Proposal of the “data to equation” algorithm

A new algorithm to determine the master equation behind time-series data is proposed. For this algorithm, a library of potential terms for the master equation for a finite difference formula was given. Using time-series data, each time-series potential term was estimated. The master equation was wri...

Full description

Saved in:
Bibliographic Details
Published inChaos, Solitons & Fractals Vol. 114; pp. 423 - 432
Main Authors Inage, Shin-ichi, Yamaguchi, Kazumi
Format Journal Article
LanguageEnglish
Japanese
Published Elsevier Ltd 01.09.2018
Elsevier BV
Online AccessGet full text
ISSN0960-0779
1873-2887
DOI10.1016/j.chaos.2018.06.015

Cover

Abstract A new algorithm to determine the master equation behind time-series data is proposed. For this algorithm, a library of potential terms for the master equation for a finite difference formula was given. Using time-series data, each time-series potential term was estimated. The master equation was written as a linear sum of each potential term. Additionally, each coefficient in front of the potential terms was determined to minimize ∑(linear sum)2 during the given period using the genetic algorithm and Gauss–Seidel method. The genetic algorithm minimized both ∑(linear sum)2 and number of potential terms, because the estimated master equation by the time-series data should be simple. This approach was applied to several functions and so-called Lorenz equations, which demonstrate typical chaotic motion. The time-series data was given through the numerical calculation of sample functions and Lorenz equations. The estimated master equation based on the proposed approach was compared with sample functions and the Lorenz equations. In each case, the coefficients in the equations were in good agreement. There was a small discrepancy between the coefficients of the original Lorenz equations and the estimated master equation. For the Lorenz equations, in the short-term, the attracters were in good agreement. By contrast, the discrepancies influenced the long-term attracters based on chaotic motion.
AbstractList A new algorithm to determine the master equation behind time-series data is proposed. For this algorithm, a library of potential terms for the master equation for a finite difference formula was given. Using time-series data, each time-series potential term was estimated. The master equation was written as a linear sum of each potential term. Additionally, each coefficient in front of the potential terms was determined to minimize ∑(linear sum)2 during the given period using the genetic algorithm and Gauss–Seidel method. The genetic algorithm minimized both ∑(linear sum)2 and number of potential terms, because the estimated master equation by the time-series data should be simple. This approach was applied to several functions and so-called Lorenz equations, which demonstrate typical chaotic motion. The time-series data was given through the numerical calculation of sample functions and Lorenz equations. The estimated master equation based on the proposed approach was compared with sample functions and the Lorenz equations. In each case, the coefficients in the equations were in good agreement. There was a small discrepancy between the coefficients of the original Lorenz equations and the estimated master equation. For the Lorenz equations, in the short-term, the attracters were in good agreement. By contrast, the discrepancies influenced the long-term attracters based on chaotic motion.
Author Inage, Shin-ichi
Yamaguchi, Kazumi
Author_xml – sequence: 1
  givenname: Shin-ichi
  orcidid: 0000-0003-3187-0431
  surname: Inage
  fullname: Inage, Shin-ichi
  email: inage.s.ab@m.titech.ac.jp, shinichi.inage.wk@hitachi.com
  organization: Advanced Energy Systems for Sustainability, Institute of Innovation Research, Tokyo Institute of Technology, Ishikawadai-6 Bld. Room 419 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
– sequence: 2
  givenname: Kazumi
  surname: Yamaguchi
  fullname: Yamaguchi, Kazumi
  organization: Hitachi Industry & Control Solutions, Ltd., Asahi-Seimei Building 1-22-1 Saiwai-cho, Hitachi-shi, Ibaraki-ken 317-0073, Japan
BackLink https://cir.nii.ac.jp/crid/1872835443104558336$$DView record in CiNii
BookMark eNp9kD1OAzEQhS0UJJLACWi2oN1lvP5NQYEi_qRIUEBt2V6bOErWwV6Q6HIQuFxOwi6hppmRRu_NvG8maNTG1iF0jqHCgPnlqrJLHXNVA5YV8AowO0JjLAUpaynFCI1hxqEEIWYnaJLzCgAw8HqM4CnFbcx6XURfdEtX7Hdfje500cXCvb3rLsR2v_su9Po1ptAtN6fo2Ot1dmd_fYpebm-e5_fl4vHuYX69KC2hsiu9l4QxajT3zAgnYQYGmBacUcKGEefaOd3Y2og-muceaiyMACOpwdSQKSKHvTbFnJPzapvCRqdPhUEN0GqlfqHVAK2Aqx66d10cXG0Iyoah9l-o-yyUEgyUMUkI72VXB5nrCT6CSyrb4FrrmpCc7VQTw79nfgDP5m4I
Cites_doi 10.1007/BF01446334
10.1016/0893-6080(89)90020-8
10.1016/j.solener.2017.05.019
10.1016/j.patrec.2014.01.008
10.1007/BF02551274
10.1007/BF02430507
10.1162/evco.1994.2.3.221
10.1109/4235.797969
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1016/j.sbspro.2012.09.138
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID RYH
AAYXX
CITATION
DOI 10.1016/j.chaos.2018.06.015
DatabaseName CiNii Complete
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
EndPage 432
ExternalDocumentID 10_1016_j_chaos_2018_06_015
S0960077918303977
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
AATTM
AAXKI
AAYWO
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
RYH
SSH
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AFJKZ
AGQPQ
AIGII
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c348t-ff83554ba6f5b7e8090b05a765435f5b766aeeadc2b7960f6f0217b70b84b14b3
IEDL.DBID .~1
ISSN 0960-0779
IngestDate Sat Oct 25 05:03:32 EDT 2025
Thu Jun 26 21:36:46 EDT 2025
Fri Feb 23 02:47:17 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-ff83554ba6f5b7e8090b05a765435f5b766aeeadc2b7960f6f0217b70b84b14b3
ORCID 0000-0003-3187-0431
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_chaos_2018_06_015
nii_cinii_1872835443104558336
elsevier_sciencedirect_doi_10_1016_j_chaos_2018_06_015
PublicationCentury 2000
PublicationDate September 2018
2018-09-01
2018-09-00
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationTitle Chaos, Solitons & Fractals
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Hornik (bib0010) 1989; 2
Moore (bib0006) 1897; 48
Goldberg (bib0009) 1989
Schaffer (bib0016) 1985; vol. 100
Deb (bib0004) 2001
Zitzler, Laumanns, Thiele (bib0021) 2001
Srinivas, Deb (bib0019) 1994; vol. 2
Deb, Agrawal, Pratab, Meyarivan (bib0005) 2000
Langkvist, Karlsson, Loutfi (bib0012) 2014; 42
Inage (bib0018) 2017; 153
Fonseca, Fleming (bib0007) 1993; 423
Lorenz (bib0011) 1963; Vol.20
George (bib0008) 1989; 2
Watanabe, Hiroyasu, Miki (bib0017) 2002
Atkinson, Kendall (bib0002) 1989
Hölder (bib0015) 1887; 28
Baqais (bib0001) 2016; Vol. 7
Kumar, Husian, Upreti, Gupta. (bib0013) 2010; Volume 2
Ak, Koc (bib0003) 2012; 62
Michael, Hod (bib0014) 2009; 324
Zitzler, Thiele (bib0020) 1999; vol. 3
Lorenz (10.1016/j.chaos.2018.06.015_bib0011) 1963; Vol.20
Moore (10.1016/j.chaos.2018.06.015_bib0006) 1897; 48
Langkvist (10.1016/j.chaos.2018.06.015_bib0012) 2014; 42
Hölder (10.1016/j.chaos.2018.06.015_bib0015) 1887; 28
Zitzler (10.1016/j.chaos.2018.06.015_bib0021) 2001
George (10.1016/j.chaos.2018.06.015_bib0008) 1989; 2
Kumar (10.1016/j.chaos.2018.06.015_bib0013) 2010; Volume 2
Deb (10.1016/j.chaos.2018.06.015_bib0004) 2001
Zitzler (10.1016/j.chaos.2018.06.015_bib0020) 1999; vol. 3
Ak (10.1016/j.chaos.2018.06.015_bib0003) 2012; 62
Hornik (10.1016/j.chaos.2018.06.015_bib0010) 1989; 2
Michael (10.1016/j.chaos.2018.06.015_bib0014) 2009; 324
Fonseca (10.1016/j.chaos.2018.06.015_bib0007) 1993; 423
Watanabe (10.1016/j.chaos.2018.06.015_bib0017) 2002
Baqais (10.1016/j.chaos.2018.06.015_bib0001) 2016; Vol. 7
Atkinson, Kendall (10.1016/j.chaos.2018.06.015_bib0002) 1989
Goldberg (10.1016/j.chaos.2018.06.015_bib0009) 1989
Inage (10.1016/j.chaos.2018.06.015_bib0018) 2017; 153
Srinivas (10.1016/j.chaos.2018.06.015_bib0019) 1994; vol. 2
Deb (10.1016/j.chaos.2018.06.015_bib0005) 2000
Schaffer (10.1016/j.chaos.2018.06.015_bib0016) 1985; vol. 100
References_xml – volume: vol. 100
  start-page: 93
  year: 1985
  ident: bib0016
  article-title: Multiple objective optimization with vector evaluated genetic algorithms
  publication-title: Proceedings of 1st international conference on genetic algorithms and their applications
– year: 1989
  ident: bib0009
  article-title: Genetic algorithms
  publication-title: Optimization and machine learning
– volume: 324
  year: 2009
  ident: bib0014
  article-title: Distilling free-form natural laws from experimental data
  publication-title: Science
– year: 2000
  ident: bib0005
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization
– volume: 153
  start-page: 414
  year: 2017
  end-page: 434
  ident: bib0018
  article-title: Development of advection model for solar-forecasting based on ground data 1st report: development of fundamental model and its verification
  publication-title: Sol Energy
– volume: 423
  start-page: 416
  year: 1993
  ident: bib0007
  article-title: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization
  publication-title: Proceedings of the 5th international conference on genetic algorithms
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bib0010
  article-title: Maxwell stinchcombe, halbert white, multilayer feedforward networks are universal approximators
  publication-title: Neural Netw
– volume: Vol.20
  start-page: 130
  year: 1963
  end-page: 141
  ident: bib0011
  article-title: Deterministic nonperiodic flow
  publication-title: J Atmosp Sci
– volume: 28
  start-page: 1
  year: 1887
  end-page: 13
  ident: bib0015
  article-title: Über die Eigenschaft der Gammafunction keiner algebraischen differentialgleichung zu genügen
  publication-title: Math Ann
– year: 1989
  ident: bib0002
  article-title: An introduction to numerical analysis
– volume: vol. 3
  start-page: 257
  year: 1999
  ident: bib0020
  article-title: Multi objective evolutionary algorithms: a comparative case study and the strength pareto approach
  publication-title: IEEE Trans Evol Comput
– year: 2001
  ident: bib0021
  article-title: Computer engineering genetic algorithm and communication networks lab (TIK)
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  ident: bib0008
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math Control Signals Syst
– volume: Volume 2
  start-page: 451
  year: 2010
  end-page: 454
  ident: bib0013
  article-title: Genetic algorithm: review and application
  publication-title: Int J Inf Technol Knowl Manag
– volume: vol. 2
  start-page: 221
  year: 1994
  ident: bib0019
  article-title: Multi objective optimization using non dominated sorting in genetic algorithms
  publication-title: Evol Comput
– volume: 42
  start-page: 11
  year: 2014
  end-page: 24
  ident: bib0012
  article-title: A review of unsupervised feature learning and deep learning for time-series modeling
  publication-title: Pattern Recognit Lett
– start-page: 9
  year: 2002
  end-page: 13
  ident: bib0017
  article-title: Neighborhood cultivation genetic algorithm for multi-objective optimization problems
  publication-title: Late breaking papers at the genetic and evolutionary computation conference (GECC
– volume: 48
  start-page: 49
  year: 1897
  end-page: 74
  ident: bib0006
  article-title: Concerning transcendentally transcendental functions
  publication-title: Math. Ann.
– volume: Vol. 7
  year: 2016
  ident: bib0001
  article-title: Generic algorithm for function approximation: an experimental investigation
  publication-title: Int J Artif Intell Appl
– volume: 62
  start-page: 817
  year: 2012
  end-page: 823
  ident: bib0003
  article-title: A guide for genetic algorithm based on parallel machine scheduling and flexible job-shop scheduling
  publication-title: Proc - Soc Behav Sci
– year: 2001
  ident: bib0004
  article-title: Multi-objective optimization using evolutionary algorithms
– volume: 48
  start-page: 49
  year: 1897
  ident: 10.1016/j.chaos.2018.06.015_bib0006
  article-title: Concerning transcendentally transcendental functions
  publication-title: Math. Ann.
  doi: 10.1007/BF01446334
– volume: 423
  start-page: 416
  year: 1993
  ident: 10.1016/j.chaos.2018.06.015_bib0007
  article-title: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.chaos.2018.06.015_bib0010
  article-title: Maxwell stinchcombe, halbert white, multilayer feedforward networks are universal approximators
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– volume: 153
  start-page: 414
  year: 2017
  ident: 10.1016/j.chaos.2018.06.015_bib0018
  article-title: Development of advection model for solar-forecasting based on ground data 1st report: development of fundamental model and its verification
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.05.019
– volume: 42
  start-page: 11
  year: 2014
  ident: 10.1016/j.chaos.2018.06.015_bib0012
  article-title: A review of unsupervised feature learning and deep learning for time-series modeling
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2014.01.008
– volume: 2
  start-page: 303
  year: 1989
  ident: 10.1016/j.chaos.2018.06.015_bib0008
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math Control Signals Syst
  doi: 10.1007/BF02551274
– volume: Vol. 7
  issue: 3
  year: 2016
  ident: 10.1016/j.chaos.2018.06.015_bib0001
  article-title: Generic algorithm for function approximation: an experimental investigation
  publication-title: Int J Artif Intell Appl
– volume: 28
  start-page: 1
  year: 1887
  ident: 10.1016/j.chaos.2018.06.015_bib0015
  article-title: Über die Eigenschaft der Gammafunction keiner algebraischen differentialgleichung zu genügen
  publication-title: Math Ann
  doi: 10.1007/BF02430507
– volume: vol. 2
  start-page: 221
  issue: 3
  year: 1994
  ident: 10.1016/j.chaos.2018.06.015_bib0019
  article-title: Multi objective optimization using non dominated sorting in genetic algorithms
  publication-title: Evol Comput
  doi: 10.1162/evco.1994.2.3.221
– year: 1989
  ident: 10.1016/j.chaos.2018.06.015_bib0009
  article-title: Genetic algorithms
– year: 2001
  ident: 10.1016/j.chaos.2018.06.015_bib0021
– volume: vol. 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.chaos.2018.06.015_bib0020
  article-title: Multi objective evolutionary algorithms: a comparative case study and the strength pareto approach
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.797969
– year: 2001
  ident: 10.1016/j.chaos.2018.06.015_bib0004
– volume: Volume 2
  start-page: 451
  issue: 2
  year: 2010
  ident: 10.1016/j.chaos.2018.06.015_bib0013
  article-title: Genetic algorithm: review and application
  publication-title: Int J Inf Technol Knowl Manag
– volume: Vol.20
  start-page: 130
  year: 1963
  ident: 10.1016/j.chaos.2018.06.015_bib0011
  article-title: Deterministic nonperiodic flow
  publication-title: J Atmosp Sci
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– volume: 324
  issue: 3
  year: 2009
  ident: 10.1016/j.chaos.2018.06.015_bib0014
  article-title: Distilling free-form natural laws from experimental data
  publication-title: Science
– start-page: 9
  year: 2002
  ident: 10.1016/j.chaos.2018.06.015_bib0017
  article-title: Neighborhood cultivation genetic algorithm for multi-objective optimization problems
– year: 2000
  ident: 10.1016/j.chaos.2018.06.015_bib0005
– year: 1989
  ident: 10.1016/j.chaos.2018.06.015_bib0002
– volume: vol. 100
  start-page: 93
  year: 1985
  ident: 10.1016/j.chaos.2018.06.015_bib0016
  article-title: Multiple objective optimization with vector evaluated genetic algorithms
– volume: 62
  start-page: 817
  year: 2012
  ident: 10.1016/j.chaos.2018.06.015_bib0003
  article-title: A guide for genetic algorithm based on parallel machine scheduling and flexible job-shop scheduling
  publication-title: Proc - Soc Behav Sci
  doi: 10.1016/j.sbspro.2012.09.138
SSID ssj0001062
ssib000753623
ssib006546523
ssib006546524
ssib029851512
ssib000997655
ssib042110520
ssib000959692
Score 2.2386055
Snippet A new algorithm to determine the master equation behind time-series data is proposed. For this algorithm, a library of potential terms for the master equation...
SourceID crossref
nii
elsevier
SourceType Index Database
Publisher
StartPage 423
Title Proposal of the “data to equation” algorithm
URI https://dx.doi.org/10.1016/j.chaos.2018.06.015
https://cir.nii.ac.jp/crid/1872835443104558336
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: .~1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: AKRWK
  dateStart: 19910101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zXvQgbipO3ejBg4J16Zom7XEMx1Q2BB3sFpI2dRVt51avsj9E_7n9Jeb1hz9APHgpNLyE9jV9-UK-9z2Ejl1MiN52SBMHODAJpcr0vI4yBbOlclkQBD7kOw9HdDAmVxNnUkG9MhcGaJVF7M9jehati5Z24c32LIratwC-MWOenpQYYAxksBMGVQzOX79oHnrLk50kaGMTrEvloYzj5U9FAprdVi7iCbVxf1-d1uIo-rbu9LfRVgEYjW7-TDVUUXEdbQ4_1VYXdVQrftCFcVKoSJ_uIHwD9Q8WumsSGtrYWC3fgA5qpImhnnOB79Xy3RCP98k8SqdPu2jcv7jrDcyiPILp28RNzTB0ASxIQUNHMuViD0vsCAbZog40USqUnih-RzL99iENYf8hGZYukRaR9h6qxkms9pFBse87HT2e5zIiAluEoAGEme9IEgrMGuisdAuf5SoYvKSHPfDMixy8yIEkZzkNREvX8R8fk-s4_XfHpnY09yO4Wi4DMTiiIY7GnZAdRg_-O_Ah2oC7nBx2hKrp_EU1NZpIZSubLi203r28How-ABjPxo4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB3RcgAOiLKIrZADB5AIdVrHTo6ooirQIiRA4mbZiUODoIE2XFE_BH6uX4InC4uEOHDJwRlbycQZv5HfPAPseYRSk3Yom4QktClj2vb9prYlbynt8TAMA6x37l-w7g09u3VvZ6Bd1sIgrbKI_XlMz6J10dIovNl4iuPGFYJvwrlvJiVBGFOBWeo2OWZgR69fPA-T82RbCcbaRvNSeigjeQUDmaBot5OreOLhuL8vT5VhHH9beDpLsFggRus4f6gazOjhMiz0P-VWx8tQK_7QsbVfyEgfrAC5xAMQxqZrElnG2JpO3pAPaqWJpZ9zhe_p5N2SD3fJKE4Hj6tw0zm5bnft4nwEO2hRL7WjyEO0oCSLXMW1R3yiiCs5lou62MSY1GamBE3FzdtHLMIERHGiPKocqlprUB0mQ70OFiNB4DbNeL7HqQxbMkIRIMIDV9FIEr4Bh6VbxFMugyFKfti9yLwo0IsCWXKOuwGsdJ348TWFCdR_d6wbR4sgxqvjcVSDowbjGOCJ5WFs878D78Jc97rfE73Ti_MtmMc7OVNsG6rp6EXXDbRI1U42dT4A7VDIIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proposal+of+the+%E2%80%9Cdata+to+equation%E2%80%9D+algorithm&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Inage%2C+Shin-ichi&rft.au=Yamaguchi%2C+Kazumi&rft.date=2018-09-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=114&rft.spage=423&rft.epage=432&rft_id=info:doi/10.1016%2Fj.chaos.2018.06.015&rft.externalDocID=S0960077918303977
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon