A high temperature engine materials test facility
Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the whi...
Saved in:
| Published in | Review of scientific instruments Vol. 95; no. 4 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Institute of Physics
01.04.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0034-6748 1089-7623 1089-7623 |
| DOI | 10.1063/5.0190903 |
Cover
| Abstract | Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the while operating in highly reactive, high-pressure, high-speed combustion gas flows containing significant partial pressures of water vapor, oxygen, and other reactive species for many tens of thousands of hours. We describe the design and development of a test facility for the study of materials under individual and combinations of test parameters similar to those experienced within legacy and future engines. A hydraulic load frame capable of applying static or cyclic tension-compression stresses up to 400 MPa to flat-dog bone-shaped test specimens is integrated within an environmental test chamber capable of sustaining gas pressures from 0.1 to 1.2 MPa (1–12 atm). An adjustable 0.1–2 kW power CO2 laser whose 10.6 µm wavelength radiation is strongly absorbed by ceramic coating materials is used to heat sample surfaces to temperatures of 1800 °C and above, while rear surface air jet cooling establishes through-thickness thermal gradients. Rapid laser heating in conjunction with transiently applied front and/or rear-side air cooling is used to create hot or cold thermal shock effects. This is accompanied by the impingement of a high pressure (up to 1.3 MPa) reactive gas jet upon the sample with speeds up to 300 m/s by preheating dry air, mixing it with steam to the desired humidity, heating to 850 °C, and then expanding it through a converging nozzle. Thermal imaging pyrometers measure specimen front and back surface temperature fields, while environmental test chamber view ports permit digital image correlation and strain mapping. |
|---|---|
| AbstractList | Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the while operating in highly reactive, high-pressure, high-speed combustion gas flows containing significant partial pressures of water vapor, oxygen, and other reactive species for many tens of thousands of hours. We describe the design and development of a test facility for the study of materials under individual and combinations of test parameters similar to those experienced within legacy and future engines. A hydraulic load frame capable of applying static or cyclic tension-compression stresses up to 400 MPa to flat-dog bone-shaped test specimens is integrated within an environmental test chamber capable of sustaining gas pressures from 0.1 to 1.2 MPa (1-12 atm). An adjustable 0.1-2 kW power CO2 laser whose 10.6 µm wavelength radiation is strongly absorbed by ceramic coating materials is used to heat sample surfaces to temperatures of 1800 °C and above, while rear surface air jet cooling establishes through-thickness thermal gradients. Rapid laser heating in conjunction with transiently applied front and/or rear-side air cooling is used to create hot or cold thermal shock effects. This is accompanied by the impingement of a high pressure (up to 1.3 MPa) reactive gas jet upon the sample with speeds up to 300 m/s by preheating dry air, mixing it with steam to the desired humidity, heating to 850 °C, and then expanding it through a converging nozzle. Thermal imaging pyrometers measure specimen front and back surface temperature fields, while environmental test chamber view ports permit digital image correlation and strain mapping.Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the while operating in highly reactive, high-pressure, high-speed combustion gas flows containing significant partial pressures of water vapor, oxygen, and other reactive species for many tens of thousands of hours. We describe the design and development of a test facility for the study of materials under individual and combinations of test parameters similar to those experienced within legacy and future engines. A hydraulic load frame capable of applying static or cyclic tension-compression stresses up to 400 MPa to flat-dog bone-shaped test specimens is integrated within an environmental test chamber capable of sustaining gas pressures from 0.1 to 1.2 MPa (1-12 atm). An adjustable 0.1-2 kW power CO2 laser whose 10.6 µm wavelength radiation is strongly absorbed by ceramic coating materials is used to heat sample surfaces to temperatures of 1800 °C and above, while rear surface air jet cooling establishes through-thickness thermal gradients. Rapid laser heating in conjunction with transiently applied front and/or rear-side air cooling is used to create hot or cold thermal shock effects. This is accompanied by the impingement of a high pressure (up to 1.3 MPa) reactive gas jet upon the sample with speeds up to 300 m/s by preheating dry air, mixing it with steam to the desired humidity, heating to 850 °C, and then expanding it through a converging nozzle. Thermal imaging pyrometers measure specimen front and back surface temperature fields, while environmental test chamber view ports permit digital image correlation and strain mapping. Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the while operating in highly reactive, high-pressure, high-speed combustion gas flows containing significant partial pressures of water vapor, oxygen, and other reactive species for many tens of thousands of hours. We describe the design and development of a test facility for the study of materials under individual and combinations of test parameters similar to those experienced within legacy and future engines. A hydraulic load frame capable of applying static or cyclic tension-compression stresses up to 400 MPa to flat-dog bone-shaped test specimens is integrated within an environmental test chamber capable of sustaining gas pressures from 0.1 to 1.2 MPa (1–12 atm). An adjustable 0.1–2 kW power CO2 laser whose 10.6 µm wavelength radiation is strongly absorbed by ceramic coating materials is used to heat sample surfaces to temperatures of 1800 °C and above, while rear surface air jet cooling establishes through-thickness thermal gradients. Rapid laser heating in conjunction with transiently applied front and/or rear-side air cooling is used to create hot or cold thermal shock effects. This is accompanied by the impingement of a high pressure (up to 1.3 MPa) reactive gas jet upon the sample with speeds up to 300 m/s by preheating dry air, mixing it with steam to the desired humidity, heating to 850 °C, and then expanding it through a converging nozzle. Thermal imaging pyrometers measure specimen front and back surface temperature fields, while environmental test chamber view ports permit digital image correlation and strain mapping. Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the while operating in highly reactive, high-pressure, high-speed combustion gas flows containing significant partial pressures of water vapor, oxygen, and other reactive species for many tens of thousands of hours. We describe the design and development of a test facility for the study of materials under individual and combinations of test parameters similar to those experienced within legacy and future engines. A hydraulic load frame capable of applying static or cyclic tension-compression stresses up to 400 MPa to flat-dog bone-shaped test specimens is integrated within an environmental test chamber capable of sustaining gas pressures from 0.1 to 1.2 MPa (1-12 atm). An adjustable 0.1-2 kW power CO2 laser whose 10.6 µm wavelength radiation is strongly absorbed by ceramic coating materials is used to heat sample surfaces to temperatures of 1800 °C and above, while rear surface air jet cooling establishes through-thickness thermal gradients. Rapid laser heating in conjunction with transiently applied front and/or rear-side air cooling is used to create hot or cold thermal shock effects. This is accompanied by the impingement of a high pressure (up to 1.3 MPa) reactive gas jet upon the sample with speeds up to 300 m/s by preheating dry air, mixing it with steam to the desired humidity, heating to 850 °C, and then expanding it through a converging nozzle. Thermal imaging pyrometers measure specimen front and back surface temperature fields, while environmental test chamber view ports permit digital image correlation and strain mapping. |
| Author | Shelton, Prabha H. Wadley, Haydn N. G. |
| Author_xml | – sequence: 1 givenname: Prabha H. surname: Shelton fullname: Shelton, Prabha H. organization: Mechanical and Aerospace Engineering, University of Virginia – sequence: 2 givenname: Haydn N. G. surname: Wadley fullname: Wadley, Haydn N. G. organization: 2Material Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38668693$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90EtLAzEQB_AgFfvQg19AFryosO3k2eyxFF9Q8KLnkKbZNmUfNcke-u1NaXsRMZdA5jfD5D9EvaZtLEK3GMYYBJ3wMeACCqAXaIBBFvlUENpDAwDKcjFlso-GIWwhHY7xFepTKYQUBR0gPMs2br3Joq131uvYeZvZZu0am9U6Wu90FVIxxKzUxlUu7q_RZZke7c3pHqGvl-fP-Vu--Hh9n88WuaFMxrwsyXTFOVAjOOMlSKM5kQSTggDRhllmqJAGlkspONagGVtxwJhoSLUlpSP0cJy78-13lzZQtQvGVpVubNsFRYFNC0YkPtD7X3Tbdr5J2x1U-qcETpK6O6luWduV2nlXa79X5zASmByB8W0I3pbKuKija5votasUBnWIW3F1ijt1PP7qOA_9yz4dbThP_Qf_ADowiDo |
| CODEN | RSINAK |
| CitedBy_id | crossref_primary_10_1111_ijac_14953 |
| Cites_doi | 10.1016/j.applthermaleng.2023.120427 10.1016/s1359-6454(98)00127-x 10.1016/j.jeurceramsoc.2020.05.071 10.1126/science.1179327 10.1016/0257-8972(87)90003-x 10.1016/j.jeurceramsoc.2020.10.057 10.1111/j.1551-2916.2011.04556.x 10.1111/j.1151-2916.1997.tb02935.x 10.1111/jace.13792 10.1016/j.actamat.2015.01.038 10.1016/j.calphad.2019.02.005 10.1016/j.surfcoat.2021.128039 10.1016/j.surfcoat.2010.09.008 10.1016/j.proci.2010.09.011 10.2514/1.j052713 10.1063/1.1713945 10.1016/j.jeurceramsoc.2020.07.045 10.1007/s11661-020-06068-6 10.1016/j.jct.2005.02.001 10.1080/02619180.1989.11753437 10.1016/j.apenergy.2015.04.044 10.1016/j.actamat.2015.12.053 10.1038/nmat4687 10.1111/jace.13094 10.1016/j.rser.2010.07.025 10.1111/jace.17114 10.1016/s0065-2717(06)39006-5 10.1007/s13272-014-0131-2 10.2351/1.4745418 10.1111/jace.12328 10.1017/aer.2017.93 10.1016/s0955-2219(02)00142-5 10.1016/j.jeurceramsoc.2022.04.046 10.1111/j.1151-2916.1997.tb02810.x 10.1016/j.calphad.2019.01.004 10.1016/j.actamat.2011.12.039 10.1111/j.1151-2916.1999.tb02004.x 10.1115/1.3240204 10.3390/ceramics2020032 10.1002/anie.196705811 10.1115/1.2464142 10.3390/met10060705 10.1520/STP15015S 10.1016/j.jeurceramsoc.2016.05.051 10.26599/jac.2023.9220736 10.1007/s11666-021-01168-0 10.1016/j.corsci.2019.04.022 10.1126/science.1068609 10.1016/j.engfracmech.2023.109262 10.1361/10599490419883 10.1016/B0-08-043749-4/02139-X 10.1016/j.jmps.2004.11.002 10.1111/j.1151-2916.1999.tb02005.x 10.1557/mrs.2012.232 10.4271/2021-36-0032 10.1016/j.jeurceramsoc.2015.07.019 10.1016/j.jeurceramsoc.2015.11.016 10.1016/j.surfcoat.2015.07.042 10.1016/j.ceramint.2005.05.014 10.1016/j.jeurceramsoc.2020.06.016 10.1115/1.2824250 10.1111/j.1151-2916.1993.tb03684.x 10.1111/j.1551-2916.2004.01701.x 10.1023/a:1018874206733 10.1115/1.3244261 10.1111/jace.12974 |
| ContentType | Journal Article |
| Copyright | Author(s) 2024 Author(s). Published under an exclusive license by AIP Publishing. |
| Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). Published under an exclusive license by AIP Publishing. |
| DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 |
| DOI | 10.1063/5.0190903 |
| DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1089-7623 |
| ExternalDocumentID | 38668693 10_1063_5_0190903 rsi |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Office of Naval Research grantid: N00014-15-1-2933 funderid: https://doi.org/10.13039/100000006 |
| GroupedDBID | --- -DZ -~X .DC 123 2-P 29P 4.4 5RE 5VS 85S A9. AAAAW AABDS AAEUA AAPUP AAYIH ABFTF ABJNI ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 DU5 EBS ESX F5P FDOHQ FFFMQ HAM L7B M43 M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TAE TN5 VQA WH7 XSW YNT YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM VXZ 8FD H8D L7M 7X8 |
| ID | FETCH-LOGICAL-c348t-ff27d5503c6545f08ca5282129202ac4e4c368c0bb8651a0a44d50112a04e4b33 |
| ISSN | 0034-6748 1089-7623 |
| IngestDate | Wed Oct 01 14:28:54 EDT 2025 Mon Jun 30 03:31:48 EDT 2025 Wed Feb 19 02:14:11 EST 2025 Thu Apr 24 22:57:17 EDT 2025 Wed Oct 01 03:37:52 EDT 2025 Fri Jun 21 00:17:09 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Published under an exclusive license by AIP Publishing. 2024 Author(s). Published under an exclusive license by AIP Publishing. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c348t-ff27d5503c6545f08ca5282129202ac4e4c368c0bb8651a0a44d50112a04e4b33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8449-9547 0000-0001-7803-1286 |
| PMID | 38668693 |
| PQID | 3046938052 |
| PQPubID | 2050675 |
| PageCount | 23 |
| ParticipantIDs | scitation_primary_10_1063_5_0190903 crossref_citationtrail_10_1063_5_0190903 proquest_miscellaneous_3047942813 crossref_primary_10_1063_5_0190903 pubmed_primary_38668693 proquest_journals_3046938052 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240401 2024-04-01 2024-Apr-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 20240401 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Melville |
| PublicationTitle | Review of scientific instruments |
| PublicationTitleAlternate | Rev Sci Instrum |
| PublicationYear | 2024 |
| Publisher | American Institute of Physics |
| Publisher_xml | – name: American Institute of Physics |
| References | Coutinho, Bento, Souza, Cruz, Afonso, Lau, Suleman, Barbosa, Gandolfi, Affonso, Odaguil, Westin, dos Reis, da Silva (c15) 2023; 227 Richards, Young, de Francqueville, Sehr, Begley, Wadley (c32) 2016; 106 Balint, Hutchinson (c52) 2005; 53 Bolcavage, Feuerstein, Foster, Moore (c71) 2004; 13 Epstein (c12) 2014; 52 Cheng, Tortorelli (c33) 2013; 96 Jacobson (c77) 2014; 97 Costa, Jacobson (c42) 2015; 35 Zhang, Duan, Xie, Ding, Yang, Hou, Zhao, Wang (c45) 2023; 12 Miller (c17) 1987; 30 Grégoire, Montero, Galetz, Bonnet, Pedraza (c51) 2019; 155 Jacobson, Opila, Myers, Copland (c78) 2005; 37 Tejero-Martin, Bennett, Hussain (c40) 2021; 41 Steinke, Sebold, Mack, Vaßen, Stöver (c90) 2010; 205 Nicholls, Saunders (c86) 1989; 7 Bakan, Mack, Lobe, Koch, Vaßen (c89) 2020; 40 Golden, Mueller, Opila (c81) 2020; 103 Ueno, Jayaseelan, Ohji, Lin (c80) 2006; 32 Deal, Grove (c30) 1965; 36 Jackson, Zaleski, Poerschke, Hazel, Begley, Levi (c72) 2015; 89 Jacobson, Kobertz, Sergeev (c75) 2019; 65 Zhang, Modest (c98) 1998; 120 Ai, Shi, Luo, Pei, Wen (c54) 2023; 284 Drowart, Goldfinger (c74) 1967; 6 Robinson, Smialek (c36) 1999; 82 Yin, Rao (c14) 2017; 121 Terrani, Pint, Parish, Silva, Snead, Katoh (c95) 2014; 97 Braun-Unkhoff, Riedel (c7) 2015; 6 Opila, Fox, Jacobson (c34) 1997; 80 Williams, Boyer (c11) 2020; 10 Gupta, Rehman, Sarviya (c8) 2010; 14 Padture (c16) 2002; 296 Opila, Myers (c39) 2004; 87 Matsudaira, Wada, Kawashima, Takeuchi, Yokoe, Kato, Takata, Kitaoka (c79) 2021; 41 Steibel (c24) 2019; 98 Ridley, Opila (c91) 2021; 41 Richards, Begley, Wadley (c41) 2015; 98 Taamallah, Vogiatzaki, Alzahrani, Mokheimer, Habib, Ghoniem (c9) 2015; 154 Gleeson, Harper (c47) 1998; 49 Jacobson (c28) 1993; 76 Deijkers, Begley, Wadley (c43) 2022; 42 Opila, Smialek, Robinson, Fox, Jacobson (c31) 1999; 82 Clarke, Oechsner, Padture (c19) 2012; 37 Sparrow, Lovell (c103) 1980; 102 Myers, Jacobson (c76) 2019; 65 Kumar, Rommel, Jiang, Jordan (c50) 2021; 432 Begley, Wadley (c53) 2012; 60 Hull, Lander (c93) 1996; 8 Kimmel, Miriyala, Price, More, Tortorelli, Eaton, Linsey, Sun (c70) 2002; 22 Appleby, Zhu, Morscher (c73) 2015; 284 Kumawat, Parlikar, Alam, Das (c46) 2021; 52 Panakarajupally, Presby, Manigandan, Zhou, Chase, Morscher (c68) 2019; 2 Zuckerman, Lior (c104) 2006; 39 Golden, Opila (c38) 2016; 36 Bunker (c99) 2007; 129 Opila, Hann (c35) 1997; 80 Lucato, Sudre, Marshall (c37) 2011; 94 Lee, Zhu, Lima (c44) 2021; 30 Nasiri, Patra, Ni, Jayaseelan, Lee (c29) 2016; 36 Blakey, Rye, Wilson (c6) 2011; 33 Padture (c20) 2016; 15 Perepezko (c21) 2009; 326 Lu, Fleck (c100) 1998; 46 Englund, Seasholtz (c57) 1989; 111 2024042612525318100_c106 (2024042612525318100_c30) 1965; 36 2024042612525318100_c105 2024042612525318100_c108 2024042612525318100_c107 (2024042612525318100_c15) 2023; 227 (2024042612525318100_c60) 2012 (2024042612525318100_c3) 2019 (2024042612525318100_c47) 1998; 49 (2024042612525318100_c78) 2005; 37 Opila group (2024042612525318100_c84) (2024042612525318100_c51) 2019; 155 (2024042612525318100_c54) 2023; 284 (2024042612525318100_c96) 2000 (2024042612525318100_c86) 1989; 7 (2024042612525318100_c104) 2006; 39 (2024042612525318100_c99) 2007; 129 (2024042612525318100_c18) 2005 (2024042612525318100_c80) 2006; 32 (2024042612525318100_c83) 2017 (2024042612525318100_c37) 2011; 94 (2024042612525318100_c20) 2016; 15 (2024042612525318100_c82) 2015 (2024042612525318100_c29) 2016; 36 (2024042612525318100_c72) 2015; 89 2024042612525318100_c94 (2024042612525318100_c88) 2006 (2024042612525318100_c19) 2012; 37 (2024042612525318100_c90) 2010; 205 2024042612525318100_c92 (2024042612525318100_c9) 2015; 154 (2024042612525318100_c21) 2009; 326 (2024042612525318100_c1) 2011 (2024042612525318100_c73) 2015; 284 (2024042612525318100_c91) 2021; 41 2024042612525318100_c25 (2024042612525318100_c52) 2005; 53 2024042612525318100_c27 (2024042612525318100_c14) 2017; 121 National Academies of Sciences Engineering and Medicine (2024042612525318100_c66) 2016 (2024042612525318100_c40) 2021; 41 (2024042612525318100_c79) 2021; 41 (2024042612525318100_c16) 2002; 296 National Research Council (U.S.) Committee (2024042612525318100_c23) 1996 (2024042612525318100_c46) 2021; 52 (2024042612525318100_c45) 2023; 12 (2024042612525318100_c101) 2003 (2024042612525318100_c81) 2020; 103 (2024042612525318100_c41) 2015; 98 (2024042612525318100_c35) 1997; 80 Young (2024042612525318100_c10) 2008 (2024042612525318100_c97) 2019 (2024042612525318100_c98) 1998; 120 (2024042612525318100_c102) 2007 (2024042612525318100_c93) 1996; 8 (2024042612525318100_c2) 2009 (2024042612525318100_c75) 2019; 65 (2024042612525318100_c70) 2002; 22 (2024042612525318100_c42) 2015; 35 (2024042612525318100_c50) 2021; 432 (2024042612525318100_c49) 2022 2024042612525318100_c87 (2024042612525318100_c4) 2020 (2024042612525318100_c7) 2015; 6 (2024042612525318100_c32) 2016; 106 2024042612525318100_c85 (2024042612525318100_c33) 2013; 96 (2024042612525318100_c34) 1997; 80 (2024042612525318100_c17) 1987; 30 (2024042612525318100_c103) 1980; 102 (2024042612525318100_c36) 1999; 82 (2024042612525318100_c24) 2019; 98 Ott (2024042612525318100_c48) 2010 (2024042612525318100_c8) 2010; 14 (2024042612525318100_c6) 2011; 33 (2024042612525318100_c26) 2018 2024042612525318100_c58 2024042612525318100_c59 (2024042612525318100_c76) 2019; 65 2024042612525318100_c5 (2024042612525318100_c57) 1989; 111 (2024042612525318100_c77) 2014; 97 (2024042612525318100_c68) 2019; 2 (2024042612525318100_c39) 2004; 87 (2024042612525318100_c62) 2019 (2024042612525318100_c55) 2013 (2024042612525318100_c12) 2014; 52 (2024042612525318100_c69) 2000 (2024042612525318100_c89) 2020; 40 (2024042612525318100_c95) 2014; 97 2024042612525318100_c64 2024042612525318100_c65 2024042612525318100_c67 2024042612525318100_c61 2024042612525318100_c63 (2024042612525318100_c11) 2020; 10 (2024042612525318100_c74) 1967; 6 (2024042612525318100_c38) 2016; 36 (2024042612525318100_c71) 2004; 13 (2024042612525318100_c43) 2022; 42 (2024042612525318100_c22) 2006 (2024042612525318100_c56) 2018 (2024042612525318100_c100) 1998; 46 (2024042612525318100_c53) 2012; 60 National Academies of Sciences, Engineering, and Medicine (2024042612525318100_c13) 2016 (2024042612525318100_c31) 1999; 82 (2024042612525318100_c44) 2021; 30 (2024042612525318100_c28) 1993; 76 |
| References_xml | – volume: 39 start-page: 565 year: 2006 ident: c104 article-title: Jet impingement heat transfer: Physics, correlations, and numerical modeling publication-title: Adv. Heat Transfer – volume: 296 start-page: 280 year: 2002 ident: c16 article-title: Thermal barrier coatings for gas-turbine engine applications publication-title: Science – volume: 97 start-page: 2331 year: 2014 ident: c95 article-title: Silicon carbide oxidation in steam up to 2 MPa publication-title: J. Am. Ceram. Soc. – volume: 155 start-page: 134 year: 2019 ident: c51 article-title: Correlations between the kinetics and the mechanisms of hot corrosion of pure nickel at 700 °C publication-title: Corros. Sci. – volume: 65 start-page: 73 year: 2019 ident: c76 article-title: Identification of volatile metal hydroxides with free jet expansion sampling mass spectrometry publication-title: Calphad – volume: 129 start-page: 193 year: 2007 ident: c99 article-title: Gas turbine heat transfer: Ten remaining hot gas path challenges publication-title: J. Turbomach. – volume: 102 start-page: 202 year: 1980 ident: c103 article-title: Heat transfer characteristics of an obliquely impinging circular jet publication-title: J. Heat Transfer – volume: 326 start-page: pp1068 year: 2009 ident: c21 article-title: The hotter the engine, the better publication-title: Science – volume: 94 start-page: 186 year: 2011 ident: c37 article-title: A method for assessing reactions of water vapor with materials in high-speed, high-temperature flow publication-title: J. Am. Ceram. Soc. – volume: 30 start-page: 1 year: 1987 ident: c17 article-title: Current status of thermal barrier coatings—An overview publication-title: Surf. Coat. Technol. – volume: 37 start-page: 1130 year: 2005 ident: c78 article-title: Thermodynamics of gas phase species in the Si–O–H system publication-title: J. Chem. Thermodyn. – volume: 96 start-page: 2330 year: 2013 ident: c33 article-title: Silicon carbide oxidation in high-pressure steam publication-title: J. Am. Ceram. Soc. – volume: 98 start-page: 30 year: 2019 ident: c24 article-title: Ceramic matrix composites taking flight at GE aviation publication-title: Am. Ceram. Soc. Bull. – volume: 89 start-page: 396 year: 2015 ident: c72 article-title: Interaction of molten silicates with thermal barrier coatings under temperature gradients publication-title: Acta Mater. – volume: 2 start-page: 407 year: 2019 ident: c68 article-title: Thermomechanical characterization of SiC/SiC ceramic matrix composites in a combustion facility publication-title: Ceramics – volume: 432 start-page: 128039 year: 2021 ident: c50 article-title: Effect of CMAS viscosity on the infiltration depth in thermal barrier coatings of different microstructures publication-title: Surf. Coat. Technol. – volume: 10 start-page: 705 year: 2020 ident: c11 article-title: Opportunities and issues in the application of titanium alloys for aerospace components publication-title: Metals – volume: 284 start-page: 109262 year: 2023 ident: c54 article-title: Thermomechanical fatigue of nickel-based single-crystal superalloys publication-title: Eng. Fract. Mech. – volume: 52 start-page: 901 year: 2014 ident: c12 article-title: Aeropropulsion for commercial aviation in the twenty-first century and research directions needed publication-title: AIAA J. – volume: 14 start-page: 2946 year: 2010 ident: c8 article-title: Bio-fuels for the gas turbine: A review publication-title: Renewable Sustainable Energy Rev. – volume: 40 start-page: 6236 year: 2020 ident: c89 article-title: An investigation on burner rig testing of environmental barrier coatings for aerospace applications publication-title: J. Eur. Ceram. Soc. – volume: 46 start-page: 4755 year: 1998 ident: c100 article-title: The thermal shock resistance of solids publication-title: Acta Mater. – volume: 98 start-page: 4066 year: 2015 ident: c41 article-title: Mechanisms of ytterbium monosilicate/mullite/silicon coating failure during thermal cycling in water vapor publication-title: J. Am. Ceram. Soc. – volume: 41 start-page: 3150 year: 2021 ident: c79 article-title: Mass transfer in polycrystalline ytterbium monosilicate under oxygen potential gradients at high temperatures publication-title: J. Eur. Ceram. Soc. – volume: 36 start-page: 3293 year: 2016 ident: c29 article-title: Oxidation behaviour of SiC/SiC ceramic matrix composites in air publication-title: J. Eur. Ceram. Soc. – volume: 82 start-page: 1826 year: 1999 ident: c31 article-title: SiC recession caused by SiO scale volatility under combustion conditions: II, thermodynamics and gaseous-diffusion model publication-title: J. Am. Ceram. Soc. – volume: 12 start-page: 1033 year: 2023 ident: c45 article-title: Xenotime-type high-entropy (Dy Ho Er Tm Yb Lu Y )PO : A promising thermal/environmental barrier coating material for SiC /SiC ceramic matrix composites publication-title: J. Adv. Ceram. – volume: 227 start-page: 120427 year: 2023 ident: c15 article-title: A review on the recent developments in thermal management systems for hybrid-electric aircraft publication-title: Appl. Therm. Eng. – volume: 154 start-page: 1020 year: 2015 ident: c9 article-title: Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations publication-title: Appl. Energy – volume: 36 start-page: 1135 year: 2016 ident: c38 article-title: A method for assessing the volatility of oxides in high-temperature high-velocity water vapor publication-title: J. Eur. Ceram. Soc. – volume: 65 start-page: 111 year: 2019 ident: c75 article-title: Introduction to proceedings of the workshop on Knudsen effusion mass spectrometry publication-title: Calphad – volume: 76 start-page: 3 year: 1993 ident: c28 article-title: Corrosion of silicon-based ceramics in combustion environments publication-title: J. Am. Ceram. Soc. – volume: 87 start-page: 1701 year: 2004 ident: c39 article-title: Alumina volatility in water vapor at elevated temperatures publication-title: J. Am. Ceram. Soc. – volume: 53 start-page: 949 year: 2005 ident: c52 article-title: An analytical model of rumpling in thermal barrier coatings publication-title: J. Mech. Phys. Solids – volume: 15 start-page: 804 year: 2016 ident: c20 article-title: Advanced structural ceramics in aerospace propulsion publication-title: Nat. Mater. – volume: 35 start-page: 4259 year: 2015 ident: c42 article-title: Mass spectrometric measurements of the silica activity in the Yb O –SiO system and implications to assess the degradation of silicate-based coatings in combustion environments publication-title: J. Eur. Ceram. Soc. – volume: 103 start-page: 4517 year: 2020 ident: c81 article-title: Thermochemical stability of Y Si O in high-temperature water vapor publication-title: J. Am. Ceram. Soc. – volume: 82 start-page: 1817 year: 1999 ident: c36 article-title: SiC recession caused by SiO scale volatility under combustion conditions: I, experimental results and empirical model publication-title: J. Am. Ceram. Soc. – volume: 284 start-page: 318 year: 2015 ident: c73 article-title: Mechanical properties and real-time damage evaluations of environmental barrier coated SiC/SiC CMCs subjected to tensile loading under thermal gradients publication-title: Surf. Coat. Technol. – volume: 120 start-page: 322 year: 1998 ident: c98 article-title: Temperature-dependent absorptances of ceramics for Nd:YAG and CO laser processing applications publication-title: J. Heat Transfer – volume: 106 start-page: 1 year: 2016 ident: c32 article-title: Response of ytterbium disilicate–silicon environmental barrier coatings to thermal cycling in water vapor publication-title: Acta Mater. – volume: 41 start-page: 3141 year: 2021 ident: c91 article-title: Thermochemical stability and microstructural evolution of Yb Si O in high-velocity high-temperature water vapor publication-title: J. Eur. Ceram. Soc. – volume: 13 start-page: 389 year: 2004 ident: c71 article-title: Thermal shock testing of thermal barrier coating/bondcoat systems publication-title: J. Mater. Eng. Perform. – volume: 30 start-page: 40 year: 2021 ident: c44 article-title: Perspectives on environmental barrier coatings (EBCs) manufactured via air plasma spray (APS) on ceramic matrix composites (CMCs): A tutorial paper publication-title: J. Therm. Spray Technol. – volume: 32 start-page: 775 year: 2006 ident: c80 article-title: Recession mechanism of Lu Si O phase in high speed steam jet environment at high temperatures publication-title: Ceram. Int. – volume: 37 start-page: 891 year: 2012 ident: c19 article-title: Thermal-barrier coatings for more efficient gas-turbine engines publication-title: MRS Bull. – volume: 7 start-page: 193 year: 1989 ident: c86 article-title: Comparison of hot-salt corrosion behaviour of superalloys in high and low velocity burner rigs publication-title: High Temp. Technol. – volume: 33 start-page: 2863 year: 2011 ident: c6 article-title: Aviation gas turbine alternative fuels: A review publication-title: Proc. Combust. Inst. – volume: 60 start-page: 2497 year: 2012 ident: c53 article-title: Delamination resistance of thermal barrier coatings containing embedded ductile layers publication-title: Acta Mater. – volume: 205 start-page: 2287 year: 2010 ident: c90 article-title: A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions publication-title: Surf. Coat. Technol. – volume: 80 start-page: 1009 year: 1997 ident: c34 article-title: Mass spectrometric identification of Si–O–H( ) species from the reaction of silica with water vapor at atmospheric pressure publication-title: J. Am. Ceram. Soc. – volume: 42 start-page: 5129 year: 2022 ident: c43 article-title: Failure mechanisms in model thermal and environmental barrier coating systems publication-title: J. Eur. Ceram. Soc. – volume: 80 start-page: 197 year: 1997 ident: c35 article-title: Paralinear oxidation of CVD SiC in water vapor publication-title: J. Am. Ceram. Soc. – volume: 41 start-page: 1747 year: 2021 ident: c40 article-title: A review on environmental barrier coatings: History, current state of the art and future developments publication-title: J. Eur. Ceram. Soc. – volume: 52 start-page: 378 year: 2021 ident: c46 article-title: Type-I hot corrosion of Ni-base superalloy CM247LC in presence of molten Na SO film publication-title: Metall. Mater. Trans. A – volume: 22 start-page: 2769 year: 2002 ident: c70 article-title: Evaluation of CFCC liners with EBC after field testing in a gas turbine publication-title: J. Eur. Ceram. Soc. – volume: 36 start-page: 3770 year: 1965 ident: c30 article-title: General relationship for the thermal oxidation of silicon publication-title: J. Appl. Phys. – volume: 6 start-page: 581 year: 1967 ident: c74 article-title: Investigation of inorganic systems at high temperature by mass spectrometry publication-title: Angew. Chem., Int. Ed. – volume: 97 start-page: 1959 year: 2014 ident: c77 article-title: Silica activity measurements in the Y O –SiO system and applications to modeling of coating volatility publication-title: J. Am. Ceram. Soc. – volume: 6 start-page: 83 year: 2015 ident: c7 article-title: Alternative fuels in aviation publication-title: CEAS Aeronaut. J. – volume: 121 start-page: 1605 year: 2017 ident: c14 article-title: Performance analysis of an aero engine with inter-stage turbine burner publication-title: Aeronaut. J. – volume: 8 start-page: 161 year: 1996 ident: c93 article-title: Laser hardened materials evaluation laboratory (LHMEL) publication-title: J. Laser Appl. – volume: 49 start-page: 373 year: 1998 ident: c47 article-title: The long-term, cyclic-oxidation behavior of selected chromia-forming alloys publication-title: Oxid. Met. – volume: 111 start-page: 103 year: 1989 ident: c57 article-title: Advanced high-temperature instrumentation for hot section research applications publication-title: J. Eng. Gas Turbines Power – volume: 227 start-page: 120427 year: 2023 ident: 2024042612525318100_c15 article-title: A review on the recent developments in thermal management systems for hybrid-electric aircraft publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.120427 – volume: 46 start-page: 4755 year: 1998 ident: 2024042612525318100_c100 article-title: The thermal shock resistance of solids publication-title: Acta Mater. doi: 10.1016/s1359-6454(98)00127-x – volume: 41 start-page: 3141 year: 2021 ident: 2024042612525318100_c91 article-title: Thermochemical stability and microstructural evolution of Yb2Si2O7 in high-velocity high-temperature water vapor publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.05.071 – volume-title: Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy year: 2018 ident: 2024042612525318100_c56 article-title: NASA transformational tools and technologies project: 2700 °F CMC/EBC technology challenge – volume: 326 start-page: pp1068 year: 2009 ident: 2024042612525318100_c21 article-title: The hotter the engine, the better publication-title: Science doi: 10.1126/science.1179327 – volume: 30 start-page: 1 year: 1987 ident: 2024042612525318100_c17 article-title: Current status of thermal barrier coatings—An overview publication-title: Surf. Coat. Technol. doi: 10.1016/0257-8972(87)90003-x – volume: 41 start-page: 1747 year: 2021 ident: 2024042612525318100_c40 article-title: A review on environmental barrier coatings: History, current state of the art and future developments publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.10.057 – ident: 2024042612525318100_c61 – volume: 94 start-page: 186 year: 2011 ident: 2024042612525318100_c37 article-title: A method for assessing reactions of water vapor with materials in high-speed, high-temperature flow publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2011.04556.x – year: 2005 ident: 2024042612525318100_c18 – volume: 80 start-page: 1009 year: 1997 ident: 2024042612525318100_c34 article-title: Mass spectrometric identification of Si–O–H(g) species from the reaction of silica with water vapor at atmospheric pressure publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1997.tb02935.x – volume: 98 start-page: 4066 year: 2015 ident: 2024042612525318100_c41 article-title: Mechanisms of ytterbium monosilicate/mullite/silicon coating failure during thermal cycling in water vapor publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13792 – volume: 89 start-page: 396 year: 2015 ident: 2024042612525318100_c72 article-title: Interaction of molten silicates with thermal barrier coatings under temperature gradients publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.01.038 – volume: 65 start-page: 73 year: 2019 ident: 2024042612525318100_c76 article-title: Identification of volatile metal hydroxides with free jet expansion sampling mass spectrometry publication-title: Calphad doi: 10.1016/j.calphad.2019.02.005 – volume-title: Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions year: 2016 ident: 2024042612525318100_c13 – volume: 432 start-page: 128039 year: 2021 ident: 2024042612525318100_c50 article-title: Effect of CMAS viscosity on the infiltration depth in thermal barrier coatings of different microstructures publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2021.128039 – volume: 205 start-page: 2287 year: 2010 ident: 2024042612525318100_c90 article-title: A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2010.09.008 – volume: 33 start-page: 2863 year: 2011 ident: 2024042612525318100_c6 article-title: Aviation gas turbine alternative fuels: A review publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2010.09.011 – volume-title: Introduction to Superalloys: Fundamentals and Applications year: 2006 ident: 2024042612525318100_c22 – ident: 2024042612525318100_c105 – volume: 52 start-page: 901 year: 2014 ident: 2024042612525318100_c12 article-title: Aeropropulsion for commercial aviation in the twenty-first century and research directions needed publication-title: AIAA J. doi: 10.2514/1.j052713 – ident: 2024042612525318100_c27 article-title: CMC technology advancements for gas turbine engine applications – volume: 36 start-page: 3770 year: 1965 ident: 2024042612525318100_c30 article-title: General relationship for the thermal oxidation of silicon publication-title: J. Appl. Phys. doi: 10.1063/1.1713945 – volume: 41 start-page: 3150 year: 2021 ident: 2024042612525318100_c79 article-title: Mass transfer in polycrystalline ytterbium monosilicate under oxygen potential gradients at high temperatures publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.07.045 – ident: 2024042612525318100_c87 – ident: 2024042612525318100_c94 article-title: Simulated engine test of combustor mini-segments using a high-power CO2 laser – volume: 52 start-page: 378 year: 2021 ident: 2024042612525318100_c46 article-title: Type-I hot corrosion of Ni-base superalloy CM247LC in presence of molten Na2SO4 film publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-020-06068-6 – volume-title: Advances in X-Ray Analysis: Proceedings of the Denver X-ray Conference ident: 2024042612525318100_c108 article-title: Stresses in ytterbium silicate multilayer environmental barrier coatings – ident: 2024042612525318100_c25 – volume-title: Commercial Aircraft Propulsion and Energy Systems Research-Reducing Global Carbon Emissions year: 2016 ident: 2024042612525318100_c66 article-title: Summary – volume-title: Gas Turbines for Electric Power Generation year: 2019 ident: 2024042612525318100_c3 – volume: 37 start-page: 1130 year: 2005 ident: 2024042612525318100_c78 article-title: Thermodynamics of gas phase species in the Si–O–H system publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2005.02.001 – volume: 7 start-page: 193 year: 1989 ident: 2024042612525318100_c86 article-title: Comparison of hot-salt corrosion behaviour of superalloys in high and low velocity burner rigs publication-title: High Temp. Technol. doi: 10.1080/02619180.1989.11753437 – year: 2018 ident: 2024042612525318100_c26 – volume: 154 start-page: 1020 year: 2015 ident: 2024042612525318100_c9 article-title: Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.04.044 – volume: 106 start-page: 1 year: 2016 ident: 2024042612525318100_c32 article-title: Response of ytterbium disilicate–silicon environmental barrier coatings to thermal cycling in water vapor publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.12.053 – ident: 2024042612525318100_c58 – volume: 15 start-page: 804 year: 2016 ident: 2024042612525318100_c20 article-title: Advanced structural ceramics in aerospace propulsion publication-title: Nat. Mater. doi: 10.1038/nmat4687 – volume: 97 start-page: 2331 year: 2014 ident: 2024042612525318100_c95 article-title: Silicon carbide oxidation in steam up to 2 MPa publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13094 – volume: 14 start-page: 2946 year: 2010 ident: 2024042612525318100_c8 article-title: Bio-fuels for the gas turbine: A review publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2010.07.025 – ident: 2024042612525318100_c107 – volume: 98 start-page: 30 year: 2019 ident: 2024042612525318100_c24 article-title: Ceramic matrix composites taking flight at GE aviation publication-title: Am. Ceram. Soc. Bull. – volume: 103 start-page: 4517 year: 2020 ident: 2024042612525318100_c81 article-title: Thermochemical stability of Y2Si2O7 in high-temperature water vapor publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.17114 – ident: 2024042612525318100_c92 – volume: 39 start-page: 565 year: 2006 ident: 2024042612525318100_c104 article-title: Jet impingement heat transfer: Physics, correlations, and numerical modeling publication-title: Adv. Heat Transfer doi: 10.1016/s0065-2717(06)39006-5 – volume: 6 start-page: 83 year: 2015 ident: 2024042612525318100_c7 article-title: Alternative fuels in aviation publication-title: CEAS Aeronaut. J. doi: 10.1007/s13272-014-0131-2 – ident: 2024042612525318100_c84 – volume: 8 start-page: 161 year: 1996 ident: 2024042612525318100_c93 article-title: Laser hardened materials evaluation laboratory (LHMEL) publication-title: J. Laser Appl. doi: 10.2351/1.4745418 – ident: 2024042612525318100_c64 – volume: 96 start-page: 2330 year: 2013 ident: 2024042612525318100_c33 article-title: Silicon carbide oxidation in high-pressure steam publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12328 – start-page: 201 volume-title: ASTM Special Technical Publication year: 2000 ident: 2024042612525318100_c96 article-title: Oxidation behavior of non-oxide ceramics in a high-pressure, high-temperature steam environment – volume-title: Ceramic Matrix Composites: Materials, Modeling and Technology year: 2015 ident: 2024042612525318100_c82 article-title: Environmental barrier coatings for SiCf/SiC – volume: 121 start-page: 1605 year: 2017 ident: 2024042612525318100_c14 article-title: Performance analysis of an aero engine with inter-stage turbine burner publication-title: Aeronaut. J. doi: 10.1017/aer.2017.93 – volume: 22 start-page: 2769 year: 2002 ident: 2024042612525318100_c70 article-title: Evaluation of CFCC liners with EBC after field testing in a gas turbine publication-title: J. Eur. Ceram. Soc. doi: 10.1016/s0955-2219(02)00142-5 – volume: 42 start-page: 5129 year: 2022 ident: 2024042612525318100_c43 article-title: Failure mechanisms in model thermal and environmental barrier coating systems publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2022.04.046 – start-page: 861 year: 2010 ident: 2024042612525318100_c48 article-title: Oxidation of superalloys in extreme environments – volume: 80 start-page: 197 year: 1997 ident: 2024042612525318100_c35 article-title: Paralinear oxidation of CVD SiC in water vapor publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1997.tb02810.x – volume-title: Thermal Barrier Coatings: Failure Theory and Evaluation Technology year: 2022 ident: 2024042612525318100_c49 article-title: Erosion failure mechanisms of TBCs – ident: 2024042612525318100_c106 – volume-title: Fundamentals of Heat and Mass Transfer year: 2007 ident: 2024042612525318100_c102 – ident: 2024042612525318100_c65 – start-page: 305 year: 2012 ident: 2024042612525318100_c60 article-title: Evaluating materials and fuels using an atmospheric-pressure low-velocity burner rig: Factors to consider to avoid unintended consequences – volume: 65 start-page: 111 year: 2019 ident: 2024042612525318100_c75 article-title: Introduction to proceedings of the workshop on Knudsen effusion mass spectrometry publication-title: Calphad doi: 10.1016/j.calphad.2019.01.004 – volume: 60 start-page: 2497 year: 2012 ident: 2024042612525318100_c53 article-title: Delamination resistance of thermal barrier coatings containing embedded ductile layers publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.12.039 – volume: 82 start-page: 1817 year: 1999 ident: 2024042612525318100_c36 article-title: SiC recession caused by SiO2 scale volatility under combustion conditions: I, experimental results and empirical model publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1999.tb02004.x – volume: 111 start-page: 103 year: 1989 ident: 2024042612525318100_c57 article-title: Advanced high-temperature instrumentation for hot section research applications publication-title: J. Eng. Gas Turbines Power doi: 10.1115/1.3240204 – volume: 2 start-page: 407 year: 2019 ident: 2024042612525318100_c68 article-title: Thermomechanical characterization of SiC/SiC ceramic matrix composites in a combustion facility publication-title: Ceramics doi: 10.3390/ceramics2020032 – volume: 6 start-page: 581 year: 1967 ident: 2024042612525318100_c74 article-title: Investigation of inorganic systems at high temperature by mass spectrometry publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.196705811 – volume: 129 start-page: 193 year: 2007 ident: 2024042612525318100_c99 article-title: Gas turbine heat transfer: Ten remaining hot gas path challenges publication-title: J. Turbomach. doi: 10.1115/1.2464142 – volume: 10 start-page: 705 year: 2020 ident: 2024042612525318100_c11 article-title: Opportunities and issues in the application of titanium alloys for aerospace components publication-title: Metals doi: 10.3390/met10060705 – volume-title: Application year: 2019 ident: 2024042612525318100_c97 article-title: What factors influence the emissivity of a material? – year: 2017 ident: 2024042612525318100_c83 article-title: Particle transport analysis of sand ingestion in gas turbine jet engines – start-page: 201 volume-title: Mechanical, Thermal, and Environmental Testing and Performance of Ceramic Composites and Components year: 2000 ident: 2024042612525318100_c69 article-title: Oxidation behavior of non-oxide ceramics in a high-pressure, high-temperature steam environment doi: 10.1520/STP15015S – volume: 36 start-page: 3293 year: 2016 ident: 2024042612525318100_c29 article-title: Oxidation behaviour of SiC/SiC ceramic matrix composites in air publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.05.051 – start-page: 6 volume-title: Coatings for High-Temperature Structural Materials: Trends and Opportunities year: 1996 ident: 2024042612525318100_c23 – volume: 12 start-page: 1033 year: 2023 ident: 2024042612525318100_c45 article-title: Xenotime-type high-entropy (Dy1/7Ho1/7Er1/7Tm1/7Yb1/7Lu1/7Y1/7)PO4: A promising thermal/environmental barrier coating material for SiCf/SiC ceramic matrix composites publication-title: J. Adv. Ceram. doi: 10.26599/jac.2023.9220736 – volume: 30 start-page: 40 year: 2021 ident: 2024042612525318100_c44 article-title: Perspectives on environmental barrier coatings (EBCs) manufactured via air plasma spray (APS) on ceramic matrix composites (CMCs): A tutorial paper publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-021-01168-0 – volume: 155 start-page: 134 year: 2019 ident: 2024042612525318100_c51 article-title: Correlations between the kinetics and the mechanisms of hot corrosion of pure nickel at 700 °C publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.04.022 – volume: 296 start-page: 280 year: 2002 ident: 2024042612525318100_c16 article-title: Thermal barrier coatings for gas-turbine engine applications publication-title: Science doi: 10.1126/science.1068609 – volume: 284 start-page: 109262 year: 2023 ident: 2024042612525318100_c54 article-title: Thermomechanical fatigue of nickel-based single-crystal superalloys publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2023.109262 – volume: 13 start-page: 389 year: 2004 ident: 2024042612525318100_c71 article-title: Thermal shock testing of thermal barrier coating/bondcoat systems publication-title: J. Mater. Eng. Perform. doi: 10.1361/10599490419883 – ident: 2024042612525318100_c59 – start-page: 429 volume-title: Comprehensive Structural Integrity year: 2003 ident: 2024042612525318100_c101 article-title: Structural behavior of ceramics doi: 10.1016/B0-08-043749-4/02139-X – volume-title: The water vapor hot gas corrosion behavior of Al2O3-Y2O3 materials, Y2SiO5 and Y3Al5O12-coated alumina in a combustion environment year: 2006 ident: 2024042612525318100_c88 – volume: 53 start-page: 949 year: 2005 ident: 2024042612525318100_c52 article-title: An analytical model of rumpling in thermal barrier coatings publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2004.11.002 – start-page: 455 volume-title: Corrosion Series year: 2008 ident: 2024042612525318100_c10 article-title: Chapter 10 effects of water vapour on oxidation – volume: 82 start-page: 1826 year: 1999 ident: 2024042612525318100_c31 article-title: SiC recession caused by SiO2 scale volatility under combustion conditions: II, thermodynamics and gaseous-diffusion model publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1999.tb02005.x – volume: 37 start-page: 891 year: 2012 ident: 2024042612525318100_c19 article-title: Thermal-barrier coatings for more efficient gas-turbine engines publication-title: MRS Bull. doi: 10.1557/mrs.2012.232 – volume-title: Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 3: Coal, Biomass, Hydrogen, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems year: 2019 ident: 2024042612525318100_c62 article-title: Development of a high-pressure hot-corrosion burner rig for testing structural materials following long exposures to Arabian extra light crude oil combustion products – ident: 2024042612525318100_c63 – volume-title: Future Propulsion Systems and Energy Sources in Sustainable Aviation year: 2020 ident: 2024042612525318100_c4 – ident: 2024042612525318100_c5 doi: 10.4271/2021-36-0032 – volume: 35 start-page: 4259 year: 2015 ident: 2024042612525318100_c42 article-title: Mass spectrometric measurements of the silica activity in the Yb2O3–SiO2 system and implications to assess the degradation of silicate-based coatings in combustion environments publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2015.07.019 – volume: 36 start-page: 1135 year: 2016 ident: 2024042612525318100_c38 article-title: A method for assessing the volatility of oxides in high-temperature high-velocity water vapor publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2015.11.016 – volume: 284 start-page: 318 year: 2015 ident: 2024042612525318100_c73 article-title: Mechanical properties and real-time damage evaluations of environmental barrier coated SiC/SiC CMCs subjected to tensile loading under thermal gradients publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2015.07.042 – volume: 32 start-page: 775 year: 2006 ident: 2024042612525318100_c80 article-title: Recession mechanism of Lu2Si2O7 phase in high speed steam jet environment at high temperatures publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2005.05.014 – volume: 40 start-page: 6236 year: 2020 ident: 2024042612525318100_c89 article-title: An investigation on burner rig testing of environmental barrier coatings for aerospace applications publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.06.016 – volume: 120 start-page: 322 year: 1998 ident: 2024042612525318100_c98 article-title: Temperature-dependent absorptances of ceramics for Nd:YAG and CO2 laser processing applications publication-title: J. Heat Transfer doi: 10.1115/1.2824250 – volume-title: Gas Turbine Propulsion Systems year: 2011 ident: 2024042612525318100_c1 – volume: 76 start-page: 3 year: 1993 ident: 2024042612525318100_c28 article-title: Corrosion of silicon-based ceramics in combustion environments publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1993.tb03684.x – volume: 87 start-page: 1701 year: 2004 ident: 2024042612525318100_c39 article-title: Alumina volatility in water vapor at elevated temperatures publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2004.01701.x – ident: 2024042612525318100_c85 – volume: 49 start-page: 373 year: 1998 ident: 2024042612525318100_c47 article-title: The long-term, cyclic-oxidation behavior of selected chromia-forming alloys publication-title: Oxid. Met. doi: 10.1023/a:1018874206733 – volume-title: Pounder’s Marine Diesel Engines and Gas Turbines year: 2009 ident: 2024042612525318100_c2 – volume: 102 start-page: 202 year: 1980 ident: 2024042612525318100_c103 article-title: Heat transfer characteristics of an obliquely impinging circular jet publication-title: J. Heat Transfer doi: 10.1115/1.3244261 – ident: 2024042612525318100_c67 article-title: Development and use of a new burner rig facility to mimic service loading conditions of Ni-based single crystal superalloys – volume: 97 start-page: 1959 year: 2014 ident: 2024042612525318100_c77 article-title: Silica activity measurements in the Y2O3–SiO2 system and applications to modeling of coating volatility publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12974 – year: 2013 ident: 2024042612525318100_c55 |
| SSID | ssj0000511 |
| Score | 2.4449463 |
| Snippet | Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas... |
| SourceID | proquest pubmed crossref scitation |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Air cooling Air jets Carbon dioxide Carbon dioxide lasers Ceramic coatings Combustion Cyclic loads Digital imaging Engine materials Environmental testing Gas flow Gas jets Gas turbine engines Heating High pressure High temperature Hydraulic loading Laser beam heating Materials testing Stresses Temperature gradients Test chambers Test facilities Thermal imaging Thermal shock Water vapor |
| Title | A high temperature engine materials test facility |
| URI | http://dx.doi.org/10.1063/5.0190903 https://www.ncbi.nlm.nih.gov/pubmed/38668693 https://www.proquest.com/docview/3046938052 https://www.proquest.com/docview/3047942813 |
| Volume | 95 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7623 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0000511 issn: 0034-6748 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgewAOFeVRFgoyj0NR5CWxHdc-rnitEK0QtFJvkeM4olKVVt30QH89M2vnUbFIhUsUxdasNZ93PLZnviHkDbjIzuc8Z66UhsH-S7GSC8OsMdLUViqpMd95_0AtjuSX4_x4YN5dZZe05cxdrc0r-R9U4Rvgilmy_4BsLxQ-wDvgC09AGJ43wnieINtwgvRSkRs58St-wQT80DAAaFy2WFUHY2CvXeF-75NWQlIkxgxhaHqLdAqR4CmSN3aVp79d2PKnTRaz4Ri-imfeC_urapKDWfJ5Nj5I4OP4k2gchWRYeyQsDcEeptowsJdibDBDVcw4MeRaOwyODygPGVENHgQNi00fAnixPLlNNjjITidkY_5h_-uPYQXNs1DpMA6oY4RS4l0v8rof8cfm4B65A8oL0Qwjh-HwPtmMnj6dB9i2yC3fPCBb0ZYu6W4k_H77kGRzijjSEY404Eh7HCniSDscH5GjTx8P3y9YLGXBnJC6ZXXN9yrYDAqnwGWtU-1sDpvdDGuFceukl04o7dKy1CrPbGqlrHIwvdym0FYK8ZhMmrPGPyHUVM5z7oWuwTXb09BYeQ92Gfx2reBtSnY7xRSdBrDcyGmxijdQosiLqMMpedV3PQ_kJus67XTaLeLcXxZ4n24ElsOYkpd9M1gmvG6yjT-7XPUBY891BiK2Ayr9r8BQlQYJU_K6h-nvQ3h6o17PyN1hWu-QCfxd_HPwGNvyRZxgvwEu6mdK |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high+temperature+engine+materials+test+facility&rft.jtitle=Review+of+scientific+instruments&rft.au=Shelton%2C+Prabha+H.&rft.au=Wadley%2C+Haydn+N.+G.&rft.date=2024-04-01&rft.issn=0034-6748&rft.eissn=1089-7623&rft.volume=95&rft.issue=4&rft_id=info:doi/10.1063%2F5.0190903&rft.externalDocID=rsi |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon |