The geometry and motion of reaction-diffusion waves on closed two-dimensional manifolds

Chemical or biological systems modelled by reaction diffusion (R.D.) equations which support simple one-dimensional travelling waves (oscillatory or otherwise) may be expected to produce intricate two- or three-dimensional spatial patterns, either stationary or subject to certain motion. Such struct...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical biology Vol. 25; no. 6; pp. 597 - 610
Main Authors Grindrod, Peter, Gomatam, Jagannathan
Format Journal Article
LanguageEnglish
Published Germany 01.12.1987
Subjects
Online AccessGet full text
ISSN0303-6812
1432-1416
DOI10.1007/BF00275496

Cover

Abstract Chemical or biological systems modelled by reaction diffusion (R.D.) equations which support simple one-dimensional travelling waves (oscillatory or otherwise) may be expected to produce intricate two- or three-dimensional spatial patterns, either stationary or subject to certain motion. Such structures have been observed experimentally. Asymptotic considerations applied to a general class of such systems lead to fundamental restrictions on the existence and geometrical form of possible structures. As a consequence of the geometrical setting, it is a straightforward matter to consider the propagation of waves on closed two-dimensional manifolds. We derive a fundamental equation for R.D. wave propagation on surfaces and discuss its significance. We consider the existence and propagation of rotationally symmetric and double spiral waves on the sphere and on the torus.
AbstractList Chemical or biological systems modelled by reaction diffusion (R.D.) equations which support simple one-dimensional travelling waves (oscillatory or otherwise) may be expected to produce intricate two- or three-dimensional spatial patterns, either stationary or subject to certain motion. Such structures have been observed experimentally. Asymptotic considerations applied to a general class of such systems lead to fundamental restrictions on the existence and geometrical form of possible structures. As a consequence of the geometrical setting, it is a straightforward matter to consider the propagation of waves on closed two-dimensional manifolds. We derive a fundamental equation for R.D. wave propagation on surfaces and discuss its significance. We consider the existence and propagation of rotationally symmetric and double spiral waves on the sphere and on the torus.
Chemical or biological systems modelled by reaction diffusion (R.D.) equations which support simple one-dimensional travelling waves (oscillatory or otherwise) may be expected to produce intricate two- or three-dimensional spatial patterns, either stationary or subject to certain motion. Such structures have been observed experimentally. Asymptotic considerations applied to a general class of such systems lead to fundamental restrictions on the existence and geometrical form of possible structures. As a consequence of the geometrical setting, it is a straightforward matter to consider the propagation of waves on closed two-dimensional manifolds. We derive a fundamental equation for R.D. wave propagation on surfaces and discuss its significance. We consider the existence and propagation of rotationally symmetric and double spiral waves on the sphere and on the torus.Chemical or biological systems modelled by reaction diffusion (R.D.) equations which support simple one-dimensional travelling waves (oscillatory or otherwise) may be expected to produce intricate two- or three-dimensional spatial patterns, either stationary or subject to certain motion. Such structures have been observed experimentally. Asymptotic considerations applied to a general class of such systems lead to fundamental restrictions on the existence and geometrical form of possible structures. As a consequence of the geometrical setting, it is a straightforward matter to consider the propagation of waves on closed two-dimensional manifolds. We derive a fundamental equation for R.D. wave propagation on surfaces and discuss its significance. We consider the existence and propagation of rotationally symmetric and double spiral waves on the sphere and on the torus.
Author Grindrod, Peter
Gomatam, Jagannathan
Author_xml – sequence: 1
  givenname: Peter
  surname: Grindrod
  fullname: Grindrod, Peter
– sequence: 2
  givenname: Jagannathan
  surname: Gomatam
  fullname: Gomatam, Jagannathan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/3437227$$D View this record in MEDLINE/PubMed
BookMark eNptUE1LAzEQDaLUtnrxLuTkQVhNNmmSPWqxKhS8FDyGfEx0ZXdTN1tL_727tCKIzGEe8z5g3gQdN7EBhC4ouaGEyNv7BSG5nPFCHKEx5SzPKKfiGI0JIywTiuanaJLSByFUzgo6QiPGmcxzOUavq3fAbxBr6NodNo3HdezK2OAYcAvGDTjzZQibNFy35gsS7oGrYgKPu23s2RqagTUVrk1Thlj5dIZOgqkSnB_2FK0WD6v5U7Z8eXye3y0zx7jqMmcsIQEkZz6wQngxE7mh0ngFqhA2OKGkIJawnBa2UMoG7oOlVIneHyyboqt97LqNnxtIna7L5KCqTANxk7SUBe-H9MLLg3Bja_B63Za1aXf6UETPkz3v2phSC0G7sjPD911rykpTooeq9W_VveX6j-Un9B_xN6cDfm4
CitedBy_id crossref_primary_10_1137_140969488
crossref_primary_10_1098_rspa_1991_0040
crossref_primary_10_1098_rspa_2002_0997
crossref_primary_10_1016_0960_0779_95_95764_I
crossref_primary_10_1016_j_cnsns_2004_08_003
crossref_primary_10_1007_BF02065361
crossref_primary_10_1016_0960_0779_95_95763_H
crossref_primary_10_1063_1_2346237
crossref_primary_10_31857_S0040357124020135
crossref_primary_10_1137_1032001
crossref_primary_10_1063_1_1406537
crossref_primary_10_1007_BF00163143
crossref_primary_10_1103_PhysRevE_54_4338
crossref_primary_10_1021_jp952512j
crossref_primary_10_1038_339609a0
crossref_primary_10_1007_BF00275497
crossref_primary_10_1016_0025_5564_90_90020_Y
crossref_primary_10_1098_rspa_1995_0035
crossref_primary_10_1016_0167_2789_90_90101_T
crossref_primary_10_1098_rspa_1996_0147
crossref_primary_10_1002_ange_201808750
crossref_primary_10_1016_0167_2789_91_90197_H
crossref_primary_10_1103_PhysRevLett_78_745
crossref_primary_10_1016_j_amc_2013_09_027
crossref_primary_10_1098_rspa_1996_0021
crossref_primary_10_1103_PhysRevE_56_3913
crossref_primary_10_1016_j_cnsns_2019_104930
crossref_primary_10_1016_S0167_2789_98_00182_1
crossref_primary_10_1002_anie_201808750
crossref_primary_10_1143_JPSJ_64_1501
crossref_primary_10_1016_j_cam_2004_12_027
crossref_primary_10_1016_0167_2789_95_00213_8
Cites_doi 10.1007/978-1-4684-0152-3
10.1109/JRPROC.1962.288235
10.1137/0146062
10.1007/978-3-662-22492-2
10.1016/0022-0396(77)90116-4
10.1007/BFb0089647
10.1007/978-3-642-93046-1
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1007/BF00275496
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Chemistry
Mathematics
EISSN 1432-1416
EndPage 610
ExternalDocumentID 3437227
10_1007_BF00275496
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-Y2
-~C
-~X
.86
06D
0R~
0VY
186
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDPE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
CITATION
COF
CS3
CSCUP
D0L
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LK8
LLZTM
M1P
M4Y
M7P
M7S
MA-
MQGED
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
PUEGO
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WJK
WK6
WK8
YLTOR
YQT
Z45
ZMTXR
ZWQNP
ZXP
~EX
~KM
-52
-5D
-5G
-BR
-EM
3V.
88A
ADINQ
ALIPV
CGR
CUY
CVF
ECM
EIF
GQ6
M0L
NPM
RIG
Z7U
7X8
ID FETCH-LOGICAL-c348t-cab00fe743df396d6562a17ad8e896bfc68760b03219b988bf4dfb1186c34fb3
ISSN 0303-6812
IngestDate Thu Sep 04 19:16:39 EDT 2025
Wed Feb 19 01:08:17 EST 2025
Wed Oct 01 02:44:33 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://www.springer.com/tdm
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-cab00fe743df396d6562a17ad8e896bfc68760b03219b988bf4dfb1186c34fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 3437227
PQID 77949490
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_77949490
pubmed_primary_3437227
crossref_citationtrail_10_1007_BF00275496
crossref_primary_10_1007_BF00275496
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1987-12-00
PublicationDateYYYYMMDD 1987-12-01
PublicationDate_xml – month: 12
  year: 1987
  text: 1987-12-00
PublicationDecade 1980
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Journal of mathematical biology
PublicationTitleAlternate J Math Biol
PublicationYear 1987
References CR2
D. Henry (CR4) 1981
J. J. Tyson (CR11) 1976
J. D. Murray (CR7) 1977
J. Smoller (CR10) 1983
A. T. Winfree (CR12) 1980
P. S. Gradsteyn (CR3) 1980
CR14
J. Norbury (CR9) 1985
J. P. Keener (CR5) 1986; 46
D. G. Aronson (CR1) 1975
J. Nagumo (CR8) 1962; 50
J. P. Keener (CR6) 1986; 21D
A. T. Winfree (CR13) 1984; 13D
References_xml – volume-title: Shock waves and reaction-difiusion equations
  year: 1983
  ident: CR10
  doi: 10.1007/978-1-4684-0152-3
– volume-title: Free boundary problems: application and theory, vol. IV
  year: 1985
  ident: CR9
– volume-title: Partial differential equations and related topics. Lect. Notes Math., vol. 446
  year: 1975
  ident: CR1
– volume: 50
  start-page: 2061
  year: 1962
  ident: CR8
  publication-title: Proc. IRE
  doi: 10.1109/JRPROC.1962.288235
– ident: CR14
– volume: 46
  start-page: 1039
  year: 1986
  ident: CR5
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0146062
– volume-title: Tables of integrals, series and products
  year: 1980
  ident: CR3
– volume: 21D
  start-page: 307
  year: 1986
  ident: CR6
  publication-title: Physica
– volume-title: The geometry of biological time
  year: 1980
  ident: CR12
  doi: 10.1007/978-3-662-22492-2
– volume: 13D
  start-page: 221
  year: 1984
  ident: CR13
  publication-title: Physica
– ident: CR2
  doi: 10.1016/0022-0396(77)90116-4
– volume-title: Geometric theory of semilinear parabolic equations
  year: 1981
  ident: CR4
  doi: 10.1007/BFb0089647
– volume-title: Lecture notes on nonlinear differential equation models in biology
  year: 1977
  ident: CR7
– volume-title: The Belousov-Zhabotinsky reaction
  year: 1976
  ident: CR11
  doi: 10.1007/978-3-642-93046-1
SSID ssj0017591
Score 1.3928733
Snippet Chemical or biological systems modelled by reaction diffusion (R.D.) equations which support simple one-dimensional travelling waves (oscillatory or otherwise)...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 597
SubjectTerms Chemical Phenomena
Chemistry
Mathematics
Models, Biological
Models, Theoretical
Title The geometry and motion of reaction-diffusion waves on closed two-dimensional manifolds
URI https://www.ncbi.nlm.nih.gov/pubmed/3437227
https://www.proquest.com/docview/77949490
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1416
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017591
  issn: 0303-6812
  databaseCode: AFBBN
  dateStart: 19740501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZbymAvY-tWmu6XYHsZRcORZdl-bMfaUlifMta3IMtSGSR2aR3K-tf3zifbbZNCOwJGcSwn0X05XaT7vmPsq43itJTGCpP7RCjnoJV4JQqIPqzGdHeFROFfJ_rotzo-TU4HCkHLLmmK7_Z6La_kf6wK58CuyJJ9gmX7m8IJaIN94QgWhuOjbXzm6oVrLkhGiWryYAAIsWDLWBBYAWWJS2K7V6ZVmK127by-hDizuarh1QVmsLfLgaiE4es5MX_XBKyLXuEVngfxpiF95y8qH5QrKb-HNfQIVGxzZipaqx_WGnA14lbeRuBYRbFAxTKaPchlqliKiSLGZOdTicwcsHPbQSaUjRvmWk0prStuPOqS03FTVeVrtLLvzWF9ZmGnwjz0fc42ZKq1HLGNvYP9_ZN-jylNqJ5i953uiteG3nfDlQf-g7SxyPQ1exVswvcIEW_YM1dtshdUVvTfW_YHcME7XHDABSdc8NrzVVzwFhccGoQLfg8XvMfFOzY9-Dn9cSRCAQ1hY5U1whpwqt5BkFj6ONclxO7STFJTZi7LdeGthrkwKqIYpq0izzJM2vTwK8009PdFvMVGVV25bcaVsUZOvJLIXFZyYlTmZQlDmHkDn1uN2bdumGY2iMtjjZP5bNUgY_alv_acJFXWXvW5G-0ZeDzcxjKVq5eXsxSmEHhEY7ZFRujvEuMmtEx3HvUG79nLAeIf2Ki5WLqPEGA2xaeAlBs0wHyX
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+geometry+and+motion+of+reaction-diffusion+waves+on+closed+two-dimensional+manifolds&rft.jtitle=Journal+of+mathematical+biology&rft.au=Grindrod%2C+Peter&rft.au=Gomatam%2C+Jagannathan&rft.date=1987-12-01&rft.issn=0303-6812&rft.eissn=1432-1416&rft.volume=25&rft.issue=6&rft.spage=597&rft.epage=610&rft_id=info:doi/10.1007%2FBF00275496&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_BF00275496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6812&client=summon