The geometry and motion of reaction-diffusion waves on closed two-dimensional manifolds
Chemical or biological systems modelled by reaction diffusion (R.D.) equations which support simple one-dimensional travelling waves (oscillatory or otherwise) may be expected to produce intricate two- or three-dimensional spatial patterns, either stationary or subject to certain motion. Such struct...
Saved in:
Published in | Journal of mathematical biology Vol. 25; no. 6; pp. 597 - 610 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
01.12.1987
|
Subjects | |
Online Access | Get full text |
ISSN | 0303-6812 1432-1416 |
DOI | 10.1007/BF00275496 |
Cover
Abstract | Chemical or biological systems modelled by reaction diffusion (R.D.) equations which support simple one-dimensional travelling waves (oscillatory or otherwise) may be expected to produce intricate two- or three-dimensional spatial patterns, either stationary or subject to certain motion. Such structures have been observed experimentally. Asymptotic considerations applied to a general class of such systems lead to fundamental restrictions on the existence and geometrical form of possible structures. As a consequence of the geometrical setting, it is a straightforward matter to consider the propagation of waves on closed two-dimensional manifolds. We derive a fundamental equation for R.D. wave propagation on surfaces and discuss its significance. We consider the existence and propagation of rotationally symmetric and double spiral waves on the sphere and on the torus. |
---|---|
AbstractList | Chemical or biological systems modelled by reaction diffusion (R.D.) equations which support simple one-dimensional travelling waves (oscillatory or otherwise) may be expected to produce intricate two- or three-dimensional spatial patterns, either stationary or subject to certain motion. Such structures have been observed experimentally. Asymptotic considerations applied to a general class of such systems lead to fundamental restrictions on the existence and geometrical form of possible structures. As a consequence of the geometrical setting, it is a straightforward matter to consider the propagation of waves on closed two-dimensional manifolds. We derive a fundamental equation for R.D. wave propagation on surfaces and discuss its significance. We consider the existence and propagation of rotationally symmetric and double spiral waves on the sphere and on the torus. Chemical or biological systems modelled by reaction diffusion (R.D.) equations which support simple one-dimensional travelling waves (oscillatory or otherwise) may be expected to produce intricate two- or three-dimensional spatial patterns, either stationary or subject to certain motion. Such structures have been observed experimentally. Asymptotic considerations applied to a general class of such systems lead to fundamental restrictions on the existence and geometrical form of possible structures. As a consequence of the geometrical setting, it is a straightforward matter to consider the propagation of waves on closed two-dimensional manifolds. We derive a fundamental equation for R.D. wave propagation on surfaces and discuss its significance. We consider the existence and propagation of rotationally symmetric and double spiral waves on the sphere and on the torus.Chemical or biological systems modelled by reaction diffusion (R.D.) equations which support simple one-dimensional travelling waves (oscillatory or otherwise) may be expected to produce intricate two- or three-dimensional spatial patterns, either stationary or subject to certain motion. Such structures have been observed experimentally. Asymptotic considerations applied to a general class of such systems lead to fundamental restrictions on the existence and geometrical form of possible structures. As a consequence of the geometrical setting, it is a straightforward matter to consider the propagation of waves on closed two-dimensional manifolds. We derive a fundamental equation for R.D. wave propagation on surfaces and discuss its significance. We consider the existence and propagation of rotationally symmetric and double spiral waves on the sphere and on the torus. |
Author | Grindrod, Peter Gomatam, Jagannathan |
Author_xml | – sequence: 1 givenname: Peter surname: Grindrod fullname: Grindrod, Peter – sequence: 2 givenname: Jagannathan surname: Gomatam fullname: Gomatam, Jagannathan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/3437227$$D View this record in MEDLINE/PubMed |
BookMark | eNptUE1LAzEQDaLUtnrxLuTkQVhNNmmSPWqxKhS8FDyGfEx0ZXdTN1tL_727tCKIzGEe8z5g3gQdN7EBhC4ouaGEyNv7BSG5nPFCHKEx5SzPKKfiGI0JIywTiuanaJLSByFUzgo6QiPGmcxzOUavq3fAbxBr6NodNo3HdezK2OAYcAvGDTjzZQibNFy35gsS7oGrYgKPu23s2RqagTUVrk1Thlj5dIZOgqkSnB_2FK0WD6v5U7Z8eXye3y0zx7jqMmcsIQEkZz6wQngxE7mh0ngFqhA2OKGkIJawnBa2UMoG7oOlVIneHyyboqt97LqNnxtIna7L5KCqTANxk7SUBe-H9MLLg3Bja_B63Za1aXf6UETPkz3v2phSC0G7sjPD911rykpTooeq9W_VveX6j-Un9B_xN6cDfm4 |
CitedBy_id | crossref_primary_10_1137_140969488 crossref_primary_10_1098_rspa_1991_0040 crossref_primary_10_1098_rspa_2002_0997 crossref_primary_10_1016_0960_0779_95_95764_I crossref_primary_10_1016_j_cnsns_2004_08_003 crossref_primary_10_1007_BF02065361 crossref_primary_10_1016_0960_0779_95_95763_H crossref_primary_10_1063_1_2346237 crossref_primary_10_31857_S0040357124020135 crossref_primary_10_1137_1032001 crossref_primary_10_1063_1_1406537 crossref_primary_10_1007_BF00163143 crossref_primary_10_1103_PhysRevE_54_4338 crossref_primary_10_1021_jp952512j crossref_primary_10_1038_339609a0 crossref_primary_10_1007_BF00275497 crossref_primary_10_1016_0025_5564_90_90020_Y crossref_primary_10_1098_rspa_1995_0035 crossref_primary_10_1016_0167_2789_90_90101_T crossref_primary_10_1098_rspa_1996_0147 crossref_primary_10_1002_ange_201808750 crossref_primary_10_1016_0167_2789_91_90197_H crossref_primary_10_1103_PhysRevLett_78_745 crossref_primary_10_1016_j_amc_2013_09_027 crossref_primary_10_1098_rspa_1996_0021 crossref_primary_10_1103_PhysRevE_56_3913 crossref_primary_10_1016_j_cnsns_2019_104930 crossref_primary_10_1016_S0167_2789_98_00182_1 crossref_primary_10_1002_anie_201808750 crossref_primary_10_1143_JPSJ_64_1501 crossref_primary_10_1016_j_cam_2004_12_027 crossref_primary_10_1016_0167_2789_95_00213_8 |
Cites_doi | 10.1007/978-1-4684-0152-3 10.1109/JRPROC.1962.288235 10.1137/0146062 10.1007/978-3-662-22492-2 10.1016/0022-0396(77)90116-4 10.1007/BFb0089647 10.1007/978-3-642-93046-1 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1007/BF00275496 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Chemistry Mathematics |
EISSN | 1432-1416 |
EndPage | 610 |
ExternalDocumentID | 3437227 10_1007_BF00275496 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -Y2 -~C -~X .86 06D 0R~ 0VY 186 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 3SX 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDPE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACZOJ ADBBV ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU CITATION COF CS3 CSCUP D0L DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LK8 LLZTM M1P M4Y M7P M7S MA- MQGED MVM N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PT4 PT5 PTHSS PUEGO Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WJK WK6 WK8 YLTOR YQT Z45 ZMTXR ZWQNP ZXP ~EX ~KM -52 -5D -5G -BR -EM 3V. 88A ADINQ ALIPV CGR CUY CVF ECM EIF GQ6 M0L NPM RIG Z7U 7X8 |
ID | FETCH-LOGICAL-c348t-cab00fe743df396d6562a17ad8e896bfc68760b03219b988bf4dfb1186c34fb3 |
ISSN | 0303-6812 |
IngestDate | Thu Sep 04 19:16:39 EDT 2025 Wed Feb 19 01:08:17 EST 2025 Wed Oct 01 02:44:33 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c348t-cab00fe743df396d6562a17ad8e896bfc68760b03219b988bf4dfb1186c34fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 3437227 |
PQID | 77949490 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_77949490 pubmed_primary_3437227 crossref_citationtrail_10_1007_BF00275496 crossref_primary_10_1007_BF00275496 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1987-12-00 |
PublicationDateYYYYMMDD | 1987-12-01 |
PublicationDate_xml | – month: 12 year: 1987 text: 1987-12-00 |
PublicationDecade | 1980 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Journal of mathematical biology |
PublicationTitleAlternate | J Math Biol |
PublicationYear | 1987 |
References | CR2 D. Henry (CR4) 1981 J. J. Tyson (CR11) 1976 J. D. Murray (CR7) 1977 J. Smoller (CR10) 1983 A. T. Winfree (CR12) 1980 P. S. Gradsteyn (CR3) 1980 CR14 J. Norbury (CR9) 1985 J. P. Keener (CR5) 1986; 46 D. G. Aronson (CR1) 1975 J. Nagumo (CR8) 1962; 50 J. P. Keener (CR6) 1986; 21D A. T. Winfree (CR13) 1984; 13D |
References_xml | – volume-title: Shock waves and reaction-difiusion equations year: 1983 ident: CR10 doi: 10.1007/978-1-4684-0152-3 – volume-title: Free boundary problems: application and theory, vol. IV year: 1985 ident: CR9 – volume-title: Partial differential equations and related topics. Lect. Notes Math., vol. 446 year: 1975 ident: CR1 – volume: 50 start-page: 2061 year: 1962 ident: CR8 publication-title: Proc. IRE doi: 10.1109/JRPROC.1962.288235 – ident: CR14 – volume: 46 start-page: 1039 year: 1986 ident: CR5 publication-title: SIAM J. Appl. Math. doi: 10.1137/0146062 – volume-title: Tables of integrals, series and products year: 1980 ident: CR3 – volume: 21D start-page: 307 year: 1986 ident: CR6 publication-title: Physica – volume-title: The geometry of biological time year: 1980 ident: CR12 doi: 10.1007/978-3-662-22492-2 – volume: 13D start-page: 221 year: 1984 ident: CR13 publication-title: Physica – ident: CR2 doi: 10.1016/0022-0396(77)90116-4 – volume-title: Geometric theory of semilinear parabolic equations year: 1981 ident: CR4 doi: 10.1007/BFb0089647 – volume-title: Lecture notes on nonlinear differential equation models in biology year: 1977 ident: CR7 – volume-title: The Belousov-Zhabotinsky reaction year: 1976 ident: CR11 doi: 10.1007/978-3-642-93046-1 |
SSID | ssj0017591 |
Score | 1.3928733 |
Snippet | Chemical or biological systems modelled by reaction diffusion (R.D.) equations which support simple one-dimensional travelling waves (oscillatory or otherwise)... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 597 |
SubjectTerms | Chemical Phenomena Chemistry Mathematics Models, Biological Models, Theoretical |
Title | The geometry and motion of reaction-diffusion waves on closed two-dimensional manifolds |
URI | https://www.ncbi.nlm.nih.gov/pubmed/3437227 https://www.proquest.com/docview/77949490 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1416 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017591 issn: 0303-6812 databaseCode: AFBBN dateStart: 19740501 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZbymAvY-tWmu6XYHsZRcORZdl-bMfaUlifMta3IMtSGSR2aR3K-tf3zifbbZNCOwJGcSwn0X05XaT7vmPsq43itJTGCpP7RCjnoJV4JQqIPqzGdHeFROFfJ_rotzo-TU4HCkHLLmmK7_Z6La_kf6wK58CuyJJ9gmX7m8IJaIN94QgWhuOjbXzm6oVrLkhGiWryYAAIsWDLWBBYAWWJS2K7V6ZVmK127by-hDizuarh1QVmsLfLgaiE4es5MX_XBKyLXuEVngfxpiF95y8qH5QrKb-HNfQIVGxzZipaqx_WGnA14lbeRuBYRbFAxTKaPchlqliKiSLGZOdTicwcsHPbQSaUjRvmWk0prStuPOqS03FTVeVrtLLvzWF9ZmGnwjz0fc42ZKq1HLGNvYP9_ZN-jylNqJ5i953uiteG3nfDlQf-g7SxyPQ1exVswvcIEW_YM1dtshdUVvTfW_YHcME7XHDABSdc8NrzVVzwFhccGoQLfg8XvMfFOzY9-Dn9cSRCAQ1hY5U1whpwqt5BkFj6ONclxO7STFJTZi7LdeGthrkwKqIYpq0izzJM2vTwK8009PdFvMVGVV25bcaVsUZOvJLIXFZyYlTmZQlDmHkDn1uN2bdumGY2iMtjjZP5bNUgY_alv_acJFXWXvW5G-0ZeDzcxjKVq5eXsxSmEHhEY7ZFRujvEuMmtEx3HvUG79nLAeIf2Ki5WLqPEGA2xaeAlBs0wHyX |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+geometry+and+motion+of+reaction-diffusion+waves+on+closed+two-dimensional+manifolds&rft.jtitle=Journal+of+mathematical+biology&rft.au=Grindrod%2C+Peter&rft.au=Gomatam%2C+Jagannathan&rft.date=1987-12-01&rft.issn=0303-6812&rft.eissn=1432-1416&rft.volume=25&rft.issue=6&rft.spage=597&rft.epage=610&rft_id=info:doi/10.1007%2FBF00275496&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_BF00275496 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6812&client=summon |