DeepSphere: Efficient spherical convolutional neural network with HEALPix sampling for cosmological applications
Convolutional Neural Networks (CNNs) are a cornerstone of the Deep Learning toolbox and have led to many breakthroughs in Artificial Intelligence. So far, these neural networks (NNs) have mostly been developed for regular Euclidean domains such as those supporting images, audio, or video. Because of...
Saved in:
| Published in | Astronomy and computing Vol. 27; pp. 130 - 146 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.04.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2213-1337 2213-1345 2213-1345 |
| DOI | 10.1016/j.ascom.2019.03.004 |
Cover
| Abstract | Convolutional Neural Networks (CNNs) are a cornerstone of the Deep Learning toolbox and have led to many breakthroughs in Artificial Intelligence. So far, these neural networks (NNs) have mostly been developed for regular Euclidean domains such as those supporting images, audio, or video. Because of their success, CNN-based methods are becoming increasingly popular in Cosmology. Cosmological data often comes as spherical maps, which make the use of the traditional CNNs more complicated. The commonly used pixelization scheme for spherical maps is the Hierarchical Equal Area isoLatitude Pixelisation (HEALPix). We present a spherical CNN for analysis of full and partial HEALPix maps, which we call DeepSphere. The spherical CNN is constructed by representing the sphere as a graph. Graphs are versatile data structures that can represent pairwise relationships between objects or act as a discrete representation of a continuous manifold. Using the graph-based representation, we define many of the standard CNN operations, such as convolution and pooling. With filters restricted to being radial, our convolutions are equivariant to rotation on the sphere, and DeepSphere can be made invariant or equivariant to rotation. This way, DeepSphere is a special case of a graph CNN, tailored to the HEALPix sampling of the sphere. This approach is computationally more efficient than using spherical harmonics to perform convolutions. We demonstrate the method on a classification problem of weak lensing mass maps from two cosmological models and compare its performance with that of three baseline classifiers, two based on the power spectrum and pixel density histogram, and a classical 2D CNN. Our experimental results show that the performance of DeepSphere is always superior or equal to the baselines. For high noise levels and for data covering only a smaller fraction of the sphere, DeepSphere achieves typically 10% better classification accuracy than the baselines.Finally, we show how learned filters can be visualized to introspect the NN. Code and examples are available at https://github.com/SwissDataScienceCenter/DeepSphere. |
|---|---|
| AbstractList | Convolutional Neural Networks (CNNs) are a cornerstone of the Deep Learning toolbox and have led to many breakthroughs in Artificial Intelligence. So far, these neural networks (NNs) have mostly been developed for regular Euclidean domains such as those supporting images, audio, or video. Because of their success, CNN-based methods are becoming increasingly popular in Cosmology. Cosmological data often comes as spherical maps, which make the use of the traditional CNNs more complicated. The commonly used pixelization scheme for spherical maps is the Hierarchical Equal Area isoLatitude Pixelisation (HEALPix). We present a spherical CNN for analysis of full and partial HEALPix maps, which we call DeepSphere. The spherical CNN is constructed by representing the sphere as a graph. Graphs are versatile data structures that can represent pairwise relationships between objects or act as a discrete representation of a continuous manifold. Using the graph-based representation, we define many of the standard CNN operations, such as convolution and pooling. With filters restricted to being radial, our convolutions are equivariant to rotation on the sphere, and DeepSphere can be made invariant or equivariant to rotation. This way, DeepSphere is a special case of a graph CNN, tailored to the HEALPix sampling of the sphere. This approach is computationally more efficient than using spherical harmonics to perform convolutions. We demonstrate the method on a classification problem of weak lensing mass maps from two cosmological models and compare its performance with that of three baseline classifiers, two based on the power spectrum and pixel density histogram, and a classical 2D CNN. Our experimental results show that the performance of DeepSphere is always superior or equal to the baselines. For high noise levels and for data covering only a smaller fraction of the sphere, DeepSphere achieves typically 10% better classification accuracy than the baselines.Finally, we show how learned filters can be visualized to introspect the NN. Code and examples are available at https://github.com/SwissDataScienceCenter/DeepSphere. |
| Author | Defferrard, M. Sgier, R. Kacprzak, T. Perraudin, N. |
| Author_xml | – sequence: 1 givenname: N. surname: Perraudin fullname: Perraudin, N. email: nathanael.perraudin@sdsc.ethz.ch organization: Swiss Data Science Center (SDSC), Zurich, Switzerland – sequence: 2 givenname: M. surname: Defferrard fullname: Defferrard, M. organization: Institute of Electrical Engineering, EPFL, Lausanne, Switzerland – sequence: 3 givenname: T. surname: Kacprzak fullname: Kacprzak, T. organization: Institute for Particle Physics and Astrophysics, ETH Zurich, Switzerland – sequence: 4 givenname: R. surname: Sgier fullname: Sgier, R. organization: Institute for Particle Physics and Astrophysics, ETH Zurich, Switzerland |
| BookMark | eNqNkd9OwjAUhxuDiYg8gTd7AWa7FtaZeEEQxYREE_W6Kf0Dxa5d2iHy9m7DeOGF2pvTnpPvl5yv56DnvFMAXCKYIogmV9uUR-HLNIOoSCFOISQnoJ9lCI8QJuPe9x3nZ2AY4xY2pyBonNE-qG6Vqp6rjQrqOplrbYRRrk5i2zGC20R49-7trjbeNS-ndqEr9d6Ht2Rv6k2ymE-XT-YjibysrHHrRPvQYLH01q-7DF41A8HbjHgBTjW3UQ2_6gC83s1fZovR8vH-YTZdjgQmtB4Jmq8wpZKTXGEuOS8kxgUVNJNSQiHFJF-NtZqQIpMkF1RlOSQ0p3pFENdE4gEgx9ydq_hhz61lVTAlDweGIGvFsS3rxLFWHIOYNeIaDB8xEXyMQel_UsUPSpi627cO3Ng_2Jsjqxob70YFFts_EEqaoETNpDe_8p8_z6Ed |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2022_109985 crossref_primary_10_1103_PhysRevD_104_123022 crossref_primary_10_3847_1538_4357_abb9a7 crossref_primary_10_1103_PhysRevD_107_043509 crossref_primary_10_1088_1748_0221_19_03_C03008 crossref_primary_10_3390_rs16183448 crossref_primary_10_1017_pasa_2022_55 crossref_primary_10_1103_PhysRevD_105_083518 crossref_primary_10_1007_s00371_023_02904_z crossref_primary_10_1088_1475_7516_2025_03_001 crossref_primary_10_1016_j_eswa_2023_122917 crossref_primary_10_1051_0004_6361_202040066 crossref_primary_10_1016_j_astropartphys_2020_102527 crossref_primary_10_1073_pnas_1821458116 crossref_primary_10_1007_s10462_023_10502_7 crossref_primary_10_1103_PhysRevD_104_123541 crossref_primary_10_1109_TSP_2023_3284357 crossref_primary_10_1109_ACCESS_2019_2944766 crossref_primary_10_1109_TITS_2022_3210409 crossref_primary_10_1007_s42979_021_00735_0 crossref_primary_10_1109_TIP_2022_3202357 crossref_primary_10_1111_cgf_14181 crossref_primary_10_1103_PhysRevD_102_023026 crossref_primary_10_3389_fnimg_2024_1349415 crossref_primary_10_1103_PhysRevD_100_063514 crossref_primary_10_1088_1475_7516_2022_12_013 crossref_primary_10_1093_mnras_stab1011 crossref_primary_10_1109_LRA_2020_2994036 crossref_primary_10_1016_j_neuroimage_2021_117758 crossref_primary_10_1002_mp_17748 crossref_primary_10_1088_1742_6596_2438_1_012067 crossref_primary_10_1103_PhysRevB_107_165149 crossref_primary_10_3847_1538_4357_abf3bb crossref_primary_10_1029_2020MS002203 crossref_primary_10_1007_s11042_024_19139_2 crossref_primary_10_30970_jps_28_3001 crossref_primary_10_1038_s41598_024_78303_8 crossref_primary_10_1109_TVCG_2022_3165345 crossref_primary_10_1142_S0219467823500328 crossref_primary_10_1016_j_sigpro_2022_108529 crossref_primary_10_1029_2023GL103672 crossref_primary_10_21468_SciPostPhysProc_12_034 crossref_primary_10_1051_epjconf_202429503002 crossref_primary_10_1051_0004_6361_201935211 crossref_primary_10_1103_PhysRevLett_125_241102 crossref_primary_10_1016_j_ascom_2019_100307 crossref_primary_10_1007_s10462_023_10466_8 crossref_primary_10_1088_2632_2153_ac494a crossref_primary_10_1587_transinf_2023EDP7023 crossref_primary_10_3847_1538_4365_ac5f4a crossref_primary_10_1103_PhysRevD_109_052005 crossref_primary_10_1007_s40042_023_00877_9 crossref_primary_10_1103_PhysRevD_104_123526 crossref_primary_10_1109_TPAMI_2022_3215933 crossref_primary_10_1103_PhysRevD_105_063017 crossref_primary_10_1109_TPAMI_2021_3136921 crossref_primary_10_1093_mnras_stac393 crossref_primary_10_1007_s11433_020_1586_3 crossref_primary_10_1093_mnras_stz2610 crossref_primary_10_3389_fdata_2022_787421 crossref_primary_10_3847_1538_4357_ab5f5e crossref_primary_10_1016_j_cosrev_2024_100695 crossref_primary_10_1051_0004_6361_202243054 crossref_primary_10_1088_1475_7516_2020_11_005 crossref_primary_10_1016_j_dsp_2023_103989 crossref_primary_10_1103_PhysRevA_106_032402 crossref_primary_10_3103_S0027134920060235 crossref_primary_10_1109_TASLP_2022_3224282 crossref_primary_10_1109_ACCESS_2022_3151350 crossref_primary_10_1103_PhysRevD_110_043535 crossref_primary_10_1093_mnras_staa1009 crossref_primary_10_1109_TMI_2022_3168670 crossref_primary_10_1109_TITS_2023_3235057 crossref_primary_10_1140_epjs_s11734_021_00207_9 crossref_primary_10_1103_PhysRevD_102_103509 crossref_primary_10_3390_math12060885 crossref_primary_10_1016_j_patcog_2019_107081 crossref_primary_10_1021_acs_jcim_2c00832 crossref_primary_10_1007_JHEP11_2021_158 crossref_primary_10_1007_s10462_024_10722_5 crossref_primary_10_1051_0004_6361_202245624 crossref_primary_10_1109_TSP_2023_3304410 crossref_primary_10_1029_2023MS004021 crossref_primary_10_1162_imag_a_00353 crossref_primary_10_1016_j_nima_2021_165527 |
| Cites_doi | 10.1051/0004-6361/201935211 10.1109/ICCVW.2017.106 10.1051/0004-6361/201321494 10.1002/cpa.21413 10.1051/0004-6361/201525830 10.1109/TSIPN.2017.2710619 10.1093/mnras/stz010 10.1086/427976 10.1093/mnras/stx1626 10.1051/0004-6361/201629178 10.1051/0004-6361/201527101 10.1103/PhysRevD.77.123539 10.3847/1538-4365/aa9e8a 10.1088/1475-7516/2008/04/015 10.1007/978-3-030-01261-8_4 10.1088/1361-6633/aa94d5 10.1016/j.ascom.2015.07.003 10.1103/PhysRevD.97.103515 10.1016/j.neuroimage.2017.12.052 10.1021/acs.molpharmaceut.7b01144 10.1093/mnras/stw2805 10.1137/050623073 10.1109/MSP.2017.2693418 10.1103/PhysRevD.98.123518 10.1109/CVPR.2015.7298965 10.1088/0067-0049/192/2/18 10.1006/jcph.1996.0047 10.1093/mnras/stx3363 10.1109/5.726791 10.1109/ICCV.2017.556 10.1088/1475-7516/2019/01/044 10.1007/978-3-030-01240-3_32 10.1103/PhysRevD.98.043528 10.1093/mnras/sty1719 10.1109/ICCVW.2015.112 10.1093/mnras/stx721 10.1088/1475-7516/2017/08/028 10.1007/BF01261607 10.1088/0264-9381/27/23/233001 10.1109/TSP.2017.2690388 10.1016/S0370-1573(00)00082-X 10.1109/MSP.2012.2235192 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.ascom.2019.03.004 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics |
| EISSN | 2213-1345 |
| EndPage | 146 |
| ExternalDocumentID | oai:infoscience.epfl.ch:266685 10_1016_j_ascom_2019_03_004 S2213133718301392 |
| GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO AAYFN ABBOA ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HVGLF HZ~ KOM M41 MO0 O-L O9- OAUVE OGIMB P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSQ SSV SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c348t-c87b388da47e3adaa9d3398c82ddd0cdc67b5fe6492d47c8e2704878fb41af4d3 |
| IEDL.DBID | UNPAY |
| ISSN | 2213-1337 2213-1345 |
| IngestDate | Wed Oct 29 12:02:47 EDT 2025 Wed Oct 01 02:05:41 EDT 2025 Thu Apr 24 22:57:17 EDT 2025 Fri Feb 23 02:33:40 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mass mapping Spherical convolutional neural network Graph CNN Cosmological data analysis DeepSphere |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-c87b388da47e3adaa9d3398c82ddd0cdc67b5fe6492d47c8e2704878fb41af4d3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://infoscience.epfl.ch/record/266685 |
| PageCount | 17 |
| ParticipantIDs | unpaywall_primary_10_1016_j_ascom_2019_03_004 crossref_primary_10_1016_j_ascom_2019_03_004 crossref_citationtrail_10_1016_j_ascom_2019_03_004 elsevier_sciencedirect_doi_10_1016_j_ascom_2019_03_004 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2019 2019-04-00 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Astronomy and computing |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al., 2018. Relational inductive biases, deep learning, and graph networks Li, Yu, Shahabi, Liu (b50) 2018 Monti, Bronstein, Bresson (b58) 2017 Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. Howlett, Manera, Percival (b37) 2015; 12 Ktena, Parisot, Ferrante, Rajchl, Lee, Glocker, Rueckert (b46) 2018; 169 Ronchi, Iacono, Paolucci (b68) 1996; 124 Bartelmann, Schneider (b10) 2001; 340 Rokhlin, Tygert (b67) 2006; 27 Boscaini, Masci, Rodolà, Bronstein (b15) 2016 Reinecke, Seljebotn (b65) 2013; 554 Frossard, P., Khasanova, R., 2017. Graph-based classification of omnidirectional images, in: 2017 IEEE International Conference on Computer Vision Workshops, ICCVW, pp. 860–869. Amsel, Berger, Brandenberger (b6) 2008; 4 Krachmalnicoff, N., Tomasi, M., 2019. Convolutional Neural Networks on the HEALPix sphere: a pixel-based algorithm and its application to CMB data analysis, arXiv preprint Mohlenkamp (b56) 1999; 5 Bartelmann (b9) 2010; 27 Belkin, Niyogi (b12) 2007 Zhang, Song, Tan, Xiao (b79) 2014 Abolfathi, Aguado, Aguilar, Allende Prieto, Almeida, Ananna, Anders, Anderson, Andrews, Anguiano (b4) 2018; 235 Boomsma, Frellsen (b14) 2017 2018. The Dark Energy Survey Data Release 1 Kondor, R., Trivedi, S., On the generalization of equivariance and convolution in neural networks to the action of compact groups (2018) Ben Bekhti, Flöer, Keller, Kerp, Lenz, Winkel, Bailin, Calabretta, Dedes, Ford, Gibson, Haud, Janowiecki, Kalberla, Lockman, McClure-Griffiths, Murphy, Nakanishi, Pisano, Staveley-Smith (b13) 2016; 594 Aragon-Calvo, M.A., 2018. Classifying the large scale structure of the universe with deep neural networks Cohen, T.S., Geiger, M., Koehler, J., Welling, M., 2018. Spherical CNNs Defferrard, Bresson, Vandergheynst (b22) 2016 Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization Troxel, M.A., MacCrann, N., Zuntz, J., Eifler, T.F., Krause, E., Dodelson, S., Gruen, D., Blazek, J., Friedrich, O., Samuroff, S., Prat, J., Secco, L.F., Davis, C., Ferté, A., DeRose, J., Alarcon, A., Amara, A., Baxter, E., Becker, M.R., Bernstein, G.M., Bridle, S.L., Cawthon, R., Chang, C., Choi, A., De Vicente, J., Drlica-Wagner, A., Elvin-Poole, J., Frieman, J., Gatti, M., Hartley, W.G., Honscheid, K., Hoyle, B., Huff, E.M., Huterer, D., Jain, B., Jarvis, M., Kacprzak, T., Kirk, D., Kokron, N., Krawiec, C., Lahav, O., Liddle, A.R., Peacock, J., Rau, M.M., Refregier, A., Rollins, R.P., Rozo, E., Rykoff, E.S., Sánchez, C., Sevilla-Noarbe, I., Sheldon, E., Stebbins, A., Varga, T.N., Vielzeuf, P., Wang, M., Wechsler, R.H., Yanny, B., Abbott, T.M.C., Abdalla, F.B., Allam, S., Annis, J., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D.L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F.J., Crocce, M., Cunha, C.E., D’Andrea, C.B., da Costa, L.N., DePoy, D.L., Desai, S., Diehl, H.T., Dietrich, J.P., Doel, P., Fernandez, E., Flaugher, B., Fosalba, P., García-Bellido, J., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Goldstein, D.A., Gruendl, R.A., Gschwend, J., Gutierrez, G., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Kent, S., Kuehn, K., Kuhlmann, S., Kuropatkin, N., Li, T.S., Lima, M., Lin, H., Maia, M.A.G., March, M., Marshall, J.L., Martini, P., Melchior, P., Menanteau, F., Miquel, R., Mohr, J.J., Neilsen, E., Nichol, R.C., Nord, B., Petravick, D., Plazas, A.A., Romer, A.K., Roodman, A., Sako, M., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Smith, M., Smith, R.C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Tucker, D.L., Vikram, V., Walker, A.R., Weller, J., Zhang, Y., 2017. Dark energy survey year 1 results: Cosmological constraints from cosmic shear Fluri, J., Kacprzak, T., Lucchi, A., Refregier, A., Amara, A., Hofmann, T., 2018. Cosmological constraints from noisy convergence maps through deep learning Qi, X., Liao, R., Jia, J., Fidler, S., Urtasun, R., 2017. 3D graph neural networks for RGBD semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5199–5208. Alam, Ata, Bailey, Beutler, Bizyaev, Blazek, Bolton, Brownstein, Burden, Chuang, Comparat, Cuesta, Dawson, Eisenstein, Escoffier, Gil-Marín, Grieb, Hand, Ho, Kinemuchi, Kirkby, Kitaura, Malanushenko, Malanushenko, Maraston, McBride, Nichol, Olmstead, Oravetz, Padmanabhan, Palanque-Delabrouille, Pan, Pellejero-Ibanez, Percival, Petitjean, Prada, Price-Whelan, Reid, Rodríguez-Torres, Roe, Ross, Ross, Rossi, Rubiño-Martín, Saito, Salazar-Albornoz, Samushia, Sánchez, Satpathy, Schlegel, Schneider, Scóccola, Seo, Sheldon, Simmons, Slosar, Strauss, Swanson, Thomas, Tinker, Tojeiro, Magaña, Vazquez, Verde, Wake, Wang, Weinberg, White, Wood-Vasey, Yèche, Zehavi, Zhai, Zhao (b5) 2017; 470 Sgier, Réfrégier, Amara, Nicola (b72) 2019; 2019 Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. Lin, M., Chen, Q., Yan, S., 2013. Network in network Perraudin, Ricaud, Shuman, Vandergheynst (b61) 2018 , Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine Learning, pp. 448–456. Ribli, D., Ármin Pataki, B., Csabai, I., 2018. Learning from deep learning: better cosmological parameter inference from weak lensing maps . Perraudin, Vandergheynst (b62) 2017; 65 Ravanbakhsh, Oliva, Fromenteau, Price, Ho, Schneider, Póczos (b64) 2016 Inoue, Cabella, Komatsu (b38) 2008; 77 Mallat (b54) 2012; 65 Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for simplicity: The all convolutional net, arXiv preprint Hildebrandt, Viola, Heymans, Joudaki, Kuijken, Blake, Erben, Joachimi, Klaes, Miller, Morrison, Nakajima, Verdoes Kleijn, Amon, Choi, Covone, de Jong, Dvornik, Fenech Conti, Grado, Harnois-Déraps, Herbonnet, Hoekstra, Köhlinger, McFarland, Mead, Merten, Napolitano, Peacock, Radovich, Schneider, Simon, Valentijn, van den Busch, van Uitert, Van Waerbeke (b35) 2017; 465 Hassan, Liu, Kohn, Aguirre, La Plante, Lidz (b33) 2018; vol. 333 Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (b3) 2015 Monti, Boscaini, Masci, Rodola, Svoboda, Bronstein (b57) 2017; vol. 1 Santos, Bull, Alonso, Camera, Ferreira, Bernardi, Maartens, Viel, Villaescusa-Navarro, Abdalla, Jarvis, Metcalf, Pourtsidou, Wolz (b69) 2015 Staggs, Dunkley, Page (b75) 2018; 81 Esteves, C., Allen-Blanchette, C., Makadia, A., Daniilidis, K., 2017. Learning SO(3) equivariant representations with spherical CNNs He, Ravanbakhsh, Ho (b34) 2018 Baqué, P., Remelli, E., Fleuret, F., Fua, P., 2018. Geodesic convolutional shape optimization, in: International Conference on Machine Learning. Parisot, Ktena, Ferrante, Lee, Moreno, Glocker, Rueckert (b59) 2017 Patton, Blazek, Honscheid, Huff, Melchior, Ross, Suchyta (b60) 2017; 472 Kondor, R., Lin, Z., Trivedi, S., 2018. Clebsch-gordan nets: a Fully Fourier space spherical convolutional neural network Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P., 2015. Geodesic convolutional neural networks on riemannian manifolds, in: Proceedings of the IEEE international conference on computer vision workshops, pp. 37–45. Chang, Pujol, Mawdsley, Bacon, Elvin-Poole, Melchior, Kovács, Jain, Leistedt, Giannantonio, Alarcon, Baxter, Bechtol, Becker, Benoit-Lévy, Bernstein, Bonnett, Busha, Rosell, Castander, Cawthon, da Costa, Davis, De Vicente, DeRose, Drlica-Wagner, Fosalba, Gatti, Gaztanaga, Gruen, Gschwend, Hartley, Hoyle, Huff, Jarvis, Jeffrey, Kacprzak, Lin, MacCrann, Maia, Ogando, Prat, Rau, Rollins, Roodman, Rozo, Rykoff, Samuroff, Sánchez, Sevilla-Noarbe, Sheldon, Troxel, Varga, Vielzeuf, Vikram, Wechsler, Zuntz, Abbott, Abdalla, Allam, Annis, Bertin, Brooks, Buckley-Geer, Burke, Kind, Carretero, Crocce, Cunha, D’Andrea, Desai, Diehl, Dietrich, Doel, Estrada, Neto, Fernandez, Flaugher, Frieman, García-Bellido, Gruendl, Gutierrez, Honscheid, James, Jeltema, Johnson, Johnson, Kent, Kirk, Krause, Kuehn, Kuhlmann, Lahav, Li, Lima, March, Martini, Menanteau, Miquel, Mohr, Neilsen, Nichol, Petravick, Plazas, Romer, Sako, Sanchez, Scarpine, Schubnell, Smith, Smith, Soares-Santos, Sobreira, Suchyta, Tarle, Thomas, Tucker, Walker, Wester, Zhang (b17) 2018; 475 Xiao, Ehinger, Oliva, Torralba (b78) 2012 (b2) 2016; 594 Lucie-Smith, Peiris, Pontzen, Lochner (b53) 2018; 479 (b1) 2016; 594 Duvenaud, Maclaurin, Iparraguirre, Bombarell, Hirzel, Aspuru-Guzik, Adams (b24) 2015 Gorski, Hivon, Banday, Wandelt, Hansen, Reinecke, Bartelmann (b30) 2005; 622 Defferrard, M., Martin, L., Pena, R., Perraudin, N., PyGSP: graph signal processing in python Schmelzle, J., Lucchi, A., Kacprzak, T., Amara, A., Sgier, R., Réfrégier, A., Hofmann, T., 2017. Cosmological model discrimination with Deep Learning Komatsu, Smith, Dunkley, Bennett, Gold, Hinshaw, Jarosik, Larson, Nolta, Page, Spergel, Halpern, Hill, Kogut, Limon, Meyer, Odegard, Tucker, Weiland, Wollack, Wright (b42) 2011; 192 Shuman, Narang, Frossard, Ortega, Vandergheynst (b73) 2013; 30 Hop, Allgood, Yu (b36) 2018 Le Magoarou, Gribonval, Tremblay (b47) 2018; 4 Coors, B., Condurache, A.P., Geiger, A., 2018. SphereNet: Learning spherical representations for detection and classification in omnidirectional images, in: European Conference on Computer Vision. Gupta, Matilla, Hsu, Haiman (b31) 2018; 97 LeCun, Bottou, Ben (10.1016/j.ascom.2019.03.004_b1) 2016; 594 10.1016/j.ascom.2019.03.004_b18 10.1016/j.ascom.2019.03.004_b19 10.1016/j.ascom.2019.03.004_b11 10.1016/j.ascom.2019.03.004_b55 10.1016/j.ascom.2019.03.004_b52 Reinecke (10.1016/j.ascom.2019.03.004_b65) 2013; 554 10.1016/j.ascom.2019.03.004_b51 Alam (10.1016/j.ascom.2019.03.004_b5) 2017; 470 Perraudin (10.1016/j.ascom.2019.03.004_b61) 2018 Boscaini (10.1016/j.ascom.2019.03.004_b15) 2016 Gorski (10.1016/j.ascom.2019.03.004_b30) 2005; 622 Ben Bekhti (10.1016/j.ascom.2019.03.004_b13) 2016; 594 Defferrard (10.1016/j.ascom.2019.03.004_b22) 2016 Gupta (10.1016/j.ascom.2019.03.004_b31) 2018; 97 Xiao (10.1016/j.ascom.2019.03.004_b78) 2012 Santos (10.1016/j.ascom.2019.03.004_b69) 2015 10.1016/j.ascom.2019.03.004_b29 Monti (10.1016/j.ascom.2019.03.004_b58) 2017 10.1016/j.ascom.2019.03.004_b27 10.1016/j.ascom.2019.03.004_b28 10.1016/j.ascom.2019.03.004_b25 Parisot (10.1016/j.ascom.2019.03.004_b59) 2017 10.1016/j.ascom.2019.03.004_b26 Hassan (10.1016/j.ascom.2019.03.004_b33) 2018; vol. 333 Bronstein (10.1016/j.ascom.2019.03.004_b16) 2017; 34 10.1016/j.ascom.2019.03.004_b23 10.1016/j.ascom.2019.03.004_b21 Hildebrandt (10.1016/j.ascom.2019.03.004_b35) 2017; 465 10.1016/j.ascom.2019.03.004_b66 10.1016/j.ascom.2019.03.004_b63 10.1016/j.ascom.2019.03.004_b20 LeCun (10.1016/j.ascom.2019.03.004_b48) 1998; 86 Abadi (10.1016/j.ascom.2019.03.004_b3) 2015 Boomsma (10.1016/j.ascom.2019.03.004_b14) 2017 10.1016/j.ascom.2019.03.004_b8 10.1016/j.ascom.2019.03.004_b7 Mallat (10.1016/j.ascom.2019.03.004_b54) 2012; 65 Shuman (10.1016/j.ascom.2019.03.004_b73) 2013; 30 Inoue (10.1016/j.ascom.2019.03.004_b38) 2008; 77 Li (10.1016/j.ascom.2019.03.004_b50) 2018 10.1016/j.ascom.2019.03.004_b39 Bartelmann (10.1016/j.ascom.2019.03.004_b9) 2010; 27 Sgier (10.1016/j.ascom.2019.03.004_b72) 2019; 2019 Hop (10.1016/j.ascom.2019.03.004_b36) 2018 Mohlenkamp (10.1016/j.ascom.2019.03.004_b56) 1999; 5 10.1016/j.ascom.2019.03.004_b77 10.1016/j.ascom.2019.03.004_b74 Perraudin (10.1016/j.ascom.2019.03.004_b62) 2017; 65 10.1016/j.ascom.2019.03.004_b70 10.1016/j.ascom.2019.03.004_b71 Kalchbrenner (10.1016/j.ascom.2019.03.004_b40) 2014; vol. 1 Zhang (10.1016/j.ascom.2019.03.004_b79) 2014 Rokhlin (10.1016/j.ascom.2019.03.004_b67) 2006; 27 Ronchi (10.1016/j.ascom.2019.03.004_b68) 1996; 124 Belkin (10.1016/j.ascom.2019.03.004_b12) 2007 He (10.1016/j.ascom.2019.03.004_b34) 2018 Abolfathi (10.1016/j.ascom.2019.03.004_b4) 2018; 235 Le Magoarou (10.1016/j.ascom.2019.03.004_b47) 2018; 4 10.1016/j.ascom.2019.03.004_b49 Patton (10.1016/j.ascom.2019.03.004_b60) 2017; 472 Amsel (10.1016/j.ascom.2019.03.004_b6) 2008; 4 Ktena (10.1016/j.ascom.2019.03.004_b46) 2018; 169 Howlett (10.1016/j.ascom.2019.03.004_b37) 2015; 12 10.1016/j.ascom.2019.03.004_b45 10.1016/j.ascom.2019.03.004_b43 10.1016/j.ascom.2019.03.004_b44 10.1016/j.ascom.2019.03.004_b41 Su (10.1016/j.ascom.2019.03.004_b76) 2017 (10.1016/j.ascom.2019.03.004_b2) 2016; 594 Duvenaud (10.1016/j.ascom.2019.03.004_b24) 2015 Hamilton (10.1016/j.ascom.2019.03.004_b32) 2017 Lucie-Smith (10.1016/j.ascom.2019.03.004_b53) 2018; 479 Monti (10.1016/j.ascom.2019.03.004_b57) 2017; vol. 1 Komatsu (10.1016/j.ascom.2019.03.004_b42) 2011; 192 Bartelmann (10.1016/j.ascom.2019.03.004_b10) 2001; 340 Ravanbakhsh (10.1016/j.ascom.2019.03.004_b64) 2016 Staggs (10.1016/j.ascom.2019.03.004_b75) 2018; 81 Chang (10.1016/j.ascom.2019.03.004_b17) 2018; 475 |
| References_xml | – reference: Ciuca, R., Hernández, O.F., Wolman, M., 2017. A convolutional neural network for cosmic string detection in CMB temperature maps, – reference: Coors, B., Condurache, A.P., Geiger, A., 2018. SphereNet: Learning spherical representations for detection and classification in omnidirectional images, in: European Conference on Computer Vision. – volume: 65 start-page: 1331 year: 2012 end-page: 1398 ident: b54 article-title: Group invariant scattering publication-title: Comm. Pure Appl. Math. – start-page: 177 year: 2017 end-page: 185 ident: b59 article-title: Spectral graph convolutions for population-based disease prediction publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 81 year: 2018 ident: b75 article-title: Recent discoveries from the cosmic microwave background: a review of recent progress publication-title: Rep. Progr. Phys. – volume: 124 start-page: 93 year: 1996 end-page: 114 ident: b68 article-title: The “cubed sphere”: a new method for the solution of partial differential equations in spherical geometry publication-title: J. Comput. Phys. – reference: Ribli, D., Ármin Pataki, B., Csabai, I., 2018. Learning from deep learning: better cosmological parameter inference from weak lensing maps, – reference: Defferrard, M., Martin, L., Pena, R., Perraudin, N., PyGSP: graph signal processing in python, – volume: vol. 1 start-page: 655 year: 2014 end-page: 665 ident: b40 article-title: A convolutional neural network for modelling sentences publication-title: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) – reference: Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization, – reference: Qi, X., Liao, R., Jia, J., Fidler, S., Urtasun, R., 2017. 3D graph neural networks for RGBD semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5199–5208. – volume: 169 start-page: 431 year: 2018 end-page: 442 ident: b46 article-title: Metric learning with spectral graph convolutions on brain connectivity networks publication-title: NeuroImage – reference: Cohen, T.S., Geiger, M., Koehler, J., Welling, M., 2018. Spherical CNNs – volume: 340 start-page: 291 year: 2001 end-page: 472 ident: b10 article-title: Weak gravitational lensing publication-title: Phys. Rep. – start-page: 2224 year: 2015 end-page: 2232 ident: b24 article-title: Convolutional networks on graphs for learning molecular fingerprints publication-title: Advances in Neural Information Processing Systems – reference: Frossard, P., Khasanova, R., 2017. Graph-based classification of omnidirectional images, in: 2017 IEEE International Conference on Computer Vision Workshops, ICCVW, pp. 860–869. – start-page: 3189 year: 2016 end-page: 3197 ident: b15 article-title: Learning shape correspondence with anisotropic convolutional neural networks publication-title: Advances in Neural Information Processing Systems – reference: Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for simplicity: The all convolutional net, arXiv preprint – volume: 192 start-page: 18 year: 2011 ident: b42 article-title: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation publication-title: Astrophys. J. Suppl. – reference: Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X., 2016. Structured sequence modeling with graph convolutional recurrent networks, – volume: 27 year: 2010 ident: b9 article-title: Gravitational lensing publication-title: Classical Quantum Gravity – volume: 594 start-page: A13 year: 2016 ident: b2 article-title: Planck 2015 results. xiii. cosmological parameters publication-title: Astron. Astrophys. – year: 2018 ident: b50 article-title: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting – start-page: 3436 year: 2017 end-page: 3446 ident: b14 article-title: Spherical convolutions and their application in molecular modelling publication-title: Advances in Neural Information Processing Systems – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b48 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – reference: Troxel, M.A., MacCrann, N., Zuntz, J., Eifler, T.F., Krause, E., Dodelson, S., Gruen, D., Blazek, J., Friedrich, O., Samuroff, S., Prat, J., Secco, L.F., Davis, C., Ferté, A., DeRose, J., Alarcon, A., Amara, A., Baxter, E., Becker, M.R., Bernstein, G.M., Bridle, S.L., Cawthon, R., Chang, C., Choi, A., De Vicente, J., Drlica-Wagner, A., Elvin-Poole, J., Frieman, J., Gatti, M., Hartley, W.G., Honscheid, K., Hoyle, B., Huff, E.M., Huterer, D., Jain, B., Jarvis, M., Kacprzak, T., Kirk, D., Kokron, N., Krawiec, C., Lahav, O., Liddle, A.R., Peacock, J., Rau, M.M., Refregier, A., Rollins, R.P., Rozo, E., Rykoff, E.S., Sánchez, C., Sevilla-Noarbe, I., Sheldon, E., Stebbins, A., Varga, T.N., Vielzeuf, P., Wang, M., Wechsler, R.H., Yanny, B., Abbott, T.M.C., Abdalla, F.B., Allam, S., Annis, J., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D.L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F.J., Crocce, M., Cunha, C.E., D’Andrea, C.B., da Costa, L.N., DePoy, D.L., Desai, S., Diehl, H.T., Dietrich, J.P., Doel, P., Fernandez, E., Flaugher, B., Fosalba, P., García-Bellido, J., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Goldstein, D.A., Gruendl, R.A., Gschwend, J., Gutierrez, G., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Kent, S., Kuehn, K., Kuhlmann, S., Kuropatkin, N., Li, T.S., Lima, M., Lin, H., Maia, M.A.G., March, M., Marshall, J.L., Martini, P., Melchior, P., Menanteau, F., Miquel, R., Mohr, J.J., Neilsen, E., Nichol, R.C., Nord, B., Petravick, D., Plazas, A.A., Romer, A.K., Roodman, A., Sako, M., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Smith, M., Smith, R.C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Tucker, D.L., Vikram, V., Walker, A.R., Weller, J., Zhang, Y., 2017. Dark energy survey year 1 results: Cosmological constraints from cosmic shear, – volume: 594 start-page: A1 year: 2016 ident: b1 article-title: Planck 2015 results. i. overview of products and scientific results publication-title: Astron. Astrophys. – volume: 34 start-page: 18 year: 2017 end-page: 42 ident: b16 article-title: Geometric deep learning: going beyond Euclidean data publication-title: IEEE Signal Process. Mag. – volume: 465 start-page: 1454 year: 2017 end-page: 1498 ident: b35 article-title: KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing publication-title: Mon. Not. R. Astron. Soc. – start-page: 19 year: 2015 ident: b69 article-title: Cosmology from a SKA HI intensity mapping survey publication-title: Advancing Astrophysics with the Square Kilometre Array, AASKA14 – year: 2018 ident: b36 article-title: Geometric deep learning autonomously learns chemical features that outperform those engineered by domain experts publication-title: Mol. Pharm. – year: 2015 ident: b3 article-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems – year: 2018 ident: b34 article-title: Analysis of Cosmic Microwave Background with Deep Learning – reference: Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. – volume: 77 year: 2008 ident: b38 article-title: Harmonic inpainting of the cosmic microwave background sky: Formulation and error estimate publication-title: Phys. Rev. D – reference: Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. – volume: 27 start-page: 1903 year: 2006 end-page: 1928 ident: b67 article-title: Fast algorithms for spherical harmonic expansions publication-title: SIAM J. Sci. Comput. – start-page: 2407 year: 2016 end-page: 2416 ident: b64 article-title: Estimating cosmological parameters from the dark matter distribution publication-title: Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48, ICML’16 – reference: Aragon-Calvo, M.A., 2018. Classifying the large scale structure of the universe with deep neural networks, – reference: Gillet, N., Mesinger, A., Greig, B., Liu, A., Ucci, G., 2018. Deep learning from 21-cm images of the Cosmic Dawn, – reference: Schmelzle, J., Lucchi, A., Kacprzak, T., Amara, A., Sgier, R., Réfrégier, A., Hofmann, T., 2017. Cosmological model discrimination with Deep Learning, – reference: Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al., 2018. Relational inductive biases, deep learning, and graph networks, – start-page: 129 year: 2007 end-page: 136 ident: b12 article-title: Convergence of laplacian eigenmaps publication-title: Advances in Neural Information Processing Systems – reference: , – volume: 12 start-page: 109 year: 2015 end-page: 126 ident: b37 article-title: L-PICOLA: A parallel code for fast dark matter simulation publication-title: Astron. Comput. – year: 2018 ident: b61 article-title: Global and local uncertainty principles for signals on graphs, vol. 7 – volume: 4 start-page: 407 year: 2018 end-page: 420 ident: b47 article-title: Approximate fast graph Fourier transforms via multi-layer sparse approximations publication-title: IEEE Trans. Signal Inf. Process. Over Netw. – reference: Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R., 2016. Gated graph sequence neural networks, in: International Conference on Learning Representation. – volume: 97 year: 2018 ident: b31 article-title: Non-Gaussian information from weak lensing data via deep learning publication-title: Phys. Rev. D – start-page: 2695 year: 2012 end-page: 2702 ident: b78 article-title: Recognizing scene viewpoint using panoramic place representation publication-title: Computer Vision and Pattern Recognition, CVPR, 2012 IEEE Conference on – volume: 235 start-page: 42 year: 2018 ident: b4 article-title: The fourteenth data release of the sloan digital sky survey: First spectroscopic data from the extended baryon oscillation spectroscopic survey and from the second phase of the apache point observatory galactic evolution experiment publication-title: Astrophys. J. Suppl. – reference: Baqué, P., Remelli, E., Fleuret, F., Fua, P., 2018. Geodesic convolutional shape optimization, in: International Conference on Machine Learning. – reference: Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine Learning, pp. 448–456. – volume: 4 start-page: 015 year: 2008 ident: b6 article-title: Detecting cosmic strings in the CMB with the Canny algorithm publication-title: J. Cosmol. Astropart. Phys. – start-page: 529 year: 2017 end-page: 539 ident: b76 article-title: Learning spherical convolution for fast features from 360 imagery publication-title: Advances in Neural Information Processing Systems – reference: Krachmalnicoff, N., Tomasi, M., 2019. Convolutional Neural Networks on the HEALPix sphere: a pixel-based algorithm and its application to CMB data analysis, arXiv preprint – volume: 2019 start-page: 044 year: 2019 ident: b72 article-title: Fast generation of covariance matrices for weak lensing publication-title: J. Cosmol. Astropart. Phys. – year: 2017 ident: b32 article-title: Representation learning on graphs: Methods and applications publication-title: IEEE Data Eng. Bull. – reference: Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P., 2015. Geodesic convolutional neural networks on riemannian manifolds, in: Proceedings of the IEEE international conference on computer vision workshops, pp. 37–45. – volume: 554 start-page: A112 year: 2013 ident: b65 article-title: Libsharp–spherical harmonic transforms revisited publication-title: Astron. Astrophys. – volume: 470 start-page: 2617 year: 2017 end-page: 2652 ident: b5 article-title: The clustering of galaxies in the completed SDSS-III baryon oscillation spectroscopic survey: cosmological analysis of the dr12 galaxy sample publication-title: Mon. Not. R. Astron. Soc. – volume: vol. 333 start-page: 47 year: 2018 end-page: 51 ident: b33 article-title: Reionization models classifier using 21cm map deep learning publication-title: IAU Symposium – reference: 2018. The Dark Energy Survey Data Release 1 – volume: 475 start-page: 3165 year: 2018 end-page: 3190 ident: b17 article-title: Dark energy survey year 1 results: curved-sky weak lensing mass map publication-title: Mon. Not. R. Astron. Soc. – volume: 622 start-page: 759 year: 2005 ident: b30 article-title: Healpix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere publication-title: Astrophys. J. – reference: Kondor, R., Trivedi, S., On the generalization of equivariance and convolution in neural networks to the action of compact groups (2018) – reference: Kondor, R., Lin, Z., Trivedi, S., 2018. Clebsch-gordan nets: a Fully Fourier space spherical convolutional neural network, – volume: 30 start-page: 83 year: 2013 end-page: 98 ident: b73 article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains publication-title: IEEE Signal Process. Mag. – reference: Fluri, J., Kacprzak, T., Lucchi, A., Refregier, A., Amara, A., Hofmann, T., 2018. Cosmological constraints from noisy convergence maps through deep learning – reference: Lin, M., Chen, Q., Yan, S., 2013. Network in network – volume: 472 start-page: 439 year: 2017 end-page: 446 ident: b60 article-title: Cosmological constraints from the convergence 1-point probability distribution publication-title: Mon. Not. R. Astron. Soc. – volume: vol. 1 start-page: 3 year: 2017 ident: b57 article-title: Geometric deep learning on graphs and manifolds using mixture model CNNs publication-title: Proc. CVPR – reference: . – reference: Esteves, C., Allen-Blanchette, C., Makadia, A., Daniilidis, K., 2017. Learning SO(3) equivariant representations with spherical CNNs, – volume: 5 start-page: 159 year: 1999 end-page: 184 ident: b56 article-title: A fast transform for spherical harmonics publication-title: J. Fourier Anal. Appl. – start-page: 668 year: 2014 end-page: 686 ident: b79 article-title: Panocontext: A whole-room 3d context model for panoramic scene understanding publication-title: European Conference on Computer Vision – start-page: 3844 year: 2016 end-page: 3852 ident: b22 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Advances in Neural Information Processing Systems – start-page: 3697 year: 2017 end-page: 3707 ident: b58 article-title: Geometric matrix completion with recurrent multi-graph neural networks publication-title: Advances in Neural Information Processing Systems – volume: 594 start-page: A116 year: 2016 ident: b13 article-title: HI4PI: A full-sky H I survey based on EBHIS and GASS publication-title: Astron. Astrophys. – volume: 65 start-page: 3462 year: 2017 end-page: 3477 ident: b62 article-title: Stationary signal processing on graphs. publication-title: IEEE Trans. Signal Process. – volume: 479 start-page: 3405 year: 2018 end-page: 3414 ident: b53 article-title: Machine learning cosmological structure formation publication-title: Mon. Not. R. Astron. Soc. – ident: 10.1016/j.ascom.2019.03.004_b45 doi: 10.1051/0004-6361/201935211 – ident: 10.1016/j.ascom.2019.03.004_b27 doi: 10.1109/ICCVW.2017.106 – volume: 554 start-page: A112 year: 2013 ident: 10.1016/j.ascom.2019.03.004_b65 article-title: Libsharp–spherical harmonic transforms revisited publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201321494 – ident: 10.1016/j.ascom.2019.03.004_b23 – ident: 10.1016/j.ascom.2019.03.004_b71 – volume: 65 start-page: 1331 issue: 10 year: 2012 ident: 10.1016/j.ascom.2019.03.004_b54 article-title: Group invariant scattering publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.21413 – start-page: 668 year: 2014 ident: 10.1016/j.ascom.2019.03.004_b79 article-title: Panocontext: A whole-room 3d context model for panoramic scene understanding – volume: 594 start-page: A13 year: 2016 ident: 10.1016/j.ascom.2019.03.004_b2 article-title: Planck 2015 results. xiii. cosmological parameters publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201525830 – year: 2018 ident: 10.1016/j.ascom.2019.03.004_b50 – volume: 4 start-page: 407 issue: 2 year: 2018 ident: 10.1016/j.ascom.2019.03.004_b47 article-title: Approximate fast graph Fourier transforms via multi-layer sparse approximations publication-title: IEEE Trans. Signal Inf. Process. Over Netw. doi: 10.1109/TSIPN.2017.2710619 – start-page: 19 year: 2015 ident: 10.1016/j.ascom.2019.03.004_b69 article-title: Cosmology from a SKA HI intensity mapping survey – ident: 10.1016/j.ascom.2019.03.004_b28 doi: 10.1093/mnras/stz010 – volume: vol. 1 start-page: 655 year: 2014 ident: 10.1016/j.ascom.2019.03.004_b40 article-title: A convolutional neural network for modelling sentences – ident: 10.1016/j.ascom.2019.03.004_b66 – volume: 622 start-page: 759 issue: 2 year: 2005 ident: 10.1016/j.ascom.2019.03.004_b30 article-title: Healpix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere publication-title: Astrophys. J. doi: 10.1086/427976 – ident: 10.1016/j.ascom.2019.03.004_b43 – volume: 472 start-page: 439 year: 2017 ident: 10.1016/j.ascom.2019.03.004_b60 article-title: Cosmological constraints from the convergence 1-point probability distribution publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stx1626 – volume: 594 start-page: A116 year: 2016 ident: 10.1016/j.ascom.2019.03.004_b13 article-title: HI4PI: A full-sky H I survey based on EBHIS and GASS publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201629178 – volume: 594 start-page: A1 year: 2016 ident: 10.1016/j.ascom.2019.03.004_b1 article-title: Planck 2015 results. i. overview of products and scientific results publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201527101 – volume: 77 issue: 12 year: 2008 ident: 10.1016/j.ascom.2019.03.004_b38 article-title: Harmonic inpainting of the cosmic microwave background sky: Formulation and error estimate publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.77.123539 – volume: 235 start-page: 42 year: 2018 ident: 10.1016/j.ascom.2019.03.004_b4 article-title: The fourteenth data release of the sloan digital sky survey: First spectroscopic data from the extended baryon oscillation spectroscopic survey and from the second phase of the apache point observatory galactic evolution experiment publication-title: Astrophys. J. Suppl. doi: 10.3847/1538-4365/aa9e8a – volume: 4 start-page: 015 year: 2008 ident: 10.1016/j.ascom.2019.03.004_b6 article-title: Detecting cosmic strings in the CMB with the Canny algorithm publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2008/04/015 – ident: 10.1016/j.ascom.2019.03.004_b25 doi: 10.1007/978-3-030-01261-8_4 – ident: 10.1016/j.ascom.2019.03.004_b49 – ident: 10.1016/j.ascom.2019.03.004_b74 – volume: 81 issue: 4 year: 2018 ident: 10.1016/j.ascom.2019.03.004_b75 article-title: Recent discoveries from the cosmic microwave background: a review of recent progress publication-title: Rep. Progr. Phys. doi: 10.1088/1361-6633/aa94d5 – start-page: 529 year: 2017 ident: 10.1016/j.ascom.2019.03.004_b76 article-title: Learning spherical convolution for fast features from 360 imagery – volume: 12 start-page: 109 year: 2015 ident: 10.1016/j.ascom.2019.03.004_b37 article-title: L-PICOLA: A parallel code for fast dark matter simulation publication-title: Astron. Comput. doi: 10.1016/j.ascom.2015.07.003 – year: 2018 ident: 10.1016/j.ascom.2019.03.004_b61 – volume: 97 issue: 10 year: 2018 ident: 10.1016/j.ascom.2019.03.004_b31 article-title: Non-Gaussian information from weak lensing data via deep learning publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.103515 – volume: 169 start-page: 431 year: 2018 ident: 10.1016/j.ascom.2019.03.004_b46 article-title: Metric learning with spectral graph convolutions on brain connectivity networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.12.052 – ident: 10.1016/j.ascom.2019.03.004_b70 – year: 2018 ident: 10.1016/j.ascom.2019.03.004_b36 article-title: Geometric deep learning autonomously learns chemical features that outperform those engineered by domain experts publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.7b01144 – ident: 10.1016/j.ascom.2019.03.004_b11 – volume: 465 start-page: 1454 year: 2017 ident: 10.1016/j.ascom.2019.03.004_b35 article-title: KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stw2805 – volume: 27 start-page: 1903 issue: 6 year: 2006 ident: 10.1016/j.ascom.2019.03.004_b67 article-title: Fast algorithms for spherical harmonic expansions publication-title: SIAM J. Sci. Comput. doi: 10.1137/050623073 – year: 2015 ident: 10.1016/j.ascom.2019.03.004_b3 – start-page: 3189 year: 2016 ident: 10.1016/j.ascom.2019.03.004_b15 article-title: Learning shape correspondence with anisotropic convolutional neural networks – volume: 34 start-page: 18 issue: 4 year: 2017 ident: 10.1016/j.ascom.2019.03.004_b16 article-title: Geometric deep learning: going beyond Euclidean data publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2693418 – ident: 10.1016/j.ascom.2019.03.004_b8 – start-page: 3844 year: 2016 ident: 10.1016/j.ascom.2019.03.004_b22 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – ident: 10.1016/j.ascom.2019.03.004_b39 – ident: 10.1016/j.ascom.2019.03.004_b26 doi: 10.1103/PhysRevD.98.123518 – ident: 10.1016/j.ascom.2019.03.004_b52 doi: 10.1109/CVPR.2015.7298965 – ident: 10.1016/j.ascom.2019.03.004_b21 – volume: vol. 1 start-page: 3 year: 2017 ident: 10.1016/j.ascom.2019.03.004_b57 article-title: Geometric deep learning on graphs and manifolds using mixture model CNNs – volume: 192 start-page: 18 year: 2011 ident: 10.1016/j.ascom.2019.03.004_b42 article-title: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation publication-title: Astrophys. J. Suppl. doi: 10.1088/0067-0049/192/2/18 – start-page: 2224 year: 2015 ident: 10.1016/j.ascom.2019.03.004_b24 article-title: Convolutional networks on graphs for learning molecular fingerprints – start-page: 2407 year: 2016 ident: 10.1016/j.ascom.2019.03.004_b64 article-title: Estimating cosmological parameters from the dark matter distribution – volume: 124 start-page: 93 issue: 1 year: 1996 ident: 10.1016/j.ascom.2019.03.004_b68 article-title: The “cubed sphere”: a new method for the solution of partial differential equations in spherical geometry publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0047 – ident: 10.1016/j.ascom.2019.03.004_b29 – ident: 10.1016/j.ascom.2019.03.004_b19 – volume: vol. 333 start-page: 47 year: 2018 ident: 10.1016/j.ascom.2019.03.004_b33 article-title: Reionization models classifier using 21cm map deep learning – start-page: 3697 year: 2017 ident: 10.1016/j.ascom.2019.03.004_b58 article-title: Geometric matrix completion with recurrent multi-graph neural networks – volume: 475 start-page: 3165 year: 2018 ident: 10.1016/j.ascom.2019.03.004_b17 article-title: Dark energy survey year 1 results: curved-sky weak lensing mass map publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stx3363 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.ascom.2019.03.004_b48 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: 10.1016/j.ascom.2019.03.004_b7 – ident: 10.1016/j.ascom.2019.03.004_b41 – year: 2017 ident: 10.1016/j.ascom.2019.03.004_b32 article-title: Representation learning on graphs: Methods and applications publication-title: IEEE Data Eng. Bull. – ident: 10.1016/j.ascom.2019.03.004_b63 doi: 10.1109/ICCV.2017.556 – start-page: 177 year: 2017 ident: 10.1016/j.ascom.2019.03.004_b59 article-title: Spectral graph convolutions for population-based disease prediction – year: 2018 ident: 10.1016/j.ascom.2019.03.004_b34 – volume: 2019 start-page: 044 issue: 01 year: 2019 ident: 10.1016/j.ascom.2019.03.004_b72 article-title: Fast generation of covariance matrices for weak lensing publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2019/01/044 – ident: 10.1016/j.ascom.2019.03.004_b20 doi: 10.1007/978-3-030-01240-3_32 – ident: 10.1016/j.ascom.2019.03.004_b51 – start-page: 129 year: 2007 ident: 10.1016/j.ascom.2019.03.004_b12 article-title: Convergence of laplacian eigenmaps – ident: 10.1016/j.ascom.2019.03.004_b77 doi: 10.1103/PhysRevD.98.043528 – start-page: 3436 year: 2017 ident: 10.1016/j.ascom.2019.03.004_b14 article-title: Spherical convolutions and their application in molecular modelling – volume: 479 start-page: 3405 year: 2018 ident: 10.1016/j.ascom.2019.03.004_b53 article-title: Machine learning cosmological structure formation publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/sty1719 – ident: 10.1016/j.ascom.2019.03.004_b55 doi: 10.1109/ICCVW.2015.112 – volume: 470 start-page: 2617 year: 2017 ident: 10.1016/j.ascom.2019.03.004_b5 article-title: The clustering of galaxies in the completed SDSS-III baryon oscillation spectroscopic survey: cosmological analysis of the dr12 galaxy sample publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stx721 – ident: 10.1016/j.ascom.2019.03.004_b18 doi: 10.1088/1475-7516/2017/08/028 – volume: 5 start-page: 159 issue: 2–3 year: 1999 ident: 10.1016/j.ascom.2019.03.004_b56 article-title: A fast transform for spherical harmonics publication-title: J. Fourier Anal. Appl. doi: 10.1007/BF01261607 – ident: 10.1016/j.ascom.2019.03.004_b44 – volume: 27 issue: 23 year: 2010 ident: 10.1016/j.ascom.2019.03.004_b9 article-title: Gravitational lensing publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/27/23/233001 – start-page: 2695 year: 2012 ident: 10.1016/j.ascom.2019.03.004_b78 article-title: Recognizing scene viewpoint using panoramic place representation – volume: 65 start-page: 3462 issue: 13 year: 2017 ident: 10.1016/j.ascom.2019.03.004_b62 article-title: Stationary signal processing on graphs. publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2690388 – volume: 340 start-page: 291 year: 2001 ident: 10.1016/j.ascom.2019.03.004_b10 article-title: Weak gravitational lensing publication-title: Phys. Rep. doi: 10.1016/S0370-1573(00)00082-X – volume: 30 start-page: 83 issue: 3 year: 2013 ident: 10.1016/j.ascom.2019.03.004_b73 article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2235192 |
| SSID | ssj0000941528 |
| Score | 2.5251236 |
| Snippet | Convolutional Neural Networks (CNNs) are a cornerstone of the Deep Learning toolbox and have led to many breakthroughs in Artificial Intelligence. So far,... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 130 |
| SubjectTerms | Cosmological data analysis DeepSphere Graph CNN Mass mapping Spherical convolutional neural network |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iRS_iE9_kIJ6su23SJvW2rCuLqAgqeCtpHrKy1mJX1Iu_3Zm0XdaDIp7ahAwtmXRmMv3yDSEHxvFEJawbQKiAR3ISHuSOuSAE3x_naeKUxgPOl1fJ8I6f38f3c6TfnoVBWGVj-2ub7q1109NpZrNTjkadmygKGeywwLgyjGPQDnMusIrB8Wc4zbPA9gVclC9MB-MDFGjJhzzMS1WIGgE32JCd8p8c1MJrUaqPNzUezzigs2Wy1ESOtFe_3AqZs8Uq2exVmMt-fvqgh9Tf16mKao2Up9aWN8gaYE_owDNFgIOhFfagZigCzpuFBy0ktvQXDwunmJ-lw0Hv4nr0TiuFuPPigUKEC2LVU2sx6ez_73Vydza47Q-Dpr5CoBmXk0BLkTMpjeLCMmWUSg1jqdQyMsZ0tdGJyGNnE55GhgstbSTgexfS5TxUjhu2QeaL58JuEqryNNI8hlhTKO60VCFYwth1IdoQCuS2SNROaqYb8nGsgTHOWpTZY-Y1kaEmsi7LQBNb5GgqVNbcG78PT1ptZd-WUAbe4XfBYKrbvzxo-78P2iGL2KqBP7tkfvLyavcgppnk-37RfgHnzfas priority: 102 providerName: Elsevier |
| Title | DeepSphere: Efficient spherical convolutional neural network with HEALPix sampling for cosmological applications |
| URI | https://dx.doi.org/10.1016/j.ascom.2019.03.004 http://infoscience.epfl.ch/record/266685 |
| UnpaywallVersion | submittedVersion |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 2213-1345 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941528 issn: 2213-1337 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 2213-1345 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941528 issn: 2213-1337 databaseCode: ACRLP dateStart: 20130201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 2213-1345 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941528 issn: 2213-1337 databaseCode: .~1 dateStart: 20130201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 2213-1345 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941528 issn: 2213-1337 databaseCode: AIKHN dateStart: 20130201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2213-1345 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941528 issn: 2213-1337 databaseCode: AKRWK dateStart: 20130201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF5BcuiptJQqQTTaA-JUR7F3vbvmZpWgtECE1EYKJ2u9j_JwTIQTAT3w2zvrB0SqGtqT19aObHlG831ez36D0L62lElGBh5QBbclh1EvtcR6PmB_mEbMSuU2OJ-N2WhCv03D6ct6h3urdeqHdGyzvrpseqMBkjARbqI2C4F1t1B7Mj6PL1zvuMAnHnxq8ZcxDRuBobKUSxauMgSgrhY0pX8DoTfLfC4f72WWrYDM8ValeFSU2oSutuSmv1ykffXrT-XGV5__HXpbM00cV6HxHm2YfBt14sKtfd_OHvEBLsfV0kbxAc2PjJl_dyoD5hAPS2UJACRcuCvOk9gVqNeBCmdOCLM8lGXk2K3n4tEwPj2_esCFdHXq-U8MjBjMilmTYfHq__IdNDke_vgy8up-DJ4iVCw8JXhKhNCSckOkljLShERCiUBrPVBaMZ6G1jAaBZpyJUzAIT9wYVPqS0s1-Yha-W1uOgjLNAoUDYGbckmtEtKHzBnaAbATLsGui4LGQYmqxcpdz4wsaarSrpPSq4nzajIgCXi1iz4_G80rrY7101nj-aT2WUUjEkCT9Ybec5z8y412_3P-Hmot7pbmE7CdRdpDm_0nv4fa8deT0bhXh_1vJPUFgw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOilKlDEq9QHxKlhN7ETO72t6KJtWRASIHGzHD-qrZYQNYuAC7-dGSdZwQGEOCVxMnLkcWa-mXweE7JnPc90xvoRQAVckpPxqPDMRzH4_rTIM68NLnA-Oc1Gl_zPVXq1QA67tTBIq2xtf2PTg7VuW3rtaPaqyaR3niQxgwgLjCtDHAN2eImnicAI7OAxnidaIH4BHxV2pgOBCCW66kOB56VrpI2AH2yrnfLXPNTybVnphzs9nT7zQEdfyOcWOtJB83YrZMGVq2RjUGMy--b6ge7TcN7kKuo1Uv1yrjrHsgHuJx2GUhHgYWiNLagaiozzdubBFVa2DIfAC6eYoKWj4WB8NrmntUbiefmXAsQFsfq6M5n0-Q_wr-TyaHhxOIraDRYiw7icRUaKgklpNReOaat1bhnLpZGJtbZvrMlEkXqX8TyxXBjpEgEfvJC-4LH23LJ1sljelG6DUF3kieEpgE2huTdSx2AKU98HuCE0yG2SpBtUZdrq47gJxlR1NLN_KmhCoSZUnynQxCb5MReqmuIbbz-eddpSL-aQAvfwtmA01-17Otr6aEffyfLo4mSsxr9Pj7fJJ7zTsIB2yOLs_637BgBnVuyGCfwEW6v5zw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60Hjz5FisqexBPprTZze7GW9CWIiqCFuopbPbhq43FtPj49c7mUQWx6imbsENCZpjvy2b2G4T2taVMMtL0gCq4LTmMeokl1msB9gdJyKxUboPz-QXr9uhpP-h_rne4t1qmfkjHdtBQd1VvNEASJoJ5tMACYN01tNC7uIxuXO84v0U8-NTin2MaVAJDeSmXzFxlCEBdKWhKfwKhxUk6km8vcjD4AjKd5ULxKMu1CV1tyWNjMk4a6v27cuOvz7-ClkqmiaMiNFbRnEnX0FaUubXvp-EbPsD5uFjayNbR6MSY0ZVTGTBHuJ0rSwAg4cxdcZ7ErkC9DFQ4c0KY-SEvI8duPRd329HZ5f0rzqSrU09vMTBiMMuGVYbFX_-Xb6Bep3193PXKfgyeIlSMPSV4QoTQknJDpJYy1ISEQglfa91UWjGeBNYwGvqaciWMzyE_cGET2pKWarKJaulTarYQlknoKxoAN-WSWiVkCzJnYJvATrgEuzryKwfFqhQrdz0zBnFVlfYQ516NnVfjJonBq3V0ODUaFVods6ezyvNx6bOCRsSAJrMNvWmc_OVG2_-cv4Nq4-eJ2QW2M072ykD_AO8HAvc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepSphere%3A+Efficient+spherical+convolutional+neural+network+with+HEALPix+sampling+for+cosmological+applications&rft.jtitle=Astronomy+and+computing&rft.au=Perraudin%2C+N.&rft.au=Defferrard%2C+M.&rft.au=Kacprzak%2C+T.&rft.au=Sgier%2C+R.&rft.date=2019-04-01&rft.issn=2213-1337&rft.volume=27&rft.spage=130&rft.epage=146&rft_id=info:doi/10.1016%2Fj.ascom.2019.03.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ascom_2019_03_004 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-1337&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-1337&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-1337&client=summon |