A strategy based on paraconsistent random forest for sEMG gesture recognition systems robust to contaminated data

Applying machine learning algorithms to physical signals is always challenging since undesirable events can occur when signals are acquired outside a controlled environment. Among several applications, movement recognition through sEMG signals is especially complicated, since they are subject to sev...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 195; p. 110596
Main Authors Favieiro, Gabriela Winkler, Tosin, Maurício Cagliari, Balbinot, Alexandre
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.09.2025
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2025.110596

Cover

Abstract Applying machine learning algorithms to physical signals is always challenging since undesirable events can occur when signals are acquired outside a controlled environment. Among several applications, movement recognition through sEMG signals is especially complicated, since they are subject to several types of contaminants that can degrade the signal. These degradations alter the characteristics of myoelectric signals, hindering the ability of pattern recognition algorithms to discriminate movement classes. In this context, this work presents the Paraconsistent Random Forest method, which combines the advantages of hybrid classifiers, including low susceptibility to noise using a Random Forest approach and the ability of Paraconsistent Logic to deal with non-ideal data. Furthermore, this hybridization of techniques increases the representative power of Decision Trees and their applicability in vague or contradictory contexts. Several experimental procedures were used to analyze the viability and robustness of the method regarding contaminants typical of the surface electromyography field, such as movement artifacts, thermal noise, and loss of electrode-skin contact. The Paraconsistent Random Forest method proved promising for use in contexts where input data degradation occurs, presenting a decrease of less than 20 % in movement prediction compared to traditional methods that showed, in the same situation, decreases of up to 90 %, invalidating the model. All experiments were statistically validated. •Paraconsistent Random Forest classifier is robust to contaminated sEMG data.•The proposed algorithm dispenses a pre-processing stage to deal with noise.•The accuracy decrease under noisy sEMG data is much lower than in traditional methods.•Decrease of less than 20 % in movement prediction at a contaminated scenario.•The proposed method is suitable for myocontroled prostheses application.
AbstractList Applying machine learning algorithms to physical signals is always challenging since undesirable events can occur when signals are acquired outside a controlled environment. Among several applications, movement recognition through sEMG signals is especially complicated, since they are subject to several types of contaminants that can degrade the signal. These degradations alter the characteristics of myoelectric signals, hindering the ability of pattern recognition algorithms to discriminate movement classes. In this context, this work presents the Paraconsistent Random Forest method, which combines the advantages of hybrid classifiers, including low susceptibility to noise using a Random Forest approach and the ability of Paraconsistent Logic to deal with non-ideal data. Furthermore, this hybridization of techniques increases the representative power of Decision Trees and their applicability in vague or contradictory contexts. Several experimental procedures were used to analyze the viability and robustness of the method regarding contaminants typical of the surface electromyography field, such as movement artifacts, thermal noise, and loss of electrode-skin contact. The Paraconsistent Random Forest method proved promising for use in contexts where input data degradation occurs, presenting a decrease of less than 20 % in movement prediction compared to traditional methods that showed, in the same situation, decreases of up to 90 %, invalidating the model. All experiments were statistically validated.
AbstractApplying machine learning algorithms to physical signals is always challenging since undesirable events can occur when signals are acquired outside a controlled environment. Among several applications, movement recognition through sEMG signals is especially complicated, since they are subject to several types of contaminants that can degrade the signal. These degradations alter the characteristics of myoelectric signals, hindering the ability of pattern recognition algorithms to discriminate movement classes. In this context, this work presents the Paraconsistent Random Forest method, which combines the advantages of hybrid classifiers, including low susceptibility to noise using a Random Forest approach and the ability of Paraconsistent Logic to deal with non-ideal data. Furthermore, this hybridization of techniques increases the representative power of Decision Trees and their applicability in vague or contradictory contexts. Several experimental procedures were used to analyze the viability and robustness of the method regarding contaminants typical of the surface electromyography field, such as movement artifacts, thermal noise, and loss of electrode-skin contact. The Paraconsistent Random Forest method proved promising for use in contexts where input data degradation occurs, presenting a decrease of less than 20 % in movement prediction compared to traditional methods that showed, in the same situation, decreases of up to 90 %, invalidating the model. All experiments were statistically validated.
Applying machine learning algorithms to physical signals is always challenging since undesirable events can occur when signals are acquired outside a controlled environment. Among several applications, movement recognition through sEMG signals is especially complicated, since they are subject to several types of contaminants that can degrade the signal. These degradations alter the characteristics of myoelectric signals, hindering the ability of pattern recognition algorithms to discriminate movement classes. In this context, this work presents the Paraconsistent Random Forest method, which combines the advantages of hybrid classifiers, including low susceptibility to noise using a Random Forest approach and the ability of Paraconsistent Logic to deal with non-ideal data. Furthermore, this hybridization of techniques increases the representative power of Decision Trees and their applicability in vague or contradictory contexts. Several experimental procedures were used to analyze the viability and robustness of the method regarding contaminants typical of the surface electromyography field, such as movement artifacts, thermal noise, and loss of electrode-skin contact. The Paraconsistent Random Forest method proved promising for use in contexts where input data degradation occurs, presenting a decrease of less than 20 % in movement prediction compared to traditional methods that showed, in the same situation, decreases of up to 90 %, invalidating the model. All experiments were statistically validated.Applying machine learning algorithms to physical signals is always challenging since undesirable events can occur when signals are acquired outside a controlled environment. Among several applications, movement recognition through sEMG signals is especially complicated, since they are subject to several types of contaminants that can degrade the signal. These degradations alter the characteristics of myoelectric signals, hindering the ability of pattern recognition algorithms to discriminate movement classes. In this context, this work presents the Paraconsistent Random Forest method, which combines the advantages of hybrid classifiers, including low susceptibility to noise using a Random Forest approach and the ability of Paraconsistent Logic to deal with non-ideal data. Furthermore, this hybridization of techniques increases the representative power of Decision Trees and their applicability in vague or contradictory contexts. Several experimental procedures were used to analyze the viability and robustness of the method regarding contaminants typical of the surface electromyography field, such as movement artifacts, thermal noise, and loss of electrode-skin contact. The Paraconsistent Random Forest method proved promising for use in contexts where input data degradation occurs, presenting a decrease of less than 20 % in movement prediction compared to traditional methods that showed, in the same situation, decreases of up to 90 %, invalidating the model. All experiments were statistically validated.
Applying machine learning algorithms to physical signals is always challenging since undesirable events can occur when signals are acquired outside a controlled environment. Among several applications, movement recognition through sEMG signals is especially complicated, since they are subject to several types of contaminants that can degrade the signal. These degradations alter the characteristics of myoelectric signals, hindering the ability of pattern recognition algorithms to discriminate movement classes. In this context, this work presents the Paraconsistent Random Forest method, which combines the advantages of hybrid classifiers, including low susceptibility to noise using a Random Forest approach and the ability of Paraconsistent Logic to deal with non-ideal data. Furthermore, this hybridization of techniques increases the representative power of Decision Trees and their applicability in vague or contradictory contexts. Several experimental procedures were used to analyze the viability and robustness of the method regarding contaminants typical of the surface electromyography field, such as movement artifacts, thermal noise, and loss of electrode-skin contact. The Paraconsistent Random Forest method proved promising for use in contexts where input data degradation occurs, presenting a decrease of less than 20 % in movement prediction compared to traditional methods that showed, in the same situation, decreases of up to 90 %, invalidating the model. All experiments were statistically validated. •Paraconsistent Random Forest classifier is robust to contaminated sEMG data.•The proposed algorithm dispenses a pre-processing stage to deal with noise.•The accuracy decrease under noisy sEMG data is much lower than in traditional methods.•Decrease of less than 20 % in movement prediction at a contaminated scenario.•The proposed method is suitable for myocontroled prostheses application.
ArticleNumber 110596
Author Balbinot, Alexandre
Favieiro, Gabriela Winkler
Tosin, Maurício Cagliari
Author_xml – sequence: 1
  givenname: Gabriela Winkler
  orcidid: 0000-0001-8076-2344
  surname: Favieiro
  fullname: Favieiro, Gabriela Winkler
  email: gabi.favieiro@gmail.com
  organization: Graduate Program of Electrical Engineering (PPGEE), Laboratory of Electro-Electronic Instrumentation (IEE), Federal University of Rio Grande do Sul (UFRGS), Avenue Osvaldo Aranha 103, 206-D, Porto Alegre, RS, Brazil
– sequence: 2
  givenname: Maurício Cagliari
  orcidid: 0000-0002-3409-4039
  surname: Tosin
  fullname: Tosin, Maurício Cagliari
  email: mauricio.tosin@ufrgs.br
  organization: Institute of Physics, Department of Physics, Federal University of Rio Grande do Sul (UFRGS), Avenue Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
– sequence: 3
  givenname: Alexandre
  orcidid: 0000-0003-2649-6123
  surname: Balbinot
  fullname: Balbinot, Alexandre
  email: alexandre.balbinot@ufrgs.br
  organization: Graduate Program of Electrical Engineering (PPGEE), Laboratory of Electro-Electronic Instrumentation (IEE), Federal University of Rio Grande do Sul (UFRGS), Avenue Osvaldo Aranha 103, 206-D, Porto Alegre, RS, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40543273$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv1DAQhS1URLeFv4B85JJl7MRJfEGUqhSkIg7A2bKdycpLYm9tB2n_PQ5bQEJC6mlk6XvPM-9dkDMfPBJCGWwZsPb1fmvDfDAuzDhsOXCxZQyEbJ-QDes7WYGomzOyAWBQNT0X5-QipT0ANFDDM3LegGhq3tUbcn9FU4464-5IjU440ODpQUdtg08uZfSZRu2HMNMxREx5HTTdfLqlu_JaItKINuy8y64o07FI5kRjMEthc6DFJ-vZ-fLFQAed9XPydNRTwhcP85J8e3_z9fpDdff59uP11V1l66bPlbVGtFZiIxHB6H5sdWeYtC3qRtRoR24sFEgKqcF0o-h6MzA7jp1F08uhviSvTr6HGO6XsquaXbI4TdpjWJKqOeeyLSHUBX35gC6mJKoO0c06HtXvmArQnwAbQ0oRxz8IA7U2ovbqbyNqbUSdGinSdycpllt_OIwqWYfe4uBKcFkNwT3G5M0_JnZy3lk9fccjpn1Yoi9ZKqYSV6C-rMWvvXMBIJtfB7z9v8HjdvgJbuzHIw
Cites_doi 10.1016/j.bspc.2014.12.001
10.1016/j.jbiomech.2010.01.027
10.1007/s00521-017-3286-z
10.1109/TIM.2021.3063777
10.1016/j.bspc.2019.04.027
10.3390/s19081864
10.1109/TIM.2014.2317296
10.1016/j.bspc.2024.106886
10.1109/TNSRE.2014.2299573
10.1186/s12984-015-0011-y
10.1109/TNSRE.2014.2328495
10.1109/TBME.2015.2407491
10.1016/j.eswa.2023.121224
10.1682/JRRD.2014.09.0218
10.1016/j.bspc.2023.105235
10.1109/ACCESS.2019.2946256
10.1109/RBME.2022.3164797
10.1023/A:1010933404324
10.1016/j.bspc.2023.105345
10.1186/s12984-024-01398-7
10.1016/j.eswa.2023.122304
10.1038/sdata.2014.53
10.1682/JRRD.2011.03.0055
10.1109/TBME.2003.813539
10.1007/BF00116251
10.3390/s21124219
10.1109/ACCESS.2019.2891350
10.3390/s20061642
10.1186/s12984-017-0284-4
10.1123/jab.13.2.135
10.1016/j.bspc.2018.07.014
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.compbiomed.2025.110596
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 110596
ExternalDocumentID 40543273
10_1016_j_compbiomed_2025_110596
S0010482525009473
1_s2_0_S0010482525009473
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
AFCTW
AGCQF
AGRNS
ALIPV
RIG
AAYXX
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c348t-ccb56c9e49ee0ba8f6a7b19c6ea453ecf2bc0ccb959a0b7f578bd1cff7ceb89d3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Thu Oct 02 22:32:41 EDT 2025
Mon Jul 07 01:54:32 EDT 2025
Wed Oct 01 05:46:16 EDT 2025
Sat Aug 09 17:32:00 EDT 2025
Fri Jul 25 06:37:19 EDT 2025
Tue Oct 14 19:37:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Random forest
Electromyography
Contaminants
Gesture recognition
Paraconsistent logic
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-ccb56c9e49ee0ba8f6a7b19c6ea453ecf2bc0ccb959a0b7f578bd1cff7ceb89d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2649-6123
0000-0001-8076-2344
0000-0002-3409-4039
PMID 40543273
PQID 3222962733
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3222962733
pubmed_primary_40543273
crossref_primary_10_1016_j_compbiomed_2025_110596
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2025_110596
elsevier_clinicalkeyesjournals_1_s2_0_S0010482525009473
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2025_110596
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Breiman (bib33) 2001; 45
Favieiro, Balbinot (bib19) 2019; 7
Nougarou, Campeau-Lecours, Massicotte, Boukadoum, Gosselin, Gosselin (bib2) Aug. 2019; 53
Tosin, Cene, Balbinot (bib3) Aug. 2020
Suganthi, Rajeswari (bib36) Mar. 2024; 46
Bellinello (bib18) 2020
Azhiri, Esmaeili, Jafarzadeh, Nourani (bib15) Sep. 2023; 86
Atzori (bib20) 2014; 1
Atzori (bib21) 2016; 53
Krasoulis, Kyranou, Erden, Nazarpour, Vijayakumar (bib22) Dec. 2017; 14
Cene, Favieiro, Balbinot (bib41) Aug. 2015
Sezgin (bib1) Aug. 2019; 31
Farago, Macisaac, Suk, Chan (bib6) 2022; 16
Teh, Hargrove (bib13) 2021
Asif (bib5) 2020; 20
Da Silva Filho (bib17) Jun. 2021; 21
Englehart, Hudgins (bib30) 2003; 50
Chen, Feng, Lu, Wu (bib11) Sep. 2023; 86
Tosin, Majolo, Chedid, Cene, Balbinot (bib31) Jul. 2017
Samuel (bib40) 2019; 7
Zhang, Huang (bib38) 2015; 12
Pozzo, Farina, Merletti (bib9) 2004
Farrell (bib28) 2011; 48
Moura, Favieiro, Balbinot (bib32) 2016; 2016-Octob
De Luca, Donald Gilmore, Kuznetsov, Roy (bib8) May 2010; 43
McCool, Fraser, Chan, Petropoulakis, Soraghan (bib27) 2014; 22
Ao, Liang, Yan, Hou, Zheng, Ryu (bib12) Mar. 2024; 238
Makaram, Karthick, Swaminathan (bib44) 2021; 70
Reaz, Hussain, Mohd-Yasin (bib7) 2006; 8
Cene, Balbinot (bib39) Sep. 2018; 46
De Luca (bib24) May 1997; 13
Quinlan (bib34) 1986; 1
LTC, 2008.
Atzori (bib23) Jun. 2012
Fan, Jiang, Liu, Meng, Jia, Dai (bib14) Mar. 2024; 237
Fraser, Chan, Green, Macisaac (bib26) 2014; 63
de, De Moura, Balbinot (bib25) 2018; 18
Atzori (bib29) Jan. 2015; 23
Cene, Tosin, Machado, Balbinot (bib4) Apr. 2019; 19
Sarwat, Alkhashab, Song, Jiang, Jia, Shull (bib35) Jun. 2024; 21
Hazar, Faruk Ertuğrul (bib37) Jan. 2025; 99
J. M. Abe, J. I. da S. Filho, and G. L. Torres, Inteligência Artificial Com as Redes De Análises Paraconsistentes, 1
Machado, Cene, Balbinot (bib42) Jul. 2019
Pan, Zhang, Sheng, Zhu (bib43) 2015; 62
McCool, Petropoulakis, Soraghan, Chatlani (bib10) Apr. 2015; 18
Ao (10.1016/j.compbiomed.2025.110596_bib12) 2024; 238
Quinlan (10.1016/j.compbiomed.2025.110596_bib34) 1986; 1
De Luca (10.1016/j.compbiomed.2025.110596_bib8) 2010; 43
McCool (10.1016/j.compbiomed.2025.110596_bib27) 2014; 22
Atzori (10.1016/j.compbiomed.2025.110596_bib23) 2012
Cene (10.1016/j.compbiomed.2025.110596_bib41) 2015
Hazar (10.1016/j.compbiomed.2025.110596_bib37) 2025; 99
Tosin (10.1016/j.compbiomed.2025.110596_bib3) 2020
Moura (10.1016/j.compbiomed.2025.110596_bib32) 2016; 2016-Octob
Azhiri (10.1016/j.compbiomed.2025.110596_bib15) 2023; 86
Breiman (10.1016/j.compbiomed.2025.110596_bib33) 2001; 45
Asif (10.1016/j.compbiomed.2025.110596_bib5) 2020; 20
Da Silva Filho (10.1016/j.compbiomed.2025.110596_bib17) 2021; 21
Pan (10.1016/j.compbiomed.2025.110596_bib43) 2015; 62
Chen (10.1016/j.compbiomed.2025.110596_bib11) 2023; 86
Tosin (10.1016/j.compbiomed.2025.110596_bib31) 2017
Reaz (10.1016/j.compbiomed.2025.110596_bib7) 2006; 8
Krasoulis (10.1016/j.compbiomed.2025.110596_bib22) 2017; 14
Makaram (10.1016/j.compbiomed.2025.110596_bib44) 2021; 70
Farrell (10.1016/j.compbiomed.2025.110596_bib28) 2011; 48
Fraser (10.1016/j.compbiomed.2025.110596_bib26) 2014; 63
10.1016/j.compbiomed.2025.110596_bib16
Englehart (10.1016/j.compbiomed.2025.110596_bib30) 2003; 50
McCool (10.1016/j.compbiomed.2025.110596_bib10) 2015; 18
Zhang (10.1016/j.compbiomed.2025.110596_bib38) 2015; 12
De Luca (10.1016/j.compbiomed.2025.110596_bib24) 1997; 13
Suganthi (10.1016/j.compbiomed.2025.110596_bib36) 2024; 46
Farago (10.1016/j.compbiomed.2025.110596_bib6) 2022; 16
Sarwat (10.1016/j.compbiomed.2025.110596_bib35) 2024; 21
Atzori (10.1016/j.compbiomed.2025.110596_bib29) 2015; 23
Atzori (10.1016/j.compbiomed.2025.110596_bib20) 2014; 1
Samuel (10.1016/j.compbiomed.2025.110596_bib40) 2019; 7
Cene (10.1016/j.compbiomed.2025.110596_bib4) 2019; 19
Atzori (10.1016/j.compbiomed.2025.110596_bib21) 2016; 53
Nougarou (10.1016/j.compbiomed.2025.110596_bib2) 2019; 53
Machado (10.1016/j.compbiomed.2025.110596_bib42) 2019
Pozzo (10.1016/j.compbiomed.2025.110596_bib9) 2004
Favieiro (10.1016/j.compbiomed.2025.110596_bib19) 2019; 7
Fan (10.1016/j.compbiomed.2025.110596_bib14) 2024; 237
Bellinello (10.1016/j.compbiomed.2025.110596_bib18) 2020
Cene (10.1016/j.compbiomed.2025.110596_bib39) 2018; 46
Teh (10.1016/j.compbiomed.2025.110596_bib13) 2021
Sezgin (10.1016/j.compbiomed.2025.110596_bib1) 2019; 31
de (10.1016/j.compbiomed.2025.110596_bib25) 2018; 18
References_xml – volume: 13
  start-page: 135
  year: May 1997
  end-page: 163
  ident: bib24
  article-title: The use of surface electromyography in biomechanics
  publication-title: J. Appl. Biomech.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 8
  ident: bib44
  article-title: Analysis of dynamics of EMG signal variations in fatiguing contractions of muscles using transition network approach
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 21
  start-page: 4219
  year: Jun. 2021
  ident: bib17
  article-title: Paraconsistent annotated logic algorithms applied in management and control of communication network routes
  publication-title: Sensors
– volume: 238
  year: Mar. 2024
  ident: bib12
  article-title: Overcoming the effect of muscle fatigue on gesture recognition based on sEMG via generative adversarial networks
  publication-title: Expert Syst. Appl.
– volume: 23
  start-page: 73
  year: Jan. 2015
  end-page: 83
  ident: bib29
  article-title: Characterization of a benchmark database for myoelectric movement classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 18
  year: 2018
  ident: bib25
  article-title: Virtual sensor of surface electromyography in a new extensive fault-tolerant classification system
  publication-title: Sensors (Switzerland)
– volume: 7
  start-page: 147914
  year: 2019
  end-page: 147927
  ident: bib19
  article-title: Paraconsistent random forest: an alternative approach for dealing with uncertain data
  publication-title: IEEE Access
– start-page: 1148
  year: 2021
  end-page: 1151
  ident: bib13
  article-title: Using latent representations of muscle activation patterns to mitigate myoelectric interface noise
  publication-title: 10th International IEEE/EMBS Conference on Neural Engineering (NER)
– volume: 16
  start-page: 472
  year: 2022
  end-page: 486
  ident: bib6
  article-title: A review of techniques for surface electromyography signal quality analysis
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 21
  start-page: 100
  year: Jun. 2024
  ident: bib35
  article-title: Post-stroke hand gesture recognition via one-shot transfer learning using prototypical networks
  publication-title: J. NeuroEng. Rehabil.
– reference: . LTC, 2008.
– volume: 237
  year: Mar. 2024
  ident: bib14
  article-title: Surface EMG feature disentanglement for robust pattern recognition
  publication-title: Expert Syst. Appl.
– volume: 14
  start-page: 71
  year: Dec. 2017
  ident: bib22
  article-title: Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements
  publication-title: J. NeuroEng. Rehabil.
– start-page: 390
  year: Jul. 2017
  end-page: 393
  ident: bib31
  article-title: sEMG feature selection and classification using SVM-RFE
  publication-title: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib33
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 46
  start-page: 182
  year: Sep. 2018
  end-page: 191
  ident: bib39
  article-title: Using the sEMG signal representativity improvement towards upper-limb movement classification reliability
  publication-title: Biomed. Signal Process Control
– volume: 86
  year: Sep. 2023
  ident: bib11
  article-title: Myoformer: sEMG missing signal recovery for gesture recognition based on multi-channel self-attention mechanism
  publication-title: Biomed. Signal Process Control
– volume: 63
  start-page: 2919
  year: 2014
  end-page: 2930
  ident: bib26
  article-title: Automated biosignal quality analysis for electromyography using a one-class support vector machine
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 48
  start-page: xxi
  year: 2011
  ident: bib28
  article-title: Determining delay created by multifunctional prosthesis controllers
  publication-title: J. Rehabil. Res. Dev.
– volume: 99
  year: Jan. 2025
  ident: bib37
  article-title: Developing a real-time hand exoskeleton system that controlled by a hand gesture recognition system via wireless sensors
  publication-title: Biomed. Signal Process Control
– start-page: 1258
  year: Jun. 2012
  end-page: 1265
  ident: bib23
  article-title: Building the ninapro database: a resource for the biorobotics community
  publication-title: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (Biorob)
– start-page: 363
  year: 2020
  end-page: 370
  ident: bib18
  article-title: Paraconsistent annotated logic (PAL) applied in the decision-making process of maintenance policy for kaplan turbine
  publication-title: 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference
– volume: 86
  year: Sep. 2023
  ident: bib15
  article-title: Raw EMG classification using extreme value machine
  publication-title: Biomed. Signal Process Control
– volume: 50
  start-page: 848
  year: 2003
  end-page: 854
  ident: bib30
  article-title: A robust, real-time control scheme for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 31
  start-page: 3327
  year: Aug. 2019
  end-page: 3337
  ident: bib1
  article-title: A new hand finger movements' classification system based on bicoherence analysis of two-channel surface EMG signals
  publication-title: Neural Comput. Appl.
– start-page: 486
  year: Aug. 2015
  end-page: 489
  ident: bib41
  article-title: Upper-limb movement classification based on sEMG signal validation with continuous channel selection
  publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 53
  year: Aug. 2019
  ident: bib2
  article-title: Pattern recognition based on HD-sEMG spatial features extraction for an efficient proportional control of a robotic arm
  publication-title: Biomed. Signal Process Control
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: bib34
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
– volume: 8
  year: 2006
  ident: bib7
  article-title: Techniques of EMG signal analysis: detection, processing, classification and applications (correction)
  publication-title: Biol. Proced. Online
– start-page: 70
  year: 2004
  end-page: 135
  ident: bib9
  article-title: Electromyography: detection, processing, and applications
  publication-title: Biomedical Technology and Devices Handbook
– volume: 43
  start-page: 1573
  year: May 2010
  end-page: 1579
  ident: bib8
  article-title: Filtering the surface EMG signal: movement artifact and baseline noise contamination
  publication-title: J. Biomech.
– start-page: 3620
  year: Jul. 2019
  end-page: 3623
  ident: bib42
  article-title: Recurrent neural network as estimator for a virtual sEMG channel
  publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 12
  start-page: 18
  year: 2015
  ident: bib38
  article-title: A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition
  publication-title: J. NeuroEng. Rehabil.
– volume: 19
  start-page: 1864
  year: Apr. 2019
  ident: bib4
  article-title: Open database for accurate upper-limb intent detection using electromyography and reliable extreme learning machines
  publication-title: Sensors
– volume: 20
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib5
  article-title: Performance evaluation of convolutional neural network for hand gesture recognition using EMG
  publication-title: Sensors (Switzerland)
– volume: 22
  start-page: 774
  year: 2014
  end-page: 783
  ident: bib27
  article-title: Identification of contaminant type in surface electromyography (EMG) signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 46
  start-page: 7047
  year: Mar. 2024
  end-page: 7059
  ident: bib36
  article-title: Pattern recognition for EMG based forearm orientation and contraction in myoelectric prosthetic hand
  publication-title: J. Intell. Fuzzy Syst.
– reference: J. M. Abe, J. I. da S. Filho, and G. L. Torres, Inteligência Artificial Com as Redes De Análises Paraconsistentes, 1
– volume: 1
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib20
  article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses
  publication-title: Sci. Data
– volume: 62
  year: 2015
  ident: bib43
  article-title: Improving myoelectric control for amputees through transcranial direct current stimulation
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 18
  start-page: 61
  year: Apr. 2015
  end-page: 68
  ident: bib10
  article-title: Improved pattern recognition classification accuracy for surface myoelectric signals using spectral enhancement
  publication-title: Biomed. Signal Process Control
– volume: 53
  start-page: 345
  year: 2016
  end-page: 358
  ident: bib21
  article-title: Effect of clinical parameters on the control of myoelectric robotic prosthetic hands
  publication-title: J. Rehabil. Res. Dev.
– volume: 2016-Octob
  start-page: 788
  year: 2016
  end-page: 791
  ident: bib32
  article-title: Support vectors machine classification of surface electromyography for non-invasive naturally controlled hand prostheses
  publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS
– start-page: 1
  year: Aug. 2020
  end-page: 17
  ident: bib3
  article-title: Statistical feature and channel selection for upper limb classification using sEMG signal processing
  publication-title: Res. Biomed. Eng.
– volume: 7
  start-page: 10150
  year: 2019
  end-page: 10165
  ident: bib40
  article-title: Intelligent EMG pattern recognition control method for upper-limb multifunctional prostheses: advances, current challenges, and future prospects
  publication-title: IEEE Access
– volume: 2016-Octob
  start-page: 788
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110596_bib32
  article-title: Support vectors machine classification of surface electromyography for non-invasive naturally controlled hand prostheses
  publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS
– volume: 18
  start-page: 61
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110596_bib10
  article-title: Improved pattern recognition classification accuracy for surface myoelectric signals using spectral enhancement
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2014.12.001
– start-page: 390
  year: 2017
  ident: 10.1016/j.compbiomed.2025.110596_bib31
  article-title: sEMG feature selection and classification using SVM-RFE
– start-page: 1258
  year: 2012
  ident: 10.1016/j.compbiomed.2025.110596_bib23
  article-title: Building the ninapro database: a resource for the biorobotics community
– start-page: 486
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110596_bib41
  article-title: Upper-limb movement classification based on sEMG signal validation with continuous channel selection
– volume: 43
  start-page: 1573
  issue: 8
  year: 2010
  ident: 10.1016/j.compbiomed.2025.110596_bib8
  article-title: Filtering the surface EMG signal: movement artifact and baseline noise contamination
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.01.027
– ident: 10.1016/j.compbiomed.2025.110596_bib16
– volume: 31
  start-page: 3327
  issue: 8
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110596_bib1
  article-title: A new hand finger movements' classification system based on bicoherence analysis of two-channel surface EMG signals
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3286-z
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110596_bib44
  article-title: Analysis of dynamics of EMG signal variations in fatiguing contractions of muscles using transition network approach
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3063777
– start-page: 363
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110596_bib18
  article-title: Paraconsistent annotated logic (PAL) applied in the decision-making process of maintenance policy for kaplan turbine
– volume: 53
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110596_bib2
  article-title: Pattern recognition based on HD-sEMG spatial features extraction for an efficient proportional control of a robotic arm
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2019.04.027
– start-page: 70
  year: 2004
  ident: 10.1016/j.compbiomed.2025.110596_bib9
  article-title: Electromyography: detection, processing, and applications
– volume: 19
  start-page: 1864
  issue: 8
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110596_bib4
  article-title: Open database for accurate upper-limb intent detection using electromyography and reliable extreme learning machines
  publication-title: Sensors
  doi: 10.3390/s19081864
– volume: 63
  start-page: 2919
  issue: 12
  year: 2014
  ident: 10.1016/j.compbiomed.2025.110596_bib26
  article-title: Automated biosignal quality analysis for electromyography using a one-class support vector machine
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2014.2317296
– volume: 46
  start-page: 7047
  issue: 3
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110596_bib36
  article-title: Pattern recognition for EMG based forearm orientation and contraction in myoelectric prosthetic hand
  publication-title: J. Intell. Fuzzy Syst.
– volume: 8
  issue: 1
  year: 2006
  ident: 10.1016/j.compbiomed.2025.110596_bib7
  article-title: Techniques of EMG signal analysis: detection, processing, classification and applications (correction)
  publication-title: Biol. Proced. Online
– volume: 99
  year: 2025
  ident: 10.1016/j.compbiomed.2025.110596_bib37
  article-title: Developing a real-time hand exoskeleton system that controlled by a hand gesture recognition system via wireless sensors
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2024.106886
– volume: 22
  start-page: 774
  issue: 4
  year: 2014
  ident: 10.1016/j.compbiomed.2025.110596_bib27
  article-title: Identification of contaminant type in surface electromyography (EMG) signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2299573
– volume: 12
  start-page: 18
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110596_bib38
  article-title: A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-015-0011-y
– volume: 23
  start-page: 73
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110596_bib29
  article-title: Characterization of a benchmark database for myoelectric movement classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2328495
– volume: 62
  issue: 8
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110596_bib43
  article-title: Improving myoelectric control for amputees through transcranial direct current stimulation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2407491
– volume: 237
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110596_bib14
  article-title: Surface EMG feature disentanglement for robust pattern recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121224
– volume: 53
  start-page: 345
  issue: 3
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110596_bib21
  article-title: Effect of clinical parameters on the control of myoelectric robotic prosthetic hands
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2014.09.0218
– volume: 86
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110596_bib11
  article-title: Myoformer: sEMG missing signal recovery for gesture recognition based on multi-channel self-attention mechanism
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2023.105235
– volume: 7
  start-page: 147914
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110596_bib19
  article-title: Paraconsistent random forest: an alternative approach for dealing with uncertain data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2946256
– volume: 16
  start-page: 472
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110596_bib6
  article-title: A review of techniques for surface electromyography signal quality analysis
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2022.3164797
– start-page: 1148
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110596_bib13
  article-title: Using latent representations of muscle activation patterns to mitigate myoelectric interface noise
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.compbiomed.2025.110596_bib33
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 86
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110596_bib15
  article-title: Raw EMG classification using extreme value machine
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2023.105345
– volume: 21
  start-page: 100
  issue: 1
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110596_bib35
  article-title: Post-stroke hand gesture recognition via one-shot transfer learning using prototypical networks
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-024-01398-7
– volume: 238
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110596_bib12
  article-title: Overcoming the effect of muscle fatigue on gesture recognition based on sEMG via generative adversarial networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122304
– volume: 1
  start-page: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2025.110596_bib20
  article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses
  publication-title: Sci. Data
  doi: 10.1038/sdata.2014.53
– start-page: 3620
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110596_bib42
  article-title: Recurrent neural network as estimator for a virtual sEMG channel
– volume: 48
  start-page: xxi
  issue: 6
  year: 2011
  ident: 10.1016/j.compbiomed.2025.110596_bib28
  article-title: Determining delay created by multifunctional prosthesis controllers
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2011.03.0055
– volume: 50
  start-page: 848
  issue: 7
  year: 2003
  ident: 10.1016/j.compbiomed.2025.110596_bib30
  article-title: A robust, real-time control scheme for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.813539
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 10.1016/j.compbiomed.2025.110596_bib34
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116251
– start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110596_bib3
  article-title: Statistical feature and channel selection for upper limb classification using sEMG signal processing
  publication-title: Res. Biomed. Eng.
– volume: 21
  start-page: 4219
  issue: 12
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110596_bib17
  article-title: Paraconsistent annotated logic algorithms applied in management and control of communication network routes
  publication-title: Sensors
  doi: 10.3390/s21124219
– volume: 7
  start-page: 10150
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110596_bib40
  article-title: Intelligent EMG pattern recognition control method for upper-limb multifunctional prostheses: advances, current challenges, and future prospects
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891350
– volume: 20
  start-page: 1
  issue: 6
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110596_bib5
  article-title: Performance evaluation of convolutional neural network for hand gesture recognition using EMG
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s20061642
– volume: 14
  start-page: 71
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2025.110596_bib22
  article-title: Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-017-0284-4
– volume: 13
  start-page: 135
  issue: 2
  year: 1997
  ident: 10.1016/j.compbiomed.2025.110596_bib24
  article-title: The use of surface electromyography in biomechanics
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.13.2.135
– volume: 46
  start-page: 182
  year: 2018
  ident: 10.1016/j.compbiomed.2025.110596_bib39
  article-title: Using the sEMG signal representativity improvement towards upper-limb movement classification reliability
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2018.07.014
– volume: 18
  issue: 5
  year: 2018
  ident: 10.1016/j.compbiomed.2025.110596_bib25
  article-title: Virtual sensor of surface electromyography in a new extensive fault-tolerant classification system
  publication-title: Sensors (Switzerland)
SSID ssj0004030
Score 2.421816
Snippet Applying machine learning algorithms to physical signals is always challenging since undesirable events can occur when signals are acquired outside a...
AbstractApplying machine learning algorithms to physical signals is always challenging since undesirable events can occur when signals are acquired outside a...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 110596
SubjectTerms Adult
Algorithms
Contaminants
Electromyography
Electromyography - methods
Female
Gesture recognition
Gestures
Humans
Internal Medicine
Machine Learning
Male
Movement - physiology
Other
Paraconsistent logic
Pattern Recognition, Automated - methods
Random Forest
Signal Processing, Computer-Assisted
Title A strategy based on paraconsistent random forest for sEMG gesture recognition systems robust to contaminated data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482525009473
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482525009473
https://dx.doi.org/10.1016/j.compbiomed.2025.110596
https://www.ncbi.nlm.nih.gov/pubmed/40543273
https://www.proquest.com/docview/3222962733
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250903
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhgdJLSfrcNAkK9OrGD8mW6GkJ2WwSNqcGchPSWIIUaqdr76GX_vbOrOwNJQkEerHxWoOWecv6ZsTYFwUu1U6KxGbaJxhvIdEC8qQGqOuiUqXw9EF_cV3Ob8TlrbzdYqdjLQzBKgffH3362lsPv5wM3Dy5v7ujGl9cSuACB4M4rlEq6vgpREWnGHz98wDzEGkRy1DQ39DoAc0TMV4E245l7rhSzCVh4iW17386RD2Xgq5D0WyXvRlySD6Nf3OPbfnmLXu1GHbJ37FfU97FprO_OUWpmrcNpx7fQGhYFGvTcwxRdfuTY8qKM9GNd2eLc067Taul5xtcEVLGZs8dX7ZuhWP7lhO-3RKGBtNVThjT9-xmdvb9dJ4MRyskUAjVJwBOlqC90N6nzqpQ2splGkpvhSw8hNxBioO01DZ1VUC7dnUGIVTgndJ18YFtN23jPzEeXAUySKuUr4UIwVGPPquVzjPUDvATlo3cNPexg4YZoWU_zIMEDEnARAlMmB7ZbsYKUfRpBt38C2irp2h9NxhnZzLT5SY1jxRowr5tKP_RwRfOezzqh0ETpX0X2_h21RnazKIzjgqc4WNUnA0nMF8WBb7a_6-5P7PX9BSxbwdsu1-u_CEmS707WlsDXtXs_IjtTC-u5td_Aa8KGXA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIgEXxLMs5WEkrqF52EksTlXVskC3p1bqzbIntlQkknaTPXDhtzOzTrZCLVIlTpFiW47G88x8Mwb4WKNLtVMysZn2CdlbTLTEPGkQm6ao6lJ6_qG_OCnnZ_LbuTrfgoOpFoZhlaPujzp9ra3HN3sjNfcuLy64xpdCCQpwyIhTjFIV9-C-VHnFEdin39c4D5kWsQ6FFA5PH-E8EeTFuO1Y506hYq4YFK-4f__tNupfPujaFh09gcejEyn243c-hS3fPoMHizFN_hyu9kUfu87-EmymGtG1gpt8I8Nh6VzbQZCNarqfgnxW2okfoj9cfBGcblotvdgAi2hl7Pbci2XnVjR36AQD3C2DaMhfFQwyfQFnR4enB_NkvFshwULWQ4LoVInaS-196mwdSlu5TGPprVSFx5A7TGmSVtqmrgok2K7JMIQKvat1U7yE7bZr_SsQwVWogrJ17RspQ3DcpM_qWucZsQf6GWQTNc1lbKFhJmzZD3N9AoZPwMQTmIGeyG6mElFSaob0_B3WVret9f0onb3JTJ-b1NzgoBl83qz8iwnvuO-HiT8MySgnXmzru1VvOJvFlxwVtMNOZJwNJchhlgUNvf6vvd_Dw_np4tgcfz35vguPeCQC4d7A9rBc-bfkOQ3u3Voy_gBppRof
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+strategy+based+on+paraconsistent+random+forest+for+sEMG+gesture+recognition+systems+robust+to+contaminated+data&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Favieiro%2C+Gabriela+Winkler&rft.au=Tosin%2C+Maur%C3%ADcio+Cagliari&rft.au=Balbinot%2C+Alexandre&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=195&rft_id=info:doi/10.1016%2Fj.compbiomed.2025.110596&rft.externalDocID=S0010482525009473
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482525X00111%2Fcov150h.gif