An empirical saddlepoint approximation method for producing smooth survival and hazard functions under interval‐censoring
We devise a new method to produce smooth estimates of baseline survival and hazard functions for incomplete data observed subject to interval‐censoring, that can in principle be viewed as being nonparametric. The key idea is to start from the nonparametric maximum likelihood estimate, and to then co...
Saved in:
| Published in | Statistics in medicine Vol. 39; no. 21; pp. 2755 - 2766 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
England
Wiley Subscription Services, Inc
20.09.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0277-6715 1097-0258 1097-0258 |
| DOI | 10.1002/sim.8572 |
Cover
| Abstract | We devise a new method to produce smooth estimates of baseline survival and hazard functions for incomplete data observed subject to interval‐censoring, that can in principle be viewed as being nonparametric. The key idea is to start from the nonparametric maximum likelihood estimate, and to then construct an empirical moment generating function for the underlying data generating mechanism, which is subsequently inverted via a saddlepoint approximation in order to obtain smooth distributional estimates. Unlike the typical spline‐based and other semiparametric methods that have thus far been devised for the same purpose, the proposed approach is unencumbered by the choice of tuning parameters. Simulation studies show that in terms of integrated squared error, the method is very close in performance to the parametric gold standard, and should generally be preferred over the well‐established spline‐based approach implemented in R package logspline. The methodology is illustrated on some publicly available real datasets, and its implications and limitations are discussed. |
|---|---|
| AbstractList | We devise a new method to produce smooth estimates of baseline survival and hazard functions for incomplete data observed subject to interval‐censoring, that can in principle be viewed as being nonparametric. The key idea is to start from the nonparametric maximum likelihood estimate, and to then construct an empirical moment generating function for the underlying data generating mechanism, which is subsequently inverted via a saddlepoint approximation in order to obtain smooth distributional estimates. Unlike the typical spline‐based and other semiparametric methods that have thus far been devised for the same purpose, the proposed approach is unencumbered by the choice of tuning parameters. Simulation studies show that in terms of integrated squared error, the method is very close in performance to the parametric gold standard, and should generally be preferred over the well‐established spline‐based approach implemented in R package
logspline
. The methodology is illustrated on some publicly available real datasets, and its implications and limitations are discussed. We devise a new method to produce smooth estimates of baseline survival and hazard functions for incomplete data observed subject to interval‐censoring, that can in principle be viewed as being nonparametric. The key idea is to start from the nonparametric maximum likelihood estimate, and to then construct an empirical moment generating function for the underlying data generating mechanism, which is subsequently inverted via a saddlepoint approximation in order to obtain smooth distributional estimates. Unlike the typical spline‐based and other semiparametric methods that have thus far been devised for the same purpose, the proposed approach is unencumbered by the choice of tuning parameters. Simulation studies show that in terms of integrated squared error, the method is very close in performance to the parametric gold standard, and should generally be preferred over the well‐established spline‐based approach implemented in R package logspline. The methodology is illustrated on some publicly available real datasets, and its implications and limitations are discussed. We devise a new method to produce smooth estimates of baseline survival and hazard functions for incomplete data observed subject to interval-censoring, that can in principle be viewed as being nonparametric. The key idea is to start from the nonparametric maximum likelihood estimate, and to then construct an empirical moment generating function for the underlying data generating mechanism, which is subsequently inverted via a saddlepoint approximation in order to obtain smooth distributional estimates. Unlike the typical spline-based and other semiparametric methods that have thus far been devised for the same purpose, the proposed approach is unencumbered by the choice of tuning parameters. Simulation studies show that in terms of integrated squared error, the method is very close in performance to the parametric gold standard, and should generally be preferred over the well-established spline-based approach implemented in R package logspline. The methodology is illustrated on some publicly available real datasets, and its implications and limitations are discussed.We devise a new method to produce smooth estimates of baseline survival and hazard functions for incomplete data observed subject to interval-censoring, that can in principle be viewed as being nonparametric. The key idea is to start from the nonparametric maximum likelihood estimate, and to then construct an empirical moment generating function for the underlying data generating mechanism, which is subsequently inverted via a saddlepoint approximation in order to obtain smooth distributional estimates. Unlike the typical spline-based and other semiparametric methods that have thus far been devised for the same purpose, the proposed approach is unencumbered by the choice of tuning parameters. Simulation studies show that in terms of integrated squared error, the method is very close in performance to the parametric gold standard, and should generally be preferred over the well-established spline-based approach implemented in R package logspline. The methodology is illustrated on some publicly available real datasets, and its implications and limitations are discussed. |
| Author | Trindade, A. Alexandre Dissanayake, Manjari |
| Author_xml | – sequence: 1 givenname: Manjari surname: Dissanayake fullname: Dissanayake, Manjari organization: Department of Mathematics & Statistics – sequence: 2 givenname: A. Alexandre surname: Trindade fullname: Trindade, A. Alexandre email: alex.trindade@ttu.edu organization: Department of Mathematics & Statistics |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32410242$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kd9O2zAYxa2JabSAxBMgS7vhJp3_JHF8iRAMJKZdMK4jJ3ZWV4md2Umh7IZH4Bl5kn1tGZMqJku2ZP3O8edzpmjPeWcQOqZkRglhX6LtZkUm2Ac0oUSKhLCs2EMTwoRIckGzfTSNcUEIpRkTn9A-ZyklLGUT9PvMYdP1NthatTgqrVvTe-sGrPo--AfbqcF6hzszzL3GjQ8YrvVYW_cTx877YY7jGJZ2CXLlNJ6rRxUAHF29FkY8Om0CBkcTgHl5eq6Niz6A_hB9bFQbzdHreYDuLi9-nF8lN9-_Xp-f3SQ1TyVLaK4UN2meNUI2kinJi1xSmQudGs6ziuRUFFUKm4ZvaVoUEEmqZcVlVXGi-AE63frC5L9GE4eys7E2bauc8WMsWUpgcSIloJ930IUfg4PpgOKkoHmeEaBOXqmx6owu-wAxhVX5N9Z_L9bBxxhM84ZQUq4bK6Gxct0YoLMdtLbDJvMhKNu-J0i2gnvbmtV_jcvb628b_g85xqgO |
| CitedBy_id | crossref_primary_10_3390_sym13112041 |
| Cites_doi | 10.1002/sim.4081 10.1214/aos/1031594728 10.2307/2532598 10.2307/2532989 10.18637/jss.v036.i02 10.1002/(SICI)1097-0258(19980130)17:2<219::AID-SIM735>3.0.CO;2-O 10.1080/10618600.1992.10474588 10.2307/2530965 10.1007/978-1-4899-3210-5 10.1017/CBO9780511802843 10.1017/CBO9780511619083 10.2307/2346381 10.1007/978-1-4612-1304-8 10.1111/j.2517-6161.1972.tb00899.x 10.1080/01621459.1997.10474049 10.1002/sim.2396 10.1016/j.csda.2008.11.022 10.1038/srep10371 10.18637/jss.v081.i12 10.1093/oso/9780198506508.001.0001 10.1002/cjs.11491 10.2307/2531200 |
| ContentType | Journal Article |
| Copyright | 2020 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION NPM K9. 7X8 |
| DOI | 10.1002/sim.8572 |
| DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Statistics Public Health |
| EISSN | 1097-0258 |
| EndPage | 2766 |
| ExternalDocumentID | 32410242 10_1002_sim_8572 SIM8572 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation funderid: DMS-1517719. |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AMVHM CITATION NPM K9. 7X8 |
| ID | FETCH-LOGICAL-c3492-16aa3e465f79f92a938691967d4e335b06178b4178d241d1880024d9b39bb30a3 |
| IEDL.DBID | DR2 |
| ISSN | 0277-6715 1097-0258 |
| IngestDate | Fri Jul 11 08:24:42 EDT 2025 Tue Oct 07 05:47:09 EDT 2025 Wed Feb 19 02:28:14 EST 2025 Wed Oct 01 04:09:07 EDT 2025 Thu Apr 24 23:03:37 EDT 2025 Wed Jan 22 16:35:00 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | exponential tail-completion nonparametric maximum likelihood empirical moment generating function survival analysis log-splines Cox proportional hazards model |
| Language | English |
| License | 2020 John Wiley & Sons, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3492-16aa3e465f79f92a938691967d4e335b06178b4178d241d1880024d9b39bb30a3 |
| Notes | Funding information National Science Foundation, DMS‐1517719. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 32410242 |
| PQID | 2430816650 |
| PQPubID | 48361 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2404043099 proquest_journals_2430816650 pubmed_primary_32410242 crossref_primary_10_1002_sim_8572 crossref_citationtrail_10_1002_sim_8572 wiley_primary_10_1002_sim_8572_SIM8572 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20 September 2020 |
| PublicationDateYYYYMMDD | 2020-09-20 |
| PublicationDate_xml | – month: 09 year: 2020 text: 20 September 2020 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: New York |
| PublicationTitle | Statistics in medicine |
| PublicationTitleAlternate | Stat Med |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 1995; 51 2015; 5 2010; 36 2017; 81 1993; 49 1997; 25 1997 2007 2006 1994 1985; 41 2005; 24 1998; 17 2009; 53 1997; 92 2000 1986; 42 2019; 47 2019 2017 2016 1981; 30 1972; 34 1992; 1 2010; 30 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 Cox DR (e_1_2_8_26_1) 1972; 34 e_1_2_8_27_1 Sun J (e_1_2_8_6_1) 2016 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_7_1 Kooperberg C (e_1_2_8_9_1) 1992; 1 Sun J (e_1_2_8_3_1) 2006 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 Severini TA (e_1_2_8_20_1) 2000 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Rahman M (e_1_2_8_5_1) 2019 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 |
| References_xml | – volume: 17 start-page: 219 issue: 2 year: 1998 end-page: 238 article-title: Methods for interval‐censored data publication-title: Stat Med – year: 2019 article-title: NemaLife: a structured microfluidic culture device optimized for aging studies in crawling C. elegans publication-title: BioRxiv – volume: 53 start-page: 1388 issue: 4 year: 2009 end-page: 1399 article-title: Bayesian density estimation from grouped continuous data publication-title: Comput Stat Data Anal – volume: 51 start-page: 874 year: 1995 end-page: 887 article-title: Hazard function estimation using B‐splines publication-title: Biometrics – volume: 5 start-page: 10371 year: 2015 article-title: A method to determine the duration of the eclipse phase for in vitro infection with a highly pathogenic SHIV strain publication-title: Sci Rep. – volume: 1 start-page: 301 issue: 4 year: 1992 end-page: 328 article-title: Logspline density estimation for censored data publication-title: J Comput Graph Stat – year: 2007 – year: 2000 – volume: 30 start-page: 125 issue: 2 year: 1981 end-page: 131 article-title: Composite link functions in generalized linear models publication-title: J Royal Stat Soc Ser C (Appl Stat) – year: 2016 – year: 1994 – volume: 49 start-page: 13 year: 1993 end-page: 22 article-title: Analyzing doubly censored data with covariates, with application to AIDS publication-title: Biometrics – volume: 41 start-page: 933 issue: 4 year: 1985 end-page: 945 article-title: A semiparametric model for regression analysis of interval‐censored failure time data publication-title: Biometrics – volume: 81 start-page: 1 issue: 12 year: 2017 end-page: 23 article-title: icenReg: regression models for interval censored data in R publication-title: J Stat Softw – year: 2006 – volume: 47 start-page: 238 year: 2019 end-page: 261 article-title: An empirical saddlepoint approximation based method for smoothing survival functions under right censoring publication-title: Canadian J Stat – volume: 92 start-page: 945 issue: 439 year: 1997 end-page: 959 article-title: A hybrid algorithm for computation of the nonparametric maximum likelihood estimator from censored data publication-title: J Am Stat Assoc – year: 1997 – volume: 24 start-page: 3977 issue: 24 year: 2005 end-page: 3989 article-title: Bayesian proportional hazards model with time‐varying regression coefficients: a penalized Poisson regression approach publication-title: Stat Med – volume: 25 start-page: 1371 issue: 4 year: 1997 end-page: 1470 article-title: Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture publication-title: Ann Stat – volume: 34 start-page: 187 issue: 2 year: 1972 end-page: 202 article-title: Regression models and life‐tables publication-title: J Royal Stat Soc Ser B (Methodol) – year: 2017 – year: 2019 – volume: 42 start-page: 495 year: 1986 end-page: 506 article-title: Survival estimation using splines publication-title: Biometrics – volume: 30 start-page: 75 issue: 1 year: 2010 end-page: 90 article-title: Smooth estimation of survival functions and hazard ratios from interval‐censored data using Bayesian penalized B‐splines publication-title: Stat Med – volume: 36 start-page: 1 issue: 2 year: 2010 end-page: 34 article-title: Exact and asymptotic weighted logrank tests for interval censored data: the interval R package publication-title: J Stat Softw – ident: e_1_2_8_12_1 doi: 10.1002/sim.4081 – ident: e_1_2_8_10_1 doi: 10.1214/aos/1031594728 – ident: e_1_2_8_25_1 doi: 10.2307/2532598 – ident: e_1_2_8_28_1 doi: 10.2307/2532989 – start-page: 675827 year: 2019 ident: e_1_2_8_5_1 article-title: NemaLife: a structured microfluidic culture device optimized for aging studies in crawling C. elegans publication-title: BioRxiv – ident: e_1_2_8_15_1 doi: 10.18637/jss.v036.i02 – ident: e_1_2_8_23_1 doi: 10.1002/(SICI)1097-0258(19980130)17:2<219::AID-SIM735>3.0.CO;2-O – ident: e_1_2_8_11_1 – ident: e_1_2_8_17_1 – volume: 1 start-page: 301 issue: 4 year: 1992 ident: e_1_2_8_9_1 article-title: Logspline density estimation for censored data publication-title: J Comput Graph Stat doi: 10.1080/10618600.1992.10474588 – ident: e_1_2_8_24_1 doi: 10.2307/2530965 – ident: e_1_2_8_21_1 doi: 10.1007/978-1-4899-3210-5 – ident: e_1_2_8_19_1 doi: 10.1017/CBO9780511802843 – ident: e_1_2_8_18_1 doi: 10.1017/CBO9780511619083 – ident: e_1_2_8_13_1 doi: 10.2307/2346381 – ident: e_1_2_8_2_1 doi: 10.1007/978-1-4612-1304-8 – volume: 34 start-page: 187 issue: 2 year: 1972 ident: e_1_2_8_26_1 article-title: Regression models and life‐tables publication-title: J Royal Stat Soc Ser B (Methodol) doi: 10.1111/j.2517-6161.1972.tb00899.x – volume-title: Handbook of Survival Analysis year: 2016 ident: e_1_2_8_6_1 – ident: e_1_2_8_16_1 doi: 10.1080/01621459.1997.10474049 – ident: e_1_2_8_29_1 doi: 10.1002/sim.2396 – ident: e_1_2_8_14_1 doi: 10.1016/j.csda.2008.11.022 – ident: e_1_2_8_4_1 doi: 10.1038/srep10371 – volume-title: The Statistical Analysis of Interval‐Censored Failure Time Data year: 2006 ident: e_1_2_8_3_1 – ident: e_1_2_8_8_1 – ident: e_1_2_8_22_1 doi: 10.18637/jss.v081.i12 – volume-title: Likelihood Methods in Statistics year: 2000 ident: e_1_2_8_20_1 doi: 10.1093/oso/9780198506508.001.0001 – ident: e_1_2_8_7_1 doi: 10.1002/cjs.11491 – ident: e_1_2_8_27_1 doi: 10.2307/2531200 |
| SSID | ssj0011527 |
| Score | 2.336984 |
| Snippet | We devise a new method to produce smooth estimates of baseline survival and hazard functions for incomplete data observed subject to interval‐censoring, that... We devise a new method to produce smooth estimates of baseline survival and hazard functions for incomplete data observed subject to interval-censoring, that... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2755 |
| SubjectTerms | Cox proportional hazards model empirical moment generating function exponential tail‐completion log‐splines Maximum likelihood method Medical statistics nonparametric maximum likelihood Nonparametric statistics Survival analysis |
| Title | An empirical saddlepoint approximation method for producing smooth survival and hazard functions under interval‐censoring |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8572 https://www.ncbi.nlm.nih.gov/pubmed/32410242 https://www.proquest.com/docview/2430816650 https://www.proquest.com/docview/2404043099 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1097-0258 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0011527 issn: 0277-6715 databaseCode: AMVHM dateStart: 20120220 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0277-6715 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011527 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD6IDyKU2q69bKtlCmKfsu5kJrdHEUUL9sELCD6EmcyEhrrZxeyC2Jf-hP5Gf4nnzCQp1grFlySQSSaXc_lmzpnvAGwVimcmLcog0qIMpJKoUmGJR1baKFJS2tKxfX6LD8_l14voos2qpLUwnh-in3AjzXD2mhRc6WbnD2loU01GaZSQ-eUidqOpk545infVWilCGSc86nhnx-FOd-FDT_QIXj5Eq87dHKzBZfegPsvkx2gx16Pi9i8Ox-e9ySt42aJQtuvF5jUs2XoAK8dtnH0AL_xsHvOLlAawSpjUUzqvw8_dmtnJrHLkIqxRNMMxm1b1nDmC8pvKr4Zkvjg1Q1TMZo5XFr0kayZTlA3WLNBEoZAzVRv2Xd2inDJysU4LGC1su2aVS8dUV3e_fhc42HaZgm_g_GD_bO8waGs4BAXxHgY8VkpYGUdlkpVZqDKRxhlqfWKkFSLShKBSLXFjEEsYYodD1GAyLTKtxViJt7BcT2v7HpjGkaK1pTRoRqQpuEpEbOMSRwdcmzTkQ_jS_c-8aAnOqc7GVe6pmcMcP3ROH3oIn_uWM0_q8Y82G51I5K1aN3koBRUqQVSLt-hPo0JSlEXVdrqgNmNiLELkPYR3XpT6ThC9cgJFQ9h2AvFk7_np0THtP_xvw4-wGtJMAMXLxhuwPL9e2E2ES3P9ySnGPcmnE_c |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_EghVKP661vda2WyjtU85LdvOFTyLK2Xo-tAo-FMJudoNBL3eYOyj2xT_Bv9G_xJndJKJtofQlCWSSzcfM7G9nd34D8DGXfqqTvPBCxQtPSIEmFRR4ZIQJQymEKSzb50E0OhJfjsPjJdhsc2EcP0QXcCPLsP6aDJwC0hu3rKF1ORkkYYz-94GIcJhCiOhbxx3lt_VaaY4yiv2wZZ4dBhvtlXf7ot8A5l28ajuc3Sfwo31Ut87kdLCYq0F-cY_F8T_f5Sk8boAo23Ka8wyWTNWDlXEz1d6DRy6gx1yeUg9WCZY6Vufn8GurYmYyKy2_CKslBTlm07KaM8tR_rN0CZHM1admCIzZzFLLYkfJ6skU1YPVC_RSqOdMVpqdyAtUVUa9rDUERrlt56y0KzLl2fXlVY7jbbtY8AUc7e4cbo-8poyDlxP1oedHUnIjorCI0yINZMqTKEXDj7UwnIeKQFSiBG40wglNBHEIHHSqeKoUH0q-BsvVtDKvgCkcLBpTCI2eROjclzGPTFTgAMFXOgn8Pnxuf2iWNxznVGrjLHPszEGGHzqjD92HD53kzPF6_EFmvdWJrLHsOgsEp1olCGzxFt1ptEmaaJGVmS5IZkikRQi--_DS6VLXCAJYn3BRHz5Zjfhr69n3vTHtX_-r4Ht4ODoc72f7ewdf38BqQIEBmj4brsPy_Hxh3iJ6mqt31kpuAP6RGBg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UCqUgXtbb1qojiD5lu8lMbvhUrEurtoha6IMQZjIzGNrNhmYXpL74E_yN_hLPmUki9QLiSxLIJJPL-Wa-mXPmOwBPShnmOittECtuAyEFQiqyeGSEiWMphLFO7fMo2T8Wr07ikzV43q-F8foQw4QbIcO11wRw02i781M1tK3mkyxOsf29IuI8o3i-vXeDdlTY52slH2WShnGvPDuNdvorL_dFvxHMy3zVdTiz6_Cxf1QfZ3I6WS3VpLz4RcXxP9_lBlzriCjb9ZZzE9ZMPYKNw87VPoKrfkKP-XVKI9gkWupVnW_Bl92amXlTOX0R1kqa5GgWVb1kTqP8c-UXRDKfn5ohMWaNk5bFjpK18wWaB2tX2EqhnTNZa_ZJXqCpMuplHRAYrW07Z5WLyJRn379-K3G87YIFb8Px7OWHF_tBl8YhKEn6MAgTKbkRSWzT3OaRzHmW5Aj8VAvDeayIRGVK4EYjndAkEIfEQeeK50rxqeR3YL1e1OYeMIWDRWOs0NiSCF2GMuWJSSwOEEKlsygcw7P-hxZlp3FOqTbOCq_OHBX4oQv60GN4PJRsvK7HH8ps9zZRdMhui0hwylWCxBZvMZxGTJKjRdZmsaIyUxItQvI9hrveloZKkMCGxIvG8NRZxF9rL94fHNJ-618LPoKNt3uz4s3B0ev7sBnRvAB5z6bbsL48X5kHSJ6W6qEDyQ-HBhec |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+saddlepoint+approximation+method+for+producing+smooth+survival+and+hazard+functions+under+interval-censoring&rft.jtitle=Statistics+in+medicine&rft.au=Dissanayake%2C+Manjari&rft.au=Trindade%2C+A+Alexandre&rft.date=2020-09-20&rft.issn=1097-0258&rft.eissn=1097-0258&rft.volume=39&rft.issue=21&rft.spage=2755&rft_id=info:doi/10.1002%2Fsim.8572&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |