A high temperature engine materials test facility

Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the whi...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 95; no. 4
Main Authors Shelton, Prabha H., Wadley, Haydn N. G.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 01.04.2024
Subjects
Online AccessGet full text
ISSN0034-6748
1089-7623
1089-7623
DOI10.1063/5.0190903

Cover

Abstract Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the while operating in highly reactive, high-pressure, high-speed combustion gas flows containing significant partial pressures of water vapor, oxygen, and other reactive species for many tens of thousands of hours. We describe the design and development of a test facility for the study of materials under individual and combinations of test parameters similar to those experienced within legacy and future engines. A hydraulic load frame capable of applying static or cyclic tension-compression stresses up to 400 MPa to flat-dog bone-shaped test specimens is integrated within an environmental test chamber capable of sustaining gas pressures from 0.1 to 1.2 MPa (1–12 atm). An adjustable 0.1–2 kW power CO2 laser whose 10.6 µm wavelength radiation is strongly absorbed by ceramic coating materials is used to heat sample surfaces to temperatures of 1800 °C and above, while rear surface air jet cooling establishes through-thickness thermal gradients. Rapid laser heating in conjunction with transiently applied front and/or rear-side air cooling is used to create hot or cold thermal shock effects. This is accompanied by the impingement of a high pressure (up to 1.3 MPa) reactive gas jet upon the sample with speeds up to 300 m/s by preheating dry air, mixing it with steam to the desired humidity, heating to 850 °C, and then expanding it through a converging nozzle. Thermal imaging pyrometers measure specimen front and back surface temperature fields, while environmental test chamber view ports permit digital image correlation and strain mapping.
AbstractList Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the while operating in highly reactive, high-pressure, high-speed combustion gas flows containing significant partial pressures of water vapor, oxygen, and other reactive species for many tens of thousands of hours. We describe the design and development of a test facility for the study of materials under individual and combinations of test parameters similar to those experienced within legacy and future engines. A hydraulic load frame capable of applying static or cyclic tension-compression stresses up to 400 MPa to flat-dog bone-shaped test specimens is integrated within an environmental test chamber capable of sustaining gas pressures from 0.1 to 1.2 MPa (1-12 atm). An adjustable 0.1-2 kW power CO2 laser whose 10.6 µm wavelength radiation is strongly absorbed by ceramic coating materials is used to heat sample surfaces to temperatures of 1800 °C and above, while rear surface air jet cooling establishes through-thickness thermal gradients. Rapid laser heating in conjunction with transiently applied front and/or rear-side air cooling is used to create hot or cold thermal shock effects. This is accompanied by the impingement of a high pressure (up to 1.3 MPa) reactive gas jet upon the sample with speeds up to 300 m/s by preheating dry air, mixing it with steam to the desired humidity, heating to 850 °C, and then expanding it through a converging nozzle. Thermal imaging pyrometers measure specimen front and back surface temperature fields, while environmental test chamber view ports permit digital image correlation and strain mapping.Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the while operating in highly reactive, high-pressure, high-speed combustion gas flows containing significant partial pressures of water vapor, oxygen, and other reactive species for many tens of thousands of hours. We describe the design and development of a test facility for the study of materials under individual and combinations of test parameters similar to those experienced within legacy and future engines. A hydraulic load frame capable of applying static or cyclic tension-compression stresses up to 400 MPa to flat-dog bone-shaped test specimens is integrated within an environmental test chamber capable of sustaining gas pressures from 0.1 to 1.2 MPa (1-12 atm). An adjustable 0.1-2 kW power CO2 laser whose 10.6 µm wavelength radiation is strongly absorbed by ceramic coating materials is used to heat sample surfaces to temperatures of 1800 °C and above, while rear surface air jet cooling establishes through-thickness thermal gradients. Rapid laser heating in conjunction with transiently applied front and/or rear-side air cooling is used to create hot or cold thermal shock effects. This is accompanied by the impingement of a high pressure (up to 1.3 MPa) reactive gas jet upon the sample with speeds up to 300 m/s by preheating dry air, mixing it with steam to the desired humidity, heating to 850 °C, and then expanding it through a converging nozzle. Thermal imaging pyrometers measure specimen front and back surface temperature fields, while environmental test chamber view ports permit digital image correlation and strain mapping.
Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the while operating in highly reactive, high-pressure, high-speed combustion gas flows containing significant partial pressures of water vapor, oxygen, and other reactive species for many tens of thousands of hours. We describe the design and development of a test facility for the study of materials under individual and combinations of test parameters similar to those experienced within legacy and future engines. A hydraulic load frame capable of applying static or cyclic tension-compression stresses up to 400 MPa to flat-dog bone-shaped test specimens is integrated within an environmental test chamber capable of sustaining gas pressures from 0.1 to 1.2 MPa (1–12 atm). An adjustable 0.1–2 kW power CO2 laser whose 10.6 µm wavelength radiation is strongly absorbed by ceramic coating materials is used to heat sample surfaces to temperatures of 1800 °C and above, while rear surface air jet cooling establishes through-thickness thermal gradients. Rapid laser heating in conjunction with transiently applied front and/or rear-side air cooling is used to create hot or cold thermal shock effects. This is accompanied by the impingement of a high pressure (up to 1.3 MPa) reactive gas jet upon the sample with speeds up to 300 m/s by preheating dry air, mixing it with steam to the desired humidity, heating to 850 °C, and then expanding it through a converging nozzle. Thermal imaging pyrometers measure specimen front and back surface temperature fields, while environmental test chamber view ports permit digital image correlation and strain mapping.
Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the while operating in highly reactive, high-pressure, high-speed combustion gas flows containing significant partial pressures of water vapor, oxygen, and other reactive species for many tens of thousands of hours. We describe the design and development of a test facility for the study of materials under individual and combinations of test parameters similar to those experienced within legacy and future engines. A hydraulic load frame capable of applying static or cyclic tension-compression stresses up to 400 MPa to flat-dog bone-shaped test specimens is integrated within an environmental test chamber capable of sustaining gas pressures from 0.1 to 1.2 MPa (1-12 atm). An adjustable 0.1-2 kW power CO2 laser whose 10.6 µm wavelength radiation is strongly absorbed by ceramic coating materials is used to heat sample surfaces to temperatures of 1800 °C and above, while rear surface air jet cooling establishes through-thickness thermal gradients. Rapid laser heating in conjunction with transiently applied front and/or rear-side air cooling is used to create hot or cold thermal shock effects. This is accompanied by the impingement of a high pressure (up to 1.3 MPa) reactive gas jet upon the sample with speeds up to 300 m/s by preheating dry air, mixing it with steam to the desired humidity, heating to 850 °C, and then expanding it through a converging nozzle. Thermal imaging pyrometers measure specimen front and back surface temperature fields, while environmental test chamber view ports permit digital image correlation and strain mapping.
Author Shelton, Prabha H.
Wadley, Haydn N. G.
Author_xml – sequence: 1
  givenname: Prabha H.
  surname: Shelton
  fullname: Shelton, Prabha H.
  organization: Mechanical and Aerospace Engineering, University of Virginia
– sequence: 2
  givenname: Haydn N. G.
  surname: Wadley
  fullname: Wadley, Haydn N. G.
  organization: 2Material Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38668693$$D View this record in MEDLINE/PubMed
BookMark eNp90EtLAzEQB_AgFfvQg19AFryosO3k2eyxFF9Q8KLnkKbZNmUfNcke-u1NaXsRMZdA5jfD5D9EvaZtLEK3GMYYBJ3wMeACCqAXaIBBFvlUENpDAwDKcjFlso-GIWwhHY7xFepTKYQUBR0gPMs2br3Joq131uvYeZvZZu0am9U6Wu90FVIxxKzUxlUu7q_RZZke7c3pHqGvl-fP-Vu--Hh9n88WuaFMxrwsyXTFOVAjOOMlSKM5kQSTggDRhllmqJAGlkspONagGVtxwJhoSLUlpSP0cJy78-13lzZQtQvGVpVubNsFRYFNC0YkPtD7X3Tbdr5J2x1U-qcETpK6O6luWduV2nlXa79X5zASmByB8W0I3pbKuKija5votasUBnWIW3F1ijt1PP7qOA_9yz4dbThP_Qf_ADowiDo
CODEN RSINAK
CitedBy_id crossref_primary_10_1111_ijac_14953
Cites_doi 10.1016/j.applthermaleng.2023.120427
10.1016/s1359-6454(98)00127-x
10.1016/j.jeurceramsoc.2020.05.071
10.1126/science.1179327
10.1016/0257-8972(87)90003-x
10.1016/j.jeurceramsoc.2020.10.057
10.1111/j.1551-2916.2011.04556.x
10.1111/j.1151-2916.1997.tb02935.x
10.1111/jace.13792
10.1016/j.actamat.2015.01.038
10.1016/j.calphad.2019.02.005
10.1016/j.surfcoat.2021.128039
10.1016/j.surfcoat.2010.09.008
10.1016/j.proci.2010.09.011
10.2514/1.j052713
10.1063/1.1713945
10.1016/j.jeurceramsoc.2020.07.045
10.1007/s11661-020-06068-6
10.1016/j.jct.2005.02.001
10.1080/02619180.1989.11753437
10.1016/j.apenergy.2015.04.044
10.1016/j.actamat.2015.12.053
10.1038/nmat4687
10.1111/jace.13094
10.1016/j.rser.2010.07.025
10.1111/jace.17114
10.1016/s0065-2717(06)39006-5
10.1007/s13272-014-0131-2
10.2351/1.4745418
10.1111/jace.12328
10.1017/aer.2017.93
10.1016/s0955-2219(02)00142-5
10.1016/j.jeurceramsoc.2022.04.046
10.1111/j.1151-2916.1997.tb02810.x
10.1016/j.calphad.2019.01.004
10.1016/j.actamat.2011.12.039
10.1111/j.1151-2916.1999.tb02004.x
10.1115/1.3240204
10.3390/ceramics2020032
10.1002/anie.196705811
10.1115/1.2464142
10.3390/met10060705
10.1520/STP15015S
10.1016/j.jeurceramsoc.2016.05.051
10.26599/jac.2023.9220736
10.1007/s11666-021-01168-0
10.1016/j.corsci.2019.04.022
10.1126/science.1068609
10.1016/j.engfracmech.2023.109262
10.1361/10599490419883
10.1016/B0-08-043749-4/02139-X
10.1016/j.jmps.2004.11.002
10.1111/j.1151-2916.1999.tb02005.x
10.1557/mrs.2012.232
10.4271/2021-36-0032
10.1016/j.jeurceramsoc.2015.07.019
10.1016/j.jeurceramsoc.2015.11.016
10.1016/j.surfcoat.2015.07.042
10.1016/j.ceramint.2005.05.014
10.1016/j.jeurceramsoc.2020.06.016
10.1115/1.2824250
10.1111/j.1151-2916.1993.tb03684.x
10.1111/j.1551-2916.2004.01701.x
10.1023/a:1018874206733
10.1115/1.3244261
10.1111/jace.12974
ContentType Journal Article
Copyright Author(s)
2024 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/5.0190903
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1089-7623
ExternalDocumentID 38668693
10_1063_5_0190903
rsi
Genre Journal Article
GrantInformation_xml – fundername: Office of Naval Research
  grantid: N00014-15-1-2933
  funderid: https://doi.org/10.13039/100000006
GroupedDBID ---
-DZ
-~X
.DC
123
2-P
29P
4.4
5RE
5VS
85S
A9.
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABFTF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
L7B
M43
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TAE
TN5
VQA
WH7
XSW
YNT
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
VXZ
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c348t-ff27d5503c6545f08ca5282129202ac4e4c368c0bb8651a0a44d50112a04e4b33
ISSN 0034-6748
1089-7623
IngestDate Wed Oct 01 14:28:54 EDT 2025
Mon Jun 30 03:31:48 EDT 2025
Wed Feb 19 02:14:11 EST 2025
Thu Apr 24 22:57:17 EDT 2025
Wed Oct 01 03:37:52 EDT 2025
Fri Jun 21 00:17:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Published under an exclusive license by AIP Publishing.
2024 Author(s). Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-ff27d5503c6545f08ca5282129202ac4e4c368c0bb8651a0a44d50112a04e4b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8449-9547
0000-0001-7803-1286
PMID 38668693
PQID 3046938052
PQPubID 2050675
PageCount 23
ParticipantIDs scitation_primary_10_1063_5_0190903
crossref_citationtrail_10_1063_5_0190903
proquest_miscellaneous_3047942813
crossref_primary_10_1063_5_0190903
pubmed_primary_38668693
proquest_journals_3046938052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240401
2024-04-01
2024-Apr-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 20240401
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle Review of scientific instruments
PublicationTitleAlternate Rev Sci Instrum
PublicationYear 2024
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Coutinho, Bento, Souza, Cruz, Afonso, Lau, Suleman, Barbosa, Gandolfi, Affonso, Odaguil, Westin, dos Reis, da Silva (c15) 2023; 227
Richards, Young, de Francqueville, Sehr, Begley, Wadley (c32) 2016; 106
Balint, Hutchinson (c52) 2005; 53
Bolcavage, Feuerstein, Foster, Moore (c71) 2004; 13
Epstein (c12) 2014; 52
Cheng, Tortorelli (c33) 2013; 96
Jacobson (c77) 2014; 97
Costa, Jacobson (c42) 2015; 35
Zhang, Duan, Xie, Ding, Yang, Hou, Zhao, Wang (c45) 2023; 12
Miller (c17) 1987; 30
Grégoire, Montero, Galetz, Bonnet, Pedraza (c51) 2019; 155
Jacobson, Opila, Myers, Copland (c78) 2005; 37
Tejero-Martin, Bennett, Hussain (c40) 2021; 41
Steinke, Sebold, Mack, Vaßen, Stöver (c90) 2010; 205
Nicholls, Saunders (c86) 1989; 7
Bakan, Mack, Lobe, Koch, Vaßen (c89) 2020; 40
Golden, Mueller, Opila (c81) 2020; 103
Ueno, Jayaseelan, Ohji, Lin (c80) 2006; 32
Deal, Grove (c30) 1965; 36
Jackson, Zaleski, Poerschke, Hazel, Begley, Levi (c72) 2015; 89
Jacobson, Kobertz, Sergeev (c75) 2019; 65
Zhang, Modest (c98) 1998; 120
Ai, Shi, Luo, Pei, Wen (c54) 2023; 284
Drowart, Goldfinger (c74) 1967; 6
Robinson, Smialek (c36) 1999; 82
Yin, Rao (c14) 2017; 121
Terrani, Pint, Parish, Silva, Snead, Katoh (c95) 2014; 97
Braun-Unkhoff, Riedel (c7) 2015; 6
Opila, Fox, Jacobson (c34) 1997; 80
Williams, Boyer (c11) 2020; 10
Gupta, Rehman, Sarviya (c8) 2010; 14
Padture (c16) 2002; 296
Opila, Myers (c39) 2004; 87
Matsudaira, Wada, Kawashima, Takeuchi, Yokoe, Kato, Takata, Kitaoka (c79) 2021; 41
Steibel (c24) 2019; 98
Ridley, Opila (c91) 2021; 41
Richards, Begley, Wadley (c41) 2015; 98
Taamallah, Vogiatzaki, Alzahrani, Mokheimer, Habib, Ghoniem (c9) 2015; 154
Gleeson, Harper (c47) 1998; 49
Jacobson (c28) 1993; 76
Deijkers, Begley, Wadley (c43) 2022; 42
Opila, Smialek, Robinson, Fox, Jacobson (c31) 1999; 82
Clarke, Oechsner, Padture (c19) 2012; 37
Sparrow, Lovell (c103) 1980; 102
Myers, Jacobson (c76) 2019; 65
Kumar, Rommel, Jiang, Jordan (c50) 2021; 432
Begley, Wadley (c53) 2012; 60
Hull, Lander (c93) 1996; 8
Kimmel, Miriyala, Price, More, Tortorelli, Eaton, Linsey, Sun (c70) 2002; 22
Appleby, Zhu, Morscher (c73) 2015; 284
Kumawat, Parlikar, Alam, Das (c46) 2021; 52
Panakarajupally, Presby, Manigandan, Zhou, Chase, Morscher (c68) 2019; 2
Zuckerman, Lior (c104) 2006; 39
Golden, Opila (c38) 2016; 36
Bunker (c99) 2007; 129
Opila, Hann (c35) 1997; 80
Lucato, Sudre, Marshall (c37) 2011; 94
Lee, Zhu, Lima (c44) 2021; 30
Nasiri, Patra, Ni, Jayaseelan, Lee (c29) 2016; 36
Blakey, Rye, Wilson (c6) 2011; 33
Padture (c20) 2016; 15
Perepezko (c21) 2009; 326
Lu, Fleck (c100) 1998; 46
Englund, Seasholtz (c57) 1989; 111
2024042612525318100_c106
(2024042612525318100_c30) 1965; 36
2024042612525318100_c105
2024042612525318100_c108
2024042612525318100_c107
(2024042612525318100_c15) 2023; 227
(2024042612525318100_c60) 2012
(2024042612525318100_c3) 2019
(2024042612525318100_c47) 1998; 49
(2024042612525318100_c78) 2005; 37
Opila group (2024042612525318100_c84)
(2024042612525318100_c51) 2019; 155
(2024042612525318100_c54) 2023; 284
(2024042612525318100_c96) 2000
(2024042612525318100_c86) 1989; 7
(2024042612525318100_c104) 2006; 39
(2024042612525318100_c99) 2007; 129
(2024042612525318100_c18) 2005
(2024042612525318100_c80) 2006; 32
(2024042612525318100_c83) 2017
(2024042612525318100_c37) 2011; 94
(2024042612525318100_c20) 2016; 15
(2024042612525318100_c82) 2015
(2024042612525318100_c29) 2016; 36
(2024042612525318100_c72) 2015; 89
2024042612525318100_c94
(2024042612525318100_c88) 2006
(2024042612525318100_c19) 2012; 37
(2024042612525318100_c90) 2010; 205
2024042612525318100_c92
(2024042612525318100_c9) 2015; 154
(2024042612525318100_c21) 2009; 326
(2024042612525318100_c1) 2011
(2024042612525318100_c73) 2015; 284
(2024042612525318100_c91) 2021; 41
2024042612525318100_c25
(2024042612525318100_c52) 2005; 53
2024042612525318100_c27
(2024042612525318100_c14) 2017; 121
National Academies of Sciences Engineering and Medicine (2024042612525318100_c66) 2016
(2024042612525318100_c40) 2021; 41
(2024042612525318100_c79) 2021; 41
(2024042612525318100_c16) 2002; 296
National Research Council (U.S.) Committee (2024042612525318100_c23) 1996
(2024042612525318100_c46) 2021; 52
(2024042612525318100_c45) 2023; 12
(2024042612525318100_c101) 2003
(2024042612525318100_c81) 2020; 103
(2024042612525318100_c41) 2015; 98
(2024042612525318100_c35) 1997; 80
Young (2024042612525318100_c10) 2008
(2024042612525318100_c97) 2019
(2024042612525318100_c98) 1998; 120
(2024042612525318100_c102) 2007
(2024042612525318100_c93) 1996; 8
(2024042612525318100_c2) 2009
(2024042612525318100_c75) 2019; 65
(2024042612525318100_c70) 2002; 22
(2024042612525318100_c42) 2015; 35
(2024042612525318100_c50) 2021; 432
(2024042612525318100_c49) 2022
2024042612525318100_c87
(2024042612525318100_c4) 2020
(2024042612525318100_c7) 2015; 6
(2024042612525318100_c32) 2016; 106
2024042612525318100_c85
(2024042612525318100_c33) 2013; 96
(2024042612525318100_c34) 1997; 80
(2024042612525318100_c17) 1987; 30
(2024042612525318100_c103) 1980; 102
(2024042612525318100_c36) 1999; 82
(2024042612525318100_c24) 2019; 98
Ott (2024042612525318100_c48) 2010
(2024042612525318100_c8) 2010; 14
(2024042612525318100_c6) 2011; 33
(2024042612525318100_c26) 2018
2024042612525318100_c58
2024042612525318100_c59
(2024042612525318100_c76) 2019; 65
2024042612525318100_c5
(2024042612525318100_c57) 1989; 111
(2024042612525318100_c77) 2014; 97
(2024042612525318100_c68) 2019; 2
(2024042612525318100_c39) 2004; 87
(2024042612525318100_c62) 2019
(2024042612525318100_c55) 2013
(2024042612525318100_c12) 2014; 52
(2024042612525318100_c69) 2000
(2024042612525318100_c89) 2020; 40
(2024042612525318100_c95) 2014; 97
2024042612525318100_c64
2024042612525318100_c65
2024042612525318100_c67
2024042612525318100_c61
2024042612525318100_c63
(2024042612525318100_c11) 2020; 10
(2024042612525318100_c74) 1967; 6
(2024042612525318100_c38) 2016; 36
(2024042612525318100_c71) 2004; 13
(2024042612525318100_c43) 2022; 42
(2024042612525318100_c22) 2006
(2024042612525318100_c56) 2018
(2024042612525318100_c100) 1998; 46
(2024042612525318100_c53) 2012; 60
National Academies of Sciences, Engineering, and Medicine (2024042612525318100_c13) 2016
(2024042612525318100_c31) 1999; 82
(2024042612525318100_c44) 2021; 30
(2024042612525318100_c28) 1993; 76
References_xml – volume: 39
  start-page: 565
  year: 2006
  ident: c104
  article-title: Jet impingement heat transfer: Physics, correlations, and numerical modeling
  publication-title: Adv. Heat Transfer
– volume: 296
  start-page: 280
  year: 2002
  ident: c16
  article-title: Thermal barrier coatings for gas-turbine engine applications
  publication-title: Science
– volume: 97
  start-page: 2331
  year: 2014
  ident: c95
  article-title: Silicon carbide oxidation in steam up to 2 MPa
  publication-title: J. Am. Ceram. Soc.
– volume: 155
  start-page: 134
  year: 2019
  ident: c51
  article-title: Correlations between the kinetics and the mechanisms of hot corrosion of pure nickel at 700 °C
  publication-title: Corros. Sci.
– volume: 65
  start-page: 73
  year: 2019
  ident: c76
  article-title: Identification of volatile metal hydroxides with free jet expansion sampling mass spectrometry
  publication-title: Calphad
– volume: 129
  start-page: 193
  year: 2007
  ident: c99
  article-title: Gas turbine heat transfer: Ten remaining hot gas path challenges
  publication-title: J. Turbomach.
– volume: 102
  start-page: 202
  year: 1980
  ident: c103
  article-title: Heat transfer characteristics of an obliquely impinging circular jet
  publication-title: J. Heat Transfer
– volume: 326
  start-page: pp1068
  year: 2009
  ident: c21
  article-title: The hotter the engine, the better
  publication-title: Science
– volume: 94
  start-page: 186
  year: 2011
  ident: c37
  article-title: A method for assessing reactions of water vapor with materials in high-speed, high-temperature flow
  publication-title: J. Am. Ceram. Soc.
– volume: 30
  start-page: 1
  year: 1987
  ident: c17
  article-title: Current status of thermal barrier coatings—An overview
  publication-title: Surf. Coat. Technol.
– volume: 37
  start-page: 1130
  year: 2005
  ident: c78
  article-title: Thermodynamics of gas phase species in the Si–O–H system
  publication-title: J. Chem. Thermodyn.
– volume: 96
  start-page: 2330
  year: 2013
  ident: c33
  article-title: Silicon carbide oxidation in high-pressure steam
  publication-title: J. Am. Ceram. Soc.
– volume: 98
  start-page: 30
  year: 2019
  ident: c24
  article-title: Ceramic matrix composites taking flight at GE aviation
  publication-title: Am. Ceram. Soc. Bull.
– volume: 89
  start-page: 396
  year: 2015
  ident: c72
  article-title: Interaction of molten silicates with thermal barrier coatings under temperature gradients
  publication-title: Acta Mater.
– volume: 2
  start-page: 407
  year: 2019
  ident: c68
  article-title: Thermomechanical characterization of SiC/SiC ceramic matrix composites in a combustion facility
  publication-title: Ceramics
– volume: 432
  start-page: 128039
  year: 2021
  ident: c50
  article-title: Effect of CMAS viscosity on the infiltration depth in thermal barrier coatings of different microstructures
  publication-title: Surf. Coat. Technol.
– volume: 10
  start-page: 705
  year: 2020
  ident: c11
  article-title: Opportunities and issues in the application of titanium alloys for aerospace components
  publication-title: Metals
– volume: 284
  start-page: 109262
  year: 2023
  ident: c54
  article-title: Thermomechanical fatigue of nickel-based single-crystal superalloys
  publication-title: Eng. Fract. Mech.
– volume: 52
  start-page: 901
  year: 2014
  ident: c12
  article-title: Aeropropulsion for commercial aviation in the twenty-first century and research directions needed
  publication-title: AIAA J.
– volume: 14
  start-page: 2946
  year: 2010
  ident: c8
  article-title: Bio-fuels for the gas turbine: A review
  publication-title: Renewable Sustainable Energy Rev.
– volume: 40
  start-page: 6236
  year: 2020
  ident: c89
  article-title: An investigation on burner rig testing of environmental barrier coatings for aerospace applications
  publication-title: J. Eur. Ceram. Soc.
– volume: 46
  start-page: 4755
  year: 1998
  ident: c100
  article-title: The thermal shock resistance of solids
  publication-title: Acta Mater.
– volume: 98
  start-page: 4066
  year: 2015
  ident: c41
  article-title: Mechanisms of ytterbium monosilicate/mullite/silicon coating failure during thermal cycling in water vapor
  publication-title: J. Am. Ceram. Soc.
– volume: 41
  start-page: 3150
  year: 2021
  ident: c79
  article-title: Mass transfer in polycrystalline ytterbium monosilicate under oxygen potential gradients at high temperatures
  publication-title: J. Eur. Ceram. Soc.
– volume: 36
  start-page: 3293
  year: 2016
  ident: c29
  article-title: Oxidation behaviour of SiC/SiC ceramic matrix composites in air
  publication-title: J. Eur. Ceram. Soc.
– volume: 82
  start-page: 1826
  year: 1999
  ident: c31
  article-title: SiC recession caused by SiO scale volatility under combustion conditions: II, thermodynamics and gaseous-diffusion model
  publication-title: J. Am. Ceram. Soc.
– volume: 12
  start-page: 1033
  year: 2023
  ident: c45
  article-title: Xenotime-type high-entropy (Dy Ho Er Tm Yb Lu Y )PO : A promising thermal/environmental barrier coating material for SiC /SiC ceramic matrix composites
  publication-title: J. Adv. Ceram.
– volume: 227
  start-page: 120427
  year: 2023
  ident: c15
  article-title: A review on the recent developments in thermal management systems for hybrid-electric aircraft
  publication-title: Appl. Therm. Eng.
– volume: 154
  start-page: 1020
  year: 2015
  ident: c9
  article-title: Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations
  publication-title: Appl. Energy
– volume: 36
  start-page: 1135
  year: 2016
  ident: c38
  article-title: A method for assessing the volatility of oxides in high-temperature high-velocity water vapor
  publication-title: J. Eur. Ceram. Soc.
– volume: 65
  start-page: 111
  year: 2019
  ident: c75
  article-title: Introduction to proceedings of the workshop on Knudsen effusion mass spectrometry
  publication-title: Calphad
– volume: 76
  start-page: 3
  year: 1993
  ident: c28
  article-title: Corrosion of silicon-based ceramics in combustion environments
  publication-title: J. Am. Ceram. Soc.
– volume: 87
  start-page: 1701
  year: 2004
  ident: c39
  article-title: Alumina volatility in water vapor at elevated temperatures
  publication-title: J. Am. Ceram. Soc.
– volume: 53
  start-page: 949
  year: 2005
  ident: c52
  article-title: An analytical model of rumpling in thermal barrier coatings
  publication-title: J. Mech. Phys. Solids
– volume: 15
  start-page: 804
  year: 2016
  ident: c20
  article-title: Advanced structural ceramics in aerospace propulsion
  publication-title: Nat. Mater.
– volume: 35
  start-page: 4259
  year: 2015
  ident: c42
  article-title: Mass spectrometric measurements of the silica activity in the Yb O –SiO system and implications to assess the degradation of silicate-based coatings in combustion environments
  publication-title: J. Eur. Ceram. Soc.
– volume: 103
  start-page: 4517
  year: 2020
  ident: c81
  article-title: Thermochemical stability of Y Si O in high-temperature water vapor
  publication-title: J. Am. Ceram. Soc.
– volume: 82
  start-page: 1817
  year: 1999
  ident: c36
  article-title: SiC recession caused by SiO scale volatility under combustion conditions: I, experimental results and empirical model
  publication-title: J. Am. Ceram. Soc.
– volume: 284
  start-page: 318
  year: 2015
  ident: c73
  article-title: Mechanical properties and real-time damage evaluations of environmental barrier coated SiC/SiC CMCs subjected to tensile loading under thermal gradients
  publication-title: Surf. Coat. Technol.
– volume: 120
  start-page: 322
  year: 1998
  ident: c98
  article-title: Temperature-dependent absorptances of ceramics for Nd:YAG and CO laser processing applications
  publication-title: J. Heat Transfer
– volume: 106
  start-page: 1
  year: 2016
  ident: c32
  article-title: Response of ytterbium disilicate–silicon environmental barrier coatings to thermal cycling in water vapor
  publication-title: Acta Mater.
– volume: 41
  start-page: 3141
  year: 2021
  ident: c91
  article-title: Thermochemical stability and microstructural evolution of Yb Si O in high-velocity high-temperature water vapor
  publication-title: J. Eur. Ceram. Soc.
– volume: 13
  start-page: 389
  year: 2004
  ident: c71
  article-title: Thermal shock testing of thermal barrier coating/bondcoat systems
  publication-title: J. Mater. Eng. Perform.
– volume: 30
  start-page: 40
  year: 2021
  ident: c44
  article-title: Perspectives on environmental barrier coatings (EBCs) manufactured via air plasma spray (APS) on ceramic matrix composites (CMCs): A tutorial paper
  publication-title: J. Therm. Spray Technol.
– volume: 32
  start-page: 775
  year: 2006
  ident: c80
  article-title: Recession mechanism of Lu Si O phase in high speed steam jet environment at high temperatures
  publication-title: Ceram. Int.
– volume: 37
  start-page: 891
  year: 2012
  ident: c19
  article-title: Thermal-barrier coatings for more efficient gas-turbine engines
  publication-title: MRS Bull.
– volume: 7
  start-page: 193
  year: 1989
  ident: c86
  article-title: Comparison of hot-salt corrosion behaviour of superalloys in high and low velocity burner rigs
  publication-title: High Temp. Technol.
– volume: 33
  start-page: 2863
  year: 2011
  ident: c6
  article-title: Aviation gas turbine alternative fuels: A review
  publication-title: Proc. Combust. Inst.
– volume: 60
  start-page: 2497
  year: 2012
  ident: c53
  article-title: Delamination resistance of thermal barrier coatings containing embedded ductile layers
  publication-title: Acta Mater.
– volume: 205
  start-page: 2287
  year: 2010
  ident: c90
  article-title: A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions
  publication-title: Surf. Coat. Technol.
– volume: 80
  start-page: 1009
  year: 1997
  ident: c34
  article-title: Mass spectrometric identification of Si–O–H( ) species from the reaction of silica with water vapor at atmospheric pressure
  publication-title: J. Am. Ceram. Soc.
– volume: 42
  start-page: 5129
  year: 2022
  ident: c43
  article-title: Failure mechanisms in model thermal and environmental barrier coating systems
  publication-title: J. Eur. Ceram. Soc.
– volume: 80
  start-page: 197
  year: 1997
  ident: c35
  article-title: Paralinear oxidation of CVD SiC in water vapor
  publication-title: J. Am. Ceram. Soc.
– volume: 41
  start-page: 1747
  year: 2021
  ident: c40
  article-title: A review on environmental barrier coatings: History, current state of the art and future developments
  publication-title: J. Eur. Ceram. Soc.
– volume: 52
  start-page: 378
  year: 2021
  ident: c46
  article-title: Type-I hot corrosion of Ni-base superalloy CM247LC in presence of molten Na SO film
  publication-title: Metall. Mater. Trans. A
– volume: 22
  start-page: 2769
  year: 2002
  ident: c70
  article-title: Evaluation of CFCC liners with EBC after field testing in a gas turbine
  publication-title: J. Eur. Ceram. Soc.
– volume: 36
  start-page: 3770
  year: 1965
  ident: c30
  article-title: General relationship for the thermal oxidation of silicon
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 581
  year: 1967
  ident: c74
  article-title: Investigation of inorganic systems at high temperature by mass spectrometry
  publication-title: Angew. Chem., Int. Ed.
– volume: 97
  start-page: 1959
  year: 2014
  ident: c77
  article-title: Silica activity measurements in the Y O –SiO system and applications to modeling of coating volatility
  publication-title: J. Am. Ceram. Soc.
– volume: 6
  start-page: 83
  year: 2015
  ident: c7
  article-title: Alternative fuels in aviation
  publication-title: CEAS Aeronaut. J.
– volume: 121
  start-page: 1605
  year: 2017
  ident: c14
  article-title: Performance analysis of an aero engine with inter-stage turbine burner
  publication-title: Aeronaut. J.
– volume: 8
  start-page: 161
  year: 1996
  ident: c93
  article-title: Laser hardened materials evaluation laboratory (LHMEL)
  publication-title: J. Laser Appl.
– volume: 49
  start-page: 373
  year: 1998
  ident: c47
  article-title: The long-term, cyclic-oxidation behavior of selected chromia-forming alloys
  publication-title: Oxid. Met.
– volume: 111
  start-page: 103
  year: 1989
  ident: c57
  article-title: Advanced high-temperature instrumentation for hot section research applications
  publication-title: J. Eng. Gas Turbines Power
– volume: 227
  start-page: 120427
  year: 2023
  ident: 2024042612525318100_c15
  article-title: A review on the recent developments in thermal management systems for hybrid-electric aircraft
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.120427
– volume: 46
  start-page: 4755
  year: 1998
  ident: 2024042612525318100_c100
  article-title: The thermal shock resistance of solids
  publication-title: Acta Mater.
  doi: 10.1016/s1359-6454(98)00127-x
– volume: 41
  start-page: 3141
  year: 2021
  ident: 2024042612525318100_c91
  article-title: Thermochemical stability and microstructural evolution of Yb2Si2O7 in high-velocity high-temperature water vapor
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.05.071
– volume-title: Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy
  year: 2018
  ident: 2024042612525318100_c56
  article-title: NASA transformational tools and technologies project: 2700 °F CMC/EBC technology challenge
– volume: 326
  start-page: pp1068
  year: 2009
  ident: 2024042612525318100_c21
  article-title: The hotter the engine, the better
  publication-title: Science
  doi: 10.1126/science.1179327
– volume: 30
  start-page: 1
  year: 1987
  ident: 2024042612525318100_c17
  article-title: Current status of thermal barrier coatings—An overview
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/0257-8972(87)90003-x
– volume: 41
  start-page: 1747
  year: 2021
  ident: 2024042612525318100_c40
  article-title: A review on environmental barrier coatings: History, current state of the art and future developments
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.10.057
– ident: 2024042612525318100_c61
– volume: 94
  start-page: 186
  year: 2011
  ident: 2024042612525318100_c37
  article-title: A method for assessing reactions of water vapor with materials in high-speed, high-temperature flow
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2011.04556.x
– year: 2005
  ident: 2024042612525318100_c18
– volume: 80
  start-page: 1009
  year: 1997
  ident: 2024042612525318100_c34
  article-title: Mass spectrometric identification of Si–O–H(g) species from the reaction of silica with water vapor at atmospheric pressure
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1997.tb02935.x
– volume: 98
  start-page: 4066
  year: 2015
  ident: 2024042612525318100_c41
  article-title: Mechanisms of ytterbium monosilicate/mullite/silicon coating failure during thermal cycling in water vapor
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13792
– volume: 89
  start-page: 396
  year: 2015
  ident: 2024042612525318100_c72
  article-title: Interaction of molten silicates with thermal barrier coatings under temperature gradients
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.01.038
– volume: 65
  start-page: 73
  year: 2019
  ident: 2024042612525318100_c76
  article-title: Identification of volatile metal hydroxides with free jet expansion sampling mass spectrometry
  publication-title: Calphad
  doi: 10.1016/j.calphad.2019.02.005
– volume-title: Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions
  year: 2016
  ident: 2024042612525318100_c13
– volume: 432
  start-page: 128039
  year: 2021
  ident: 2024042612525318100_c50
  article-title: Effect of CMAS viscosity on the infiltration depth in thermal barrier coatings of different microstructures
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2021.128039
– volume: 205
  start-page: 2287
  year: 2010
  ident: 2024042612525318100_c90
  article-title: A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2010.09.008
– volume: 33
  start-page: 2863
  year: 2011
  ident: 2024042612525318100_c6
  article-title: Aviation gas turbine alternative fuels: A review
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2010.09.011
– volume-title: Introduction to Superalloys: Fundamentals and Applications
  year: 2006
  ident: 2024042612525318100_c22
– ident: 2024042612525318100_c105
– volume: 52
  start-page: 901
  year: 2014
  ident: 2024042612525318100_c12
  article-title: Aeropropulsion for commercial aviation in the twenty-first century and research directions needed
  publication-title: AIAA J.
  doi: 10.2514/1.j052713
– ident: 2024042612525318100_c27
  article-title: CMC technology advancements for gas turbine engine applications
– volume: 36
  start-page: 3770
  year: 1965
  ident: 2024042612525318100_c30
  article-title: General relationship for the thermal oxidation of silicon
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1713945
– volume: 41
  start-page: 3150
  year: 2021
  ident: 2024042612525318100_c79
  article-title: Mass transfer in polycrystalline ytterbium monosilicate under oxygen potential gradients at high temperatures
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.07.045
– ident: 2024042612525318100_c87
– ident: 2024042612525318100_c94
  article-title: Simulated engine test of combustor mini-segments using a high-power CO2 laser
– volume: 52
  start-page: 378
  year: 2021
  ident: 2024042612525318100_c46
  article-title: Type-I hot corrosion of Ni-base superalloy CM247LC in presence of molten Na2SO4 film
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-020-06068-6
– volume-title: Advances in X-Ray Analysis: Proceedings of the Denver X-ray Conference
  ident: 2024042612525318100_c108
  article-title: Stresses in ytterbium silicate multilayer environmental barrier coatings
– ident: 2024042612525318100_c25
– volume-title: Commercial Aircraft Propulsion and Energy Systems Research-Reducing Global Carbon Emissions
  year: 2016
  ident: 2024042612525318100_c66
  article-title: Summary
– volume-title: Gas Turbines for Electric Power Generation
  year: 2019
  ident: 2024042612525318100_c3
– volume: 37
  start-page: 1130
  year: 2005
  ident: 2024042612525318100_c78
  article-title: Thermodynamics of gas phase species in the Si–O–H system
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2005.02.001
– volume: 7
  start-page: 193
  year: 1989
  ident: 2024042612525318100_c86
  article-title: Comparison of hot-salt corrosion behaviour of superalloys in high and low velocity burner rigs
  publication-title: High Temp. Technol.
  doi: 10.1080/02619180.1989.11753437
– year: 2018
  ident: 2024042612525318100_c26
– volume: 154
  start-page: 1020
  year: 2015
  ident: 2024042612525318100_c9
  article-title: Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.04.044
– volume: 106
  start-page: 1
  year: 2016
  ident: 2024042612525318100_c32
  article-title: Response of ytterbium disilicate–silicon environmental barrier coatings to thermal cycling in water vapor
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.12.053
– ident: 2024042612525318100_c58
– volume: 15
  start-page: 804
  year: 2016
  ident: 2024042612525318100_c20
  article-title: Advanced structural ceramics in aerospace propulsion
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4687
– volume: 97
  start-page: 2331
  year: 2014
  ident: 2024042612525318100_c95
  article-title: Silicon carbide oxidation in steam up to 2 MPa
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13094
– volume: 14
  start-page: 2946
  year: 2010
  ident: 2024042612525318100_c8
  article-title: Bio-fuels for the gas turbine: A review
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2010.07.025
– ident: 2024042612525318100_c107
– volume: 98
  start-page: 30
  year: 2019
  ident: 2024042612525318100_c24
  article-title: Ceramic matrix composites taking flight at GE aviation
  publication-title: Am. Ceram. Soc. Bull.
– volume: 103
  start-page: 4517
  year: 2020
  ident: 2024042612525318100_c81
  article-title: Thermochemical stability of Y2Si2O7 in high-temperature water vapor
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.17114
– ident: 2024042612525318100_c92
– volume: 39
  start-page: 565
  year: 2006
  ident: 2024042612525318100_c104
  article-title: Jet impingement heat transfer: Physics, correlations, and numerical modeling
  publication-title: Adv. Heat Transfer
  doi: 10.1016/s0065-2717(06)39006-5
– volume: 6
  start-page: 83
  year: 2015
  ident: 2024042612525318100_c7
  article-title: Alternative fuels in aviation
  publication-title: CEAS Aeronaut. J.
  doi: 10.1007/s13272-014-0131-2
– ident: 2024042612525318100_c84
– volume: 8
  start-page: 161
  year: 1996
  ident: 2024042612525318100_c93
  article-title: Laser hardened materials evaluation laboratory (LHMEL)
  publication-title: J. Laser Appl.
  doi: 10.2351/1.4745418
– ident: 2024042612525318100_c64
– volume: 96
  start-page: 2330
  year: 2013
  ident: 2024042612525318100_c33
  article-title: Silicon carbide oxidation in high-pressure steam
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12328
– start-page: 201
  volume-title: ASTM Special Technical Publication
  year: 2000
  ident: 2024042612525318100_c96
  article-title: Oxidation behavior of non-oxide ceramics in a high-pressure, high-temperature steam environment
– volume-title: Ceramic Matrix Composites: Materials, Modeling and Technology
  year: 2015
  ident: 2024042612525318100_c82
  article-title: Environmental barrier coatings for SiCf/SiC
– volume: 121
  start-page: 1605
  year: 2017
  ident: 2024042612525318100_c14
  article-title: Performance analysis of an aero engine with inter-stage turbine burner
  publication-title: Aeronaut. J.
  doi: 10.1017/aer.2017.93
– volume: 22
  start-page: 2769
  year: 2002
  ident: 2024042612525318100_c70
  article-title: Evaluation of CFCC liners with EBC after field testing in a gas turbine
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/s0955-2219(02)00142-5
– volume: 42
  start-page: 5129
  year: 2022
  ident: 2024042612525318100_c43
  article-title: Failure mechanisms in model thermal and environmental barrier coating systems
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2022.04.046
– start-page: 861
  year: 2010
  ident: 2024042612525318100_c48
  article-title: Oxidation of superalloys in extreme environments
– volume: 80
  start-page: 197
  year: 1997
  ident: 2024042612525318100_c35
  article-title: Paralinear oxidation of CVD SiC in water vapor
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1997.tb02810.x
– volume-title: Thermal Barrier Coatings: Failure Theory and Evaluation Technology
  year: 2022
  ident: 2024042612525318100_c49
  article-title: Erosion failure mechanisms of TBCs
– ident: 2024042612525318100_c106
– volume-title: Fundamentals of Heat and Mass Transfer
  year: 2007
  ident: 2024042612525318100_c102
– ident: 2024042612525318100_c65
– start-page: 305
  year: 2012
  ident: 2024042612525318100_c60
  article-title: Evaluating materials and fuels using an atmospheric-pressure low-velocity burner rig: Factors to consider to avoid unintended consequences
– volume: 65
  start-page: 111
  year: 2019
  ident: 2024042612525318100_c75
  article-title: Introduction to proceedings of the workshop on Knudsen effusion mass spectrometry
  publication-title: Calphad
  doi: 10.1016/j.calphad.2019.01.004
– volume: 60
  start-page: 2497
  year: 2012
  ident: 2024042612525318100_c53
  article-title: Delamination resistance of thermal barrier coatings containing embedded ductile layers
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.12.039
– volume: 82
  start-page: 1817
  year: 1999
  ident: 2024042612525318100_c36
  article-title: SiC recession caused by SiO2 scale volatility under combustion conditions: I, experimental results and empirical model
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1999.tb02004.x
– volume: 111
  start-page: 103
  year: 1989
  ident: 2024042612525318100_c57
  article-title: Advanced high-temperature instrumentation for hot section research applications
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.3240204
– volume: 2
  start-page: 407
  year: 2019
  ident: 2024042612525318100_c68
  article-title: Thermomechanical characterization of SiC/SiC ceramic matrix composites in a combustion facility
  publication-title: Ceramics
  doi: 10.3390/ceramics2020032
– volume: 6
  start-page: 581
  year: 1967
  ident: 2024042612525318100_c74
  article-title: Investigation of inorganic systems at high temperature by mass spectrometry
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.196705811
– volume: 129
  start-page: 193
  year: 2007
  ident: 2024042612525318100_c99
  article-title: Gas turbine heat transfer: Ten remaining hot gas path challenges
  publication-title: J. Turbomach.
  doi: 10.1115/1.2464142
– volume: 10
  start-page: 705
  year: 2020
  ident: 2024042612525318100_c11
  article-title: Opportunities and issues in the application of titanium alloys for aerospace components
  publication-title: Metals
  doi: 10.3390/met10060705
– volume-title: Application
  year: 2019
  ident: 2024042612525318100_c97
  article-title: What factors influence the emissivity of a material?
– year: 2017
  ident: 2024042612525318100_c83
  article-title: Particle transport analysis of sand ingestion in gas turbine jet engines
– start-page: 201
  volume-title: Mechanical, Thermal, and Environmental Testing and Performance of Ceramic Composites and Components
  year: 2000
  ident: 2024042612525318100_c69
  article-title: Oxidation behavior of non-oxide ceramics in a high-pressure, high-temperature steam environment
  doi: 10.1520/STP15015S
– volume: 36
  start-page: 3293
  year: 2016
  ident: 2024042612525318100_c29
  article-title: Oxidation behaviour of SiC/SiC ceramic matrix composites in air
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.05.051
– start-page: 6
  volume-title: Coatings for High-Temperature Structural Materials: Trends and Opportunities
  year: 1996
  ident: 2024042612525318100_c23
– volume: 12
  start-page: 1033
  year: 2023
  ident: 2024042612525318100_c45
  article-title: Xenotime-type high-entropy (Dy1/7Ho1/7Er1/7Tm1/7Yb1/7Lu1/7Y1/7)PO4: A promising thermal/environmental barrier coating material for SiCf/SiC ceramic matrix composites
  publication-title: J. Adv. Ceram.
  doi: 10.26599/jac.2023.9220736
– volume: 30
  start-page: 40
  year: 2021
  ident: 2024042612525318100_c44
  article-title: Perspectives on environmental barrier coatings (EBCs) manufactured via air plasma spray (APS) on ceramic matrix composites (CMCs): A tutorial paper
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-021-01168-0
– volume: 155
  start-page: 134
  year: 2019
  ident: 2024042612525318100_c51
  article-title: Correlations between the kinetics and the mechanisms of hot corrosion of pure nickel at 700 °C
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.04.022
– volume: 296
  start-page: 280
  year: 2002
  ident: 2024042612525318100_c16
  article-title: Thermal barrier coatings for gas-turbine engine applications
  publication-title: Science
  doi: 10.1126/science.1068609
– volume: 284
  start-page: 109262
  year: 2023
  ident: 2024042612525318100_c54
  article-title: Thermomechanical fatigue of nickel-based single-crystal superalloys
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2023.109262
– volume: 13
  start-page: 389
  year: 2004
  ident: 2024042612525318100_c71
  article-title: Thermal shock testing of thermal barrier coating/bondcoat systems
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1361/10599490419883
– ident: 2024042612525318100_c59
– start-page: 429
  volume-title: Comprehensive Structural Integrity
  year: 2003
  ident: 2024042612525318100_c101
  article-title: Structural behavior of ceramics
  doi: 10.1016/B0-08-043749-4/02139-X
– volume-title: The water vapor hot gas corrosion behavior of Al2O3-Y2O3 materials, Y2SiO5 and Y3Al5O12-coated alumina in a combustion environment
  year: 2006
  ident: 2024042612525318100_c88
– volume: 53
  start-page: 949
  year: 2005
  ident: 2024042612525318100_c52
  article-title: An analytical model of rumpling in thermal barrier coatings
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2004.11.002
– start-page: 455
  volume-title: Corrosion Series
  year: 2008
  ident: 2024042612525318100_c10
  article-title: Chapter 10 effects of water vapour on oxidation
– volume: 82
  start-page: 1826
  year: 1999
  ident: 2024042612525318100_c31
  article-title: SiC recession caused by SiO2 scale volatility under combustion conditions: II, thermodynamics and gaseous-diffusion model
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1999.tb02005.x
– volume: 37
  start-page: 891
  year: 2012
  ident: 2024042612525318100_c19
  article-title: Thermal-barrier coatings for more efficient gas-turbine engines
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2012.232
– volume-title: Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 3: Coal, Biomass, Hydrogen, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems
  year: 2019
  ident: 2024042612525318100_c62
  article-title: Development of a high-pressure hot-corrosion burner rig for testing structural materials following long exposures to Arabian extra light crude oil combustion products
– ident: 2024042612525318100_c63
– volume-title: Future Propulsion Systems and Energy Sources in Sustainable Aviation
  year: 2020
  ident: 2024042612525318100_c4
– ident: 2024042612525318100_c5
  doi: 10.4271/2021-36-0032
– volume: 35
  start-page: 4259
  year: 2015
  ident: 2024042612525318100_c42
  article-title: Mass spectrometric measurements of the silica activity in the Yb2O3–SiO2 system and implications to assess the degradation of silicate-based coatings in combustion environments
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2015.07.019
– volume: 36
  start-page: 1135
  year: 2016
  ident: 2024042612525318100_c38
  article-title: A method for assessing the volatility of oxides in high-temperature high-velocity water vapor
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2015.11.016
– volume: 284
  start-page: 318
  year: 2015
  ident: 2024042612525318100_c73
  article-title: Mechanical properties and real-time damage evaluations of environmental barrier coated SiC/SiC CMCs subjected to tensile loading under thermal gradients
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2015.07.042
– volume: 32
  start-page: 775
  year: 2006
  ident: 2024042612525318100_c80
  article-title: Recession mechanism of Lu2Si2O7 phase in high speed steam jet environment at high temperatures
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2005.05.014
– volume: 40
  start-page: 6236
  year: 2020
  ident: 2024042612525318100_c89
  article-title: An investigation on burner rig testing of environmental barrier coatings for aerospace applications
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.06.016
– volume: 120
  start-page: 322
  year: 1998
  ident: 2024042612525318100_c98
  article-title: Temperature-dependent absorptances of ceramics for Nd:YAG and CO2 laser processing applications
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2824250
– volume-title: Gas Turbine Propulsion Systems
  year: 2011
  ident: 2024042612525318100_c1
– volume: 76
  start-page: 3
  year: 1993
  ident: 2024042612525318100_c28
  article-title: Corrosion of silicon-based ceramics in combustion environments
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1993.tb03684.x
– volume: 87
  start-page: 1701
  year: 2004
  ident: 2024042612525318100_c39
  article-title: Alumina volatility in water vapor at elevated temperatures
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2004.01701.x
– ident: 2024042612525318100_c85
– volume: 49
  start-page: 373
  year: 1998
  ident: 2024042612525318100_c47
  article-title: The long-term, cyclic-oxidation behavior of selected chromia-forming alloys
  publication-title: Oxid. Met.
  doi: 10.1023/a:1018874206733
– volume-title: Pounder’s Marine Diesel Engines and Gas Turbines
  year: 2009
  ident: 2024042612525318100_c2
– volume: 102
  start-page: 202
  year: 1980
  ident: 2024042612525318100_c103
  article-title: Heat transfer characteristics of an obliquely impinging circular jet
  publication-title: J. Heat Transfer
  doi: 10.1115/1.3244261
– ident: 2024042612525318100_c67
  article-title: Development and use of a new burner rig facility to mimic service loading conditions of Ni-based single crystal superalloys
– volume: 97
  start-page: 1959
  year: 2014
  ident: 2024042612525318100_c77
  article-title: Silica activity measurements in the Y2O3–SiO2 system and applications to modeling of coating volatility
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12974
– year: 2013
  ident: 2024042612525318100_c55
SSID ssj0000511
Score 2.4449463
Snippet Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Air cooling
Air jets
Carbon dioxide
Carbon dioxide lasers
Ceramic coatings
Combustion
Cyclic loads
Digital imaging
Engine materials
Environmental testing
Gas flow
Gas jets
Gas turbine engines
Heating
High pressure
High temperature
Hydraulic loading
Laser beam heating
Materials testing
Stresses
Temperature gradients
Test chambers
Test facilities
Thermal imaging
Thermal shock
Water vapor
Title A high temperature engine materials test facility
URI http://dx.doi.org/10.1063/5.0190903
https://www.ncbi.nlm.nih.gov/pubmed/38668693
https://www.proquest.com/docview/3046938052
https://www.proquest.com/docview/3047942813
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7623
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0000511
  issn: 0034-6748
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgewAOFeVRFgoyj0NR5CWxHdc-rnitEK0QtFJvkeM4olKVVt30QH89M2vnUbFIhUsUxdasNZ93PLZnviHkDbjIzuc8Z66UhsH-S7GSC8OsMdLUViqpMd95_0AtjuSX4_x4YN5dZZe05cxdrc0r-R9U4Rvgilmy_4BsLxQ-wDvgC09AGJ43wnieINtwgvRSkRs58St-wQT80DAAaFy2WFUHY2CvXeF-75NWQlIkxgxhaHqLdAqR4CmSN3aVp79d2PKnTRaz4Ri-imfeC_urapKDWfJ5Nj5I4OP4k2gchWRYeyQsDcEeptowsJdibDBDVcw4MeRaOwyODygPGVENHgQNi00fAnixPLlNNjjITidkY_5h_-uPYQXNs1DpMA6oY4RS4l0v8rof8cfm4B65A8oL0Qwjh-HwPtmMnj6dB9i2yC3fPCBb0ZYu6W4k_H77kGRzijjSEY404Eh7HCniSDscH5GjTx8P3y9YLGXBnJC6ZXXN9yrYDAqnwGWtU-1sDpvdDGuFceukl04o7dKy1CrPbGqlrHIwvdym0FYK8ZhMmrPGPyHUVM5z7oWuwTXb09BYeQ92Gfx2reBtSnY7xRSdBrDcyGmxijdQosiLqMMpedV3PQ_kJus67XTaLeLcXxZ4n24ElsOYkpd9M1gmvG6yjT-7XPUBY891BiK2Ayr9r8BQlQYJU_K6h-nvQ3h6o17PyN1hWu-QCfxd_HPwGNvyRZxgvwEu6mdK
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high+temperature+engine+materials+test+facility&rft.jtitle=Review+of+scientific+instruments&rft.au=Shelton%2C+Prabha+H.&rft.au=Wadley%2C+Haydn+N.+G.&rft.date=2024-04-01&rft.issn=0034-6748&rft.eissn=1089-7623&rft.volume=95&rft.issue=4&rft_id=info:doi/10.1063%2F5.0190903&rft.externalDocID=rsi
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon