An empirical saddlepoint approximation method for producing smooth survival and hazard functions under interval‐censoring

We devise a new method to produce smooth estimates of baseline survival and hazard functions for incomplete data observed subject to interval‐censoring, that can in principle be viewed as being nonparametric. The key idea is to start from the nonparametric maximum likelihood estimate, and to then co...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 39; no. 21; pp. 2755 - 2766
Main Authors Dissanayake, Manjari, Trindade, A. Alexandre
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 20.09.2020
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.8572

Cover

Abstract We devise a new method to produce smooth estimates of baseline survival and hazard functions for incomplete data observed subject to interval‐censoring, that can in principle be viewed as being nonparametric. The key idea is to start from the nonparametric maximum likelihood estimate, and to then construct an empirical moment generating function for the underlying data generating mechanism, which is subsequently inverted via a saddlepoint approximation in order to obtain smooth distributional estimates. Unlike the typical spline‐based and other semiparametric methods that have thus far been devised for the same purpose, the proposed approach is unencumbered by the choice of tuning parameters. Simulation studies show that in terms of integrated squared error, the method is very close in performance to the parametric gold standard, and should generally be preferred over the well‐established spline‐based approach implemented in R package logspline. The methodology is illustrated on some publicly available real datasets, and its implications and limitations are discussed.
AbstractList We devise a new method to produce smooth estimates of baseline survival and hazard functions for incomplete data observed subject to interval‐censoring, that can in principle be viewed as being nonparametric. The key idea is to start from the nonparametric maximum likelihood estimate, and to then construct an empirical moment generating function for the underlying data generating mechanism, which is subsequently inverted via a saddlepoint approximation in order to obtain smooth distributional estimates. Unlike the typical spline‐based and other semiparametric methods that have thus far been devised for the same purpose, the proposed approach is unencumbered by the choice of tuning parameters. Simulation studies show that in terms of integrated squared error, the method is very close in performance to the parametric gold standard, and should generally be preferred over the well‐established spline‐based approach implemented in R package logspline . The methodology is illustrated on some publicly available real datasets, and its implications and limitations are discussed.
We devise a new method to produce smooth estimates of baseline survival and hazard functions for incomplete data observed subject to interval‐censoring, that can in principle be viewed as being nonparametric. The key idea is to start from the nonparametric maximum likelihood estimate, and to then construct an empirical moment generating function for the underlying data generating mechanism, which is subsequently inverted via a saddlepoint approximation in order to obtain smooth distributional estimates. Unlike the typical spline‐based and other semiparametric methods that have thus far been devised for the same purpose, the proposed approach is unencumbered by the choice of tuning parameters. Simulation studies show that in terms of integrated squared error, the method is very close in performance to the parametric gold standard, and should generally be preferred over the well‐established spline‐based approach implemented in R package logspline. The methodology is illustrated on some publicly available real datasets, and its implications and limitations are discussed.
We devise a new method to produce smooth estimates of baseline survival and hazard functions for incomplete data observed subject to interval-censoring, that can in principle be viewed as being nonparametric. The key idea is to start from the nonparametric maximum likelihood estimate, and to then construct an empirical moment generating function for the underlying data generating mechanism, which is subsequently inverted via a saddlepoint approximation in order to obtain smooth distributional estimates. Unlike the typical spline-based and other semiparametric methods that have thus far been devised for the same purpose, the proposed approach is unencumbered by the choice of tuning parameters. Simulation studies show that in terms of integrated squared error, the method is very close in performance to the parametric gold standard, and should generally be preferred over the well-established spline-based approach implemented in R package logspline. The methodology is illustrated on some publicly available real datasets, and its implications and limitations are discussed.We devise a new method to produce smooth estimates of baseline survival and hazard functions for incomplete data observed subject to interval-censoring, that can in principle be viewed as being nonparametric. The key idea is to start from the nonparametric maximum likelihood estimate, and to then construct an empirical moment generating function for the underlying data generating mechanism, which is subsequently inverted via a saddlepoint approximation in order to obtain smooth distributional estimates. Unlike the typical spline-based and other semiparametric methods that have thus far been devised for the same purpose, the proposed approach is unencumbered by the choice of tuning parameters. Simulation studies show that in terms of integrated squared error, the method is very close in performance to the parametric gold standard, and should generally be preferred over the well-established spline-based approach implemented in R package logspline. The methodology is illustrated on some publicly available real datasets, and its implications and limitations are discussed.
Author Trindade, A. Alexandre
Dissanayake, Manjari
Author_xml – sequence: 1
  givenname: Manjari
  surname: Dissanayake
  fullname: Dissanayake, Manjari
  organization: Department of Mathematics & Statistics
– sequence: 2
  givenname: A. Alexandre
  surname: Trindade
  fullname: Trindade, A. Alexandre
  email: alex.trindade@ttu.edu
  organization: Department of Mathematics & Statistics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32410242$$D View this record in MEDLINE/PubMed
BookMark eNp1kd9O2zAYxa2JabSAxBMgS7vhJp3_JHF8iRAMJKZdMK4jJ3ZWV4md2Umh7IZH4Bl5kn1tGZMqJku2ZP3O8edzpmjPeWcQOqZkRglhX6LtZkUm2Ac0oUSKhLCs2EMTwoRIckGzfTSNcUEIpRkTn9A-ZyklLGUT9PvMYdP1NthatTgqrVvTe-sGrPo--AfbqcF6hzszzL3GjQ8YrvVYW_cTx877YY7jGJZ2CXLlNJ6rRxUAHF29FkY8Om0CBkcTgHl5eq6Niz6A_hB9bFQbzdHreYDuLi9-nF8lN9-_Xp-f3SQ1TyVLaK4UN2meNUI2kinJi1xSmQudGs6ziuRUFFUKm4ZvaVoUEEmqZcVlVXGi-AE63frC5L9GE4eys7E2bauc8WMsWUpgcSIloJ930IUfg4PpgOKkoHmeEaBOXqmx6owu-wAxhVX5N9Z_L9bBxxhM84ZQUq4bK6Gxct0YoLMdtLbDJvMhKNu-J0i2gnvbmtV_jcvb628b_g85xqgO
CitedBy_id crossref_primary_10_3390_sym13112041
Cites_doi 10.1002/sim.4081
10.1214/aos/1031594728
10.2307/2532598
10.2307/2532989
10.18637/jss.v036.i02
10.1002/(SICI)1097-0258(19980130)17:2<219::AID-SIM735>3.0.CO;2-O
10.1080/10618600.1992.10474588
10.2307/2530965
10.1007/978-1-4899-3210-5
10.1017/CBO9780511802843
10.1017/CBO9780511619083
10.2307/2346381
10.1007/978-1-4612-1304-8
10.1111/j.2517-6161.1972.tb00899.x
10.1080/01621459.1997.10474049
10.1002/sim.2396
10.1016/j.csda.2008.11.022
10.1038/srep10371
10.18637/jss.v081.i12
10.1093/oso/9780198506508.001.0001
10.1002/cjs.11491
10.2307/2531200
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/sim.8572
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 2766
ExternalDocumentID 32410242
10_1002_sim_8572
SIM8572
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMS-1517719.
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
NPM
K9.
7X8
ID FETCH-LOGICAL-c3492-16aa3e465f79f92a938691967d4e335b06178b4178d241d1880024d9b39bb30a3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 08:24:42 EDT 2025
Tue Oct 07 05:47:09 EDT 2025
Wed Feb 19 02:28:14 EST 2025
Wed Oct 01 04:09:07 EDT 2025
Thu Apr 24 23:03:37 EDT 2025
Wed Jan 22 16:35:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords exponential tail-completion
nonparametric maximum likelihood
empirical moment generating function
survival analysis
log-splines
Cox proportional hazards model
Language English
License 2020 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3492-16aa3e465f79f92a938691967d4e335b06178b4178d241d1880024d9b39bb30a3
Notes Funding information
National Science Foundation, DMS‐1517719.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 32410242
PQID 2430816650
PQPubID 48361
PageCount 12
ParticipantIDs proquest_miscellaneous_2404043099
proquest_journals_2430816650
pubmed_primary_32410242
crossref_primary_10_1002_sim_8572
crossref_citationtrail_10_1002_sim_8572
wiley_primary_10_1002_sim_8572_SIM8572
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20 September 2020
PublicationDateYYYYMMDD 2020-09-20
PublicationDate_xml – month: 09
  year: 2020
  text: 20 September 2020
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1995; 51
2015; 5
2010; 36
2017; 81
1993; 49
1997; 25
1997
2007
2006
1994
1985; 41
2005; 24
1998; 17
2009; 53
1997; 92
2000
1986; 42
2019; 47
2019
2017
2016
1981; 30
1972; 34
1992; 1
2010; 30
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
Cox DR (e_1_2_8_26_1) 1972; 34
e_1_2_8_27_1
Sun J (e_1_2_8_6_1) 2016
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
Kooperberg C (e_1_2_8_9_1) 1992; 1
Sun J (e_1_2_8_3_1) 2006
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
Severini TA (e_1_2_8_20_1) 2000
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Rahman M (e_1_2_8_5_1) 2019
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 17
  start-page: 219
  issue: 2
  year: 1998
  end-page: 238
  article-title: Methods for interval‐censored data
  publication-title: Stat Med
– year: 2019
  article-title: NemaLife: a structured microfluidic culture device optimized for aging studies in crawling C. elegans
  publication-title: BioRxiv
– volume: 53
  start-page: 1388
  issue: 4
  year: 2009
  end-page: 1399
  article-title: Bayesian density estimation from grouped continuous data
  publication-title: Comput Stat Data Anal
– volume: 51
  start-page: 874
  year: 1995
  end-page: 887
  article-title: Hazard function estimation using B‐splines
  publication-title: Biometrics
– volume: 5
  start-page: 10371
  year: 2015
  article-title: A method to determine the duration of the eclipse phase for in vitro infection with a highly pathogenic SHIV strain
  publication-title: Sci Rep.
– volume: 1
  start-page: 301
  issue: 4
  year: 1992
  end-page: 328
  article-title: Logspline density estimation for censored data
  publication-title: J Comput Graph Stat
– year: 2007
– year: 2000
– volume: 30
  start-page: 125
  issue: 2
  year: 1981
  end-page: 131
  article-title: Composite link functions in generalized linear models
  publication-title: J Royal Stat Soc Ser C (Appl Stat)
– year: 2016
– year: 1994
– volume: 49
  start-page: 13
  year: 1993
  end-page: 22
  article-title: Analyzing doubly censored data with covariates, with application to AIDS
  publication-title: Biometrics
– volume: 41
  start-page: 933
  issue: 4
  year: 1985
  end-page: 945
  article-title: A semiparametric model for regression analysis of interval‐censored failure time data
  publication-title: Biometrics
– volume: 81
  start-page: 1
  issue: 12
  year: 2017
  end-page: 23
  article-title: icenReg: regression models for interval censored data in R
  publication-title: J Stat Softw
– year: 2006
– volume: 47
  start-page: 238
  year: 2019
  end-page: 261
  article-title: An empirical saddlepoint approximation based method for smoothing survival functions under right censoring
  publication-title: Canadian J Stat
– volume: 92
  start-page: 945
  issue: 439
  year: 1997
  end-page: 959
  article-title: A hybrid algorithm for computation of the nonparametric maximum likelihood estimator from censored data
  publication-title: J Am Stat Assoc
– year: 1997
– volume: 24
  start-page: 3977
  issue: 24
  year: 2005
  end-page: 3989
  article-title: Bayesian proportional hazards model with time‐varying regression coefficients: a penalized Poisson regression approach
  publication-title: Stat Med
– volume: 25
  start-page: 1371
  issue: 4
  year: 1997
  end-page: 1470
  article-title: Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture
  publication-title: Ann Stat
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  end-page: 202
  article-title: Regression models and life‐tables
  publication-title: J Royal Stat Soc Ser B (Methodol)
– year: 2017
– year: 2019
– volume: 42
  start-page: 495
  year: 1986
  end-page: 506
  article-title: Survival estimation using splines
  publication-title: Biometrics
– volume: 30
  start-page: 75
  issue: 1
  year: 2010
  end-page: 90
  article-title: Smooth estimation of survival functions and hazard ratios from interval‐censored data using Bayesian penalized B‐splines
  publication-title: Stat Med
– volume: 36
  start-page: 1
  issue: 2
  year: 2010
  end-page: 34
  article-title: Exact and asymptotic weighted logrank tests for interval censored data: the interval R package
  publication-title: J Stat Softw
– ident: e_1_2_8_12_1
  doi: 10.1002/sim.4081
– ident: e_1_2_8_10_1
  doi: 10.1214/aos/1031594728
– ident: e_1_2_8_25_1
  doi: 10.2307/2532598
– ident: e_1_2_8_28_1
  doi: 10.2307/2532989
– start-page: 675827
  year: 2019
  ident: e_1_2_8_5_1
  article-title: NemaLife: a structured microfluidic culture device optimized for aging studies in crawling C. elegans
  publication-title: BioRxiv
– ident: e_1_2_8_15_1
  doi: 10.18637/jss.v036.i02
– ident: e_1_2_8_23_1
  doi: 10.1002/(SICI)1097-0258(19980130)17:2<219::AID-SIM735>3.0.CO;2-O
– ident: e_1_2_8_11_1
– ident: e_1_2_8_17_1
– volume: 1
  start-page: 301
  issue: 4
  year: 1992
  ident: e_1_2_8_9_1
  article-title: Logspline density estimation for censored data
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.1992.10474588
– ident: e_1_2_8_24_1
  doi: 10.2307/2530965
– ident: e_1_2_8_21_1
  doi: 10.1007/978-1-4899-3210-5
– ident: e_1_2_8_19_1
  doi: 10.1017/CBO9780511802843
– ident: e_1_2_8_18_1
  doi: 10.1017/CBO9780511619083
– ident: e_1_2_8_13_1
  doi: 10.2307/2346381
– ident: e_1_2_8_2_1
  doi: 10.1007/978-1-4612-1304-8
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  ident: e_1_2_8_26_1
  article-title: Regression models and life‐tables
  publication-title: J Royal Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume-title: Handbook of Survival Analysis
  year: 2016
  ident: e_1_2_8_6_1
– ident: e_1_2_8_16_1
  doi: 10.1080/01621459.1997.10474049
– ident: e_1_2_8_29_1
  doi: 10.1002/sim.2396
– ident: e_1_2_8_14_1
  doi: 10.1016/j.csda.2008.11.022
– ident: e_1_2_8_4_1
  doi: 10.1038/srep10371
– volume-title: The Statistical Analysis of Interval‐Censored Failure Time Data
  year: 2006
  ident: e_1_2_8_3_1
– ident: e_1_2_8_8_1
– ident: e_1_2_8_22_1
  doi: 10.18637/jss.v081.i12
– volume-title: Likelihood Methods in Statistics
  year: 2000
  ident: e_1_2_8_20_1
  doi: 10.1093/oso/9780198506508.001.0001
– ident: e_1_2_8_7_1
  doi: 10.1002/cjs.11491
– ident: e_1_2_8_27_1
  doi: 10.2307/2531200
SSID ssj0011527
Score 2.336984
Snippet We devise a new method to produce smooth estimates of baseline survival and hazard functions for incomplete data observed subject to interval‐censoring, that...
We devise a new method to produce smooth estimates of baseline survival and hazard functions for incomplete data observed subject to interval-censoring, that...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2755
SubjectTerms Cox proportional hazards model
empirical moment generating function
exponential tail‐completion
log‐splines
Maximum likelihood method
Medical statistics
nonparametric maximum likelihood
Nonparametric statistics
Survival analysis
Title An empirical saddlepoint approximation method for producing smooth survival and hazard functions under interval‐censoring
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8572
https://www.ncbi.nlm.nih.gov/pubmed/32410242
https://www.proquest.com/docview/2430816650
https://www.proquest.com/docview/2404043099
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1097-0258
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0011527
  issn: 0277-6715
  databaseCode: AMVHM
  dateStart: 20120220
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0277-6715
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD6IDyKU2q69bKtlCmKfsu5kJrdHEUUL9sELCD6EmcyEhrrZxeyC2Jf-hP5Gf4nnzCQp1grFlySQSSaXc_lmzpnvAGwVimcmLcog0qIMpJKoUmGJR1baKFJS2tKxfX6LD8_l14voos2qpLUwnh-in3AjzXD2mhRc6WbnD2loU01GaZSQ-eUidqOpk545infVWilCGSc86nhnx-FOd-FDT_QIXj5Eq87dHKzBZfegPsvkx2gx16Pi9i8Ox-e9ySt42aJQtuvF5jUs2XoAK8dtnH0AL_xsHvOLlAawSpjUUzqvw8_dmtnJrHLkIqxRNMMxm1b1nDmC8pvKr4Zkvjg1Q1TMZo5XFr0kayZTlA3WLNBEoZAzVRv2Xd2inDJysU4LGC1su2aVS8dUV3e_fhc42HaZgm_g_GD_bO8waGs4BAXxHgY8VkpYGUdlkpVZqDKRxhlqfWKkFSLShKBSLXFjEEsYYodD1GAyLTKtxViJt7BcT2v7HpjGkaK1pTRoRqQpuEpEbOMSRwdcmzTkQ_jS_c-8aAnOqc7GVe6pmcMcP3ROH3oIn_uWM0_q8Y82G51I5K1aN3koBRUqQVSLt-hPo0JSlEXVdrqgNmNiLELkPYR3XpT6ThC9cgJFQ9h2AvFk7_np0THtP_xvw4-wGtJMAMXLxhuwPL9e2E2ES3P9ySnGPcmnE_c
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_EghVKP661vda2WyjtU85LdvOFTyLK2Xo-tAo-FMJudoNBL3eYOyj2xT_Bv9G_xJndJKJtofQlCWSSzcfM7G9nd34D8DGXfqqTvPBCxQtPSIEmFRR4ZIQJQymEKSzb50E0OhJfjsPjJdhsc2EcP0QXcCPLsP6aDJwC0hu3rKF1ORkkYYz-94GIcJhCiOhbxx3lt_VaaY4yiv2wZZ4dBhvtlXf7ot8A5l28ajuc3Sfwo31Ut87kdLCYq0F-cY_F8T_f5Sk8boAo23Ka8wyWTNWDlXEz1d6DRy6gx1yeUg9WCZY6Vufn8GurYmYyKy2_CKslBTlm07KaM8tR_rN0CZHM1admCIzZzFLLYkfJ6skU1YPVC_RSqOdMVpqdyAtUVUa9rDUERrlt56y0KzLl2fXlVY7jbbtY8AUc7e4cbo-8poyDlxP1oedHUnIjorCI0yINZMqTKEXDj7UwnIeKQFSiBG40wglNBHEIHHSqeKoUH0q-BsvVtDKvgCkcLBpTCI2eROjclzGPTFTgAMFXOgn8Pnxuf2iWNxznVGrjLHPszEGGHzqjD92HD53kzPF6_EFmvdWJrLHsOgsEp1olCGzxFt1ptEmaaJGVmS5IZkikRQi--_DS6VLXCAJYn3BRHz5Zjfhr69n3vTHtX_-r4Ht4ODoc72f7ewdf38BqQIEBmj4brsPy_Hxh3iJ6mqt31kpuAP6RGBg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UCqUgXtbb1qojiD5lu8lMbvhUrEurtoha6IMQZjIzGNrNhmYXpL74E_yN_hLPmUki9QLiSxLIJJPL-Wa-mXPmOwBPShnmOittECtuAyEFQiqyeGSEiWMphLFO7fMo2T8Wr07ikzV43q-F8foQw4QbIcO11wRw02i781M1tK3mkyxOsf29IuI8o3i-vXeDdlTY52slH2WShnGvPDuNdvorL_dFvxHMy3zVdTiz6_Cxf1QfZ3I6WS3VpLz4RcXxP9_lBlzriCjb9ZZzE9ZMPYKNw87VPoKrfkKP-XVKI9gkWupVnW_Bl92amXlTOX0R1kqa5GgWVb1kTqP8c-UXRDKfn5ohMWaNk5bFjpK18wWaB2tX2EqhnTNZa_ZJXqCpMuplHRAYrW07Z5WLyJRn379-K3G87YIFb8Px7OWHF_tBl8YhKEn6MAgTKbkRSWzT3OaRzHmW5Aj8VAvDeayIRGVK4EYjndAkEIfEQeeK50rxqeR3YL1e1OYeMIWDRWOs0NiSCF2GMuWJSSwOEEKlsygcw7P-hxZlp3FOqTbOCq_OHBX4oQv60GN4PJRsvK7HH8ps9zZRdMhui0hwylWCxBZvMZxGTJKjRdZmsaIyUxItQvI9hrveloZKkMCGxIvG8NRZxF9rL94fHNJ-618LPoKNt3uz4s3B0ev7sBnRvAB5z6bbsL48X5kHSJ6W6qEDyQ-HBhec
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+saddlepoint+approximation+method+for+producing+smooth+survival+and+hazard+functions+under+interval-censoring&rft.jtitle=Statistics+in+medicine&rft.au=Dissanayake%2C+Manjari&rft.au=Trindade%2C+A+Alexandre&rft.date=2020-09-20&rft.issn=1097-0258&rft.eissn=1097-0258&rft.volume=39&rft.issue=21&rft.spage=2755&rft_id=info:doi/10.1002%2Fsim.8572&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon