doi: 10.1016/j.trc.2018.04.026
– ident: e_1_2_7_59_1
  doi: 10.1145/3219819.3220077
– ident: e_1_2_7_58_1
  doi: 10.1007/s00521-019-04146-4
– ident: e_1_2_7_8_1
  doi: 10.1287/moor.27.4.819.297
– ident: e_1_2_7_53_1
  doi: 10.1016/j.trc.2019.01.004
– ident: e_1_2_7_38_1
  doi: 10.1061/(ASCE)0733-947X(2005)131:10(771)
– ident: e_1_2_7_75_1
  doi: 10.1609/aaai.v30i1.10295
– volume-title: Simulation‐based analysis of partially automated vehicular networks: A parametric analysis utilizing traffic simulation
  year: 2019
  ident: e_1_2_7_55_1
– ident: e_1_2_7_31_1
  doi: 10.3389/fbuil.2020.590036
– ident: e_1_2_7_86_1
– ident: e_1_2_7_14_1
  doi: 10.1111/mice.12495
– ident: e_1_2_7_35_1
  doi: 10.1016/j.trc.2019.02.016
– ident: e_1_2_7_56_1
  doi: 10.1016/j.trc.2020.102659
– ident: e_1_2_7_18_1
– ident: e_1_2_7_43_1
  doi: 10.1016/j.neucom.2016.01.031
– ident: e_1_2_7_49_1
  doi: 10.1111/mice.12622
– ident: e_1_2_7_62_1
  doi: 10.1109/TNNLS.2017.2682102
– volume: 2018
  start-page: 8869
  issue: 12
  year: 2018
  ident: e_1_2_7_82_1
  article-title: Mean field multi‐agent reinforcement learning
  publication-title: 35th International Conference on Machine Learning, ICML
– ident: e_1_2_7_85_1
  doi: 10.1111/mice.12409
– volume: 5
  start-page: 128
  issue: 3
  year: 2012
  ident: e_1_2_7_44_1
  article-title: Recent development and applications of SUMO–Simulation of Urban MObility
  publication-title: International Journal on Advances in Systems and Measurements
– ident: e_1_2_7_5_1
  doi: 10.1021/ci00047a033
– ident: e_1_2_7_42_1
– volume: 18
  start-page: 1422
  issue: 6
  year: 2016
  ident: e_1_2_7_89_1
  article-title: On the impact of cooperative autonomous vehicles in improving freeway merging: a modified intelligent driver model‐based approach
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– ident: e_1_2_7_65_1
  doi: 10.1111/0885-9507.00112
SSID ssj0000443
Score 2.6367698
Snippet A connected autonomous vehicle (CAV) network can be defined as a set of connected vehicles including CAVs that operate on a specific spatial scope that may be...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 838
SubjectTerms Algorithms
Artificial neural networks
Control algorithms
Control theory
Convolution
Cooperative control
Data integration
Graph neural networks
Machine learning
Microprocessors
Neural networks
Roads
Roadsides
Safety
Traffic information
Vehicles
Title Graph neural network and reinforcement learning for multi‐agent cooperative control of connected autonomous vehicles
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12702
https://www.proquest.com/docview/2539483073
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-8667
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0000443
  issn: 1093-9687
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1467-8667
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0000443
  issn: 1093-9687
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1093-9687
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PSxwxFH8sntqDWltxWyuBelGYJbPJziTQSylupVAPouClDHlJRqEys7i7Hjz1I_Qz9pM0L5PRtUih3kImE_LnvZeX5JffA9jnFtGXucuCsPAs7DdshoKrTKJVWvqyrpFudL-dFMfn8uvF5GIAH_u3MB0_xP2BG2lGtNek4AbnK0pO0dpHdG9KBjgXRdxPna5wR8mErtci04UqEzcpwXgefn28Gj24mKuOalxpphvwvW9jBzD5MVoucGTv_qJvfG4nNmE9uaDsUyczr2Dgmy3YSO4oS8o-D1l9xIc-bwtertAXvobbL8R2zYgSM9TXdIByZhrHbnwkZLXx7JGlyBSXLGSxiGD8_fOXoTddzLbtzHfk4yyh5llbU7IJljg0xywX9OyiXc7Zrb-KGL43cD49Ovt8nKU4Dpkl7sNsLBHzUrngK3qO2llnjC0kXZzXPHzxEnmucMKdzqUXTqlgdHWBYuy8rw0X27DWtI3fAVY79LkJPpgqUWqrDBrPBdYCpVNaFUM46OezsonknGJtXFf9ZodGvIojPoQP92VnHbXHk6V2e7GoknrPq_FEaKnIPA7hMM7vP2qogj4dxdTb_yn8Dl6MCT8TocG7sLa4Wfr3wQFa4F4U9D-0-AYY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLUQXQAL3qhDB2qJboqUkTP2JPayQgNTXosKJHaRr-1QqVWCmBkWXfUT-Ea-pL6OA1OEkGBnOY6V2L7Xx_bxuYR8YQbA5alN_GBhiV9vmAQ4k4kAI5VweVkCnuienWejS3F8NbiK3By8C9PoQzxuuKFlBH-NBo4b0jNWjuHae3hw6j3wB5H5hQpioh8z6lEi8usVT1Qm86hOikSep3f_n4-eQOYsVA1zzeFKE1B1HCQKkWLyqzedQM_8eSbg-O7fWCXLEYXSb82wWSNzrlonKxGR0mjvY5_VBn1o89bJ0oyC4Qa5O0LBa4qqmL6-quGUU11ZeuuCJqsJ2480Bqe4pj6LBhLjw997jde6qKnrG9foj9NInKd1icnKO2P_OXo6wZsX9XRM79zPQOPbJJeHw4uDURJDOSQG5Q-TvgBIc2k9XHQMlDVWa-O7jMu8ZP6JE8BSCQNmVSoct1J6v6sy4H3rXKkZ3yLzVV25j4SWFlyqPQyTOQhlpAbtGIeSg7BSyaxDvrYdWpioc47hNn4X7XoHW7wILd4he49lbxp1jxdLddtxUUQLHxf9AVdCoofskP3Qwa_UUHiTGobU9lsKfyYLo4uz0-L0-_nJJ7LYRzpNYAp3yfzkdup2PB6awG4Y9f8ACzsKOQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQlRAc-CsVS7dgiV5AysrZeBP7iLps-VeFQOIWeWwHpFbJit3lwIlH4Bl5EjyOA1uEKpWb5UysxJ4Zj-3P3xDynWkAm8UmcsrCIrfe0BEkTEQctJDcZkUBeKJ7epYeXPKjq95VwObgXZiaH-Jlww0tw_trNHA7NMWUlWO69g4enDoP_In3pEBEX_98ij2KB3y9TCKZiiywkyKQ5_Xdv-ej1yBzOlT1c81gqU6oOvIUhQgx-d2ZjKGj798QOH74N5bJYohC6V6tNitkxparZClEpDTY-8hVNUkfmrpVsjDFYPiZ3P1EwmuKrJiuvbLGlFNVGnprPSer9tuPNCSnuKauinoQ49PDo8JrXVRX1dDW_OM0AOdpVWCxdM7YfY6ajPHmRTUZ0Tt742F8a-RysH_x4yAKqRwijfSHUZcDxJkwLly0DKTRRimdcjw7L5h7YjmwWECPGRlzmxghnN-VKSRdY22hWPKFzJZVadcJLQzYWLkwTGTApRYKlGUJFAlwI6RIW2SnGdBcB55zTLfxJ2_WO9jjue_xFtl-kR3W7B7vSrUbvciDhY_ybi-RXKCHbJFdP8D_aCF3JrXvSxv_I7xF5n71B_nJ4dnxVzLfRTSNBwq3yez4dmK_uXBoDJte6Z8BpsoJvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+neural+network+and+reinforcement+learning+for+multi%E2%80%90agent+cooperative+control+of+connected+autonomous+vehicles&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Chen%2C+Sikai&rft.au=Dong%2C+Jiqian&rft.au=Ha%2C+Paul+%28Young+Joun%29&rft.au=Li%2C+Yujie&rft.date=2021-07-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=36&rft.issue=7&rft.spage=838&rft.epage=857&rft_id=info:doi/10.1111%2Fmice.12702&rft.externalDBID=10.1111%252Fmice.12702&rft.externalDocID=MICE12702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon