DeepSphere: Efficient spherical convolutional neural network with HEALPix sampling for cosmological applications

Convolutional Neural Networks (CNNs) are a cornerstone of the Deep Learning toolbox and have led to many breakthroughs in Artificial Intelligence. So far, these neural networks (NNs) have mostly been developed for regular Euclidean domains such as those supporting images, audio, or video. Because of...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and computing Vol. 27; pp. 130 - 146
Main Authors Perraudin, N., Defferrard, M., Kacprzak, T., Sgier, R.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2019
Subjects
Online AccessGet full text
ISSN2213-1337
2213-1345
2213-1345
DOI10.1016/j.ascom.2019.03.004

Cover

Abstract Convolutional Neural Networks (CNNs) are a cornerstone of the Deep Learning toolbox and have led to many breakthroughs in Artificial Intelligence. So far, these neural networks (NNs) have mostly been developed for regular Euclidean domains such as those supporting images, audio, or video. Because of their success, CNN-based methods are becoming increasingly popular in Cosmology. Cosmological data often comes as spherical maps, which make the use of the traditional CNNs more complicated. The commonly used pixelization scheme for spherical maps is the Hierarchical Equal Area isoLatitude Pixelisation (HEALPix). We present a spherical CNN for analysis of full and partial HEALPix maps, which we call DeepSphere. The spherical CNN is constructed by representing the sphere as a graph. Graphs are versatile data structures that can represent pairwise relationships between objects or act as a discrete representation of a continuous manifold. Using the graph-based representation, we define many of the standard CNN operations, such as convolution and pooling. With filters restricted to being radial, our convolutions are equivariant to rotation on the sphere, and DeepSphere can be made invariant or equivariant to rotation. This way, DeepSphere is a special case of a graph CNN, tailored to the HEALPix sampling of the sphere. This approach is computationally more efficient than using spherical harmonics to perform convolutions. We demonstrate the method on a classification problem of weak lensing mass maps from two cosmological models and compare its performance with that of three baseline classifiers, two based on the power spectrum and pixel density histogram, and a classical 2D CNN. Our experimental results show that the performance of DeepSphere is always superior or equal to the baselines. For high noise levels and for data covering only a smaller fraction of the sphere, DeepSphere achieves typically 10% better classification accuracy than the baselines.Finally, we show how learned filters can be visualized to introspect the NN. Code and examples are available at https://github.com/SwissDataScienceCenter/DeepSphere.
AbstractList Convolutional Neural Networks (CNNs) are a cornerstone of the Deep Learning toolbox and have led to many breakthroughs in Artificial Intelligence. So far, these neural networks (NNs) have mostly been developed for regular Euclidean domains such as those supporting images, audio, or video. Because of their success, CNN-based methods are becoming increasingly popular in Cosmology. Cosmological data often comes as spherical maps, which make the use of the traditional CNNs more complicated. The commonly used pixelization scheme for spherical maps is the Hierarchical Equal Area isoLatitude Pixelisation (HEALPix). We present a spherical CNN for analysis of full and partial HEALPix maps, which we call DeepSphere. The spherical CNN is constructed by representing the sphere as a graph. Graphs are versatile data structures that can represent pairwise relationships between objects or act as a discrete representation of a continuous manifold. Using the graph-based representation, we define many of the standard CNN operations, such as convolution and pooling. With filters restricted to being radial, our convolutions are equivariant to rotation on the sphere, and DeepSphere can be made invariant or equivariant to rotation. This way, DeepSphere is a special case of a graph CNN, tailored to the HEALPix sampling of the sphere. This approach is computationally more efficient than using spherical harmonics to perform convolutions. We demonstrate the method on a classification problem of weak lensing mass maps from two cosmological models and compare its performance with that of three baseline classifiers, two based on the power spectrum and pixel density histogram, and a classical 2D CNN. Our experimental results show that the performance of DeepSphere is always superior or equal to the baselines. For high noise levels and for data covering only a smaller fraction of the sphere, DeepSphere achieves typically 10% better classification accuracy than the baselines.Finally, we show how learned filters can be visualized to introspect the NN. Code and examples are available at https://github.com/SwissDataScienceCenter/DeepSphere.
Author Defferrard, M.
Sgier, R.
Kacprzak, T.
Perraudin, N.
Author_xml – sequence: 1
  givenname: N.
  surname: Perraudin
  fullname: Perraudin, N.
  email: nathanael.perraudin@sdsc.ethz.ch
  organization: Swiss Data Science Center (SDSC), Zurich, Switzerland
– sequence: 2
  givenname: M.
  surname: Defferrard
  fullname: Defferrard, M.
  organization: Institute of Electrical Engineering, EPFL, Lausanne, Switzerland
– sequence: 3
  givenname: T.
  surname: Kacprzak
  fullname: Kacprzak, T.
  organization: Institute for Particle Physics and Astrophysics, ETH Zurich, Switzerland
– sequence: 4
  givenname: R.
  surname: Sgier
  fullname: Sgier, R.
  organization: Institute for Particle Physics and Astrophysics, ETH Zurich, Switzerland
BookMark eNqNkd9OwjAUhxuDiYg8gTd7AWa7FtaZeEEQxYREE_W6Kf0Dxa5d2iHy9m7DeOGF2pvTnpPvl5yv56DnvFMAXCKYIogmV9uUR-HLNIOoSCFOISQnoJ9lCI8QJuPe9x3nZ2AY4xY2pyBonNE-qG6Vqp6rjQrqOplrbYRRrk5i2zGC20R49-7trjbeNS-ndqEr9d6Ht2Rv6k2ymE-XT-YjibysrHHrRPvQYLH01q-7DF41A8HbjHgBTjW3UQ2_6gC83s1fZovR8vH-YTZdjgQmtB4Jmq8wpZKTXGEuOS8kxgUVNJNSQiHFJF-NtZqQIpMkF1RlOSQ0p3pFENdE4gEgx9ydq_hhz61lVTAlDweGIGvFsS3rxLFWHIOYNeIaDB8xEXyMQel_UsUPSpi627cO3Ng_2Jsjqxob70YFFts_EEqaoETNpDe_8p8_z6Ed
CitedBy_id crossref_primary_10_1016_j_knosys_2022_109985
crossref_primary_10_1103_PhysRevD_104_123022
crossref_primary_10_3847_1538_4357_abb9a7
crossref_primary_10_1103_PhysRevD_107_043509
crossref_primary_10_1088_1748_0221_19_03_C03008
crossref_primary_10_3390_rs16183448
crossref_primary_10_1017_pasa_2022_55
crossref_primary_10_1103_PhysRevD_105_083518
crossref_primary_10_1007_s00371_023_02904_z
crossref_primary_10_1088_1475_7516_2025_03_001
crossref_primary_10_1016_j_eswa_2023_122917
crossref_primary_10_1051_0004_6361_202040066
crossref_primary_10_1016_j_astropartphys_2020_102527
crossref_primary_10_1073_pnas_1821458116
crossref_primary_10_1007_s10462_023_10502_7
crossref_primary_10_1103_PhysRevD_104_123541
crossref_primary_10_1109_TSP_2023_3284357
crossref_primary_10_1109_ACCESS_2019_2944766
crossref_primary_10_1109_TITS_2022_3210409
crossref_primary_10_1007_s42979_021_00735_0
crossref_primary_10_1109_TIP_2022_3202357
crossref_primary_10_1111_cgf_14181
crossref_primary_10_1103_PhysRevD_102_023026
crossref_primary_10_3389_fnimg_2024_1349415
crossref_primary_10_1103_PhysRevD_100_063514
crossref_primary_10_1088_1475_7516_2022_12_013
crossref_primary_10_1093_mnras_stab1011
crossref_primary_10_1109_LRA_2020_2994036
crossref_primary_10_1016_j_neuroimage_2021_117758
crossref_primary_10_1002_mp_17748
crossref_primary_10_1088_1742_6596_2438_1_012067
crossref_primary_10_1103_PhysRevB_107_165149
crossref_primary_10_3847_1538_4357_abf3bb
crossref_primary_10_1029_2020MS002203
crossref_primary_10_1007_s11042_024_19139_2
crossref_primary_10_30970_jps_28_3001
crossref_primary_10_1038_s41598_024_78303_8
crossref_primary_10_1109_TVCG_2022_3165345
crossref_primary_10_1142_S0219467823500328
crossref_primary_10_1016_j_sigpro_2022_108529
crossref_primary_10_1029_2023GL103672
crossref_primary_10_21468_SciPostPhysProc_12_034
crossref_primary_10_1051_epjconf_202429503002
crossref_primary_10_1051_0004_6361_201935211
crossref_primary_10_1103_PhysRevLett_125_241102
crossref_primary_10_1016_j_ascom_2019_100307
crossref_primary_10_1007_s10462_023_10466_8
crossref_primary_10_1088_2632_2153_ac494a
crossref_primary_10_1587_transinf_2023EDP7023
crossref_primary_10_3847_1538_4365_ac5f4a
crossref_primary_10_1103_PhysRevD_109_052005
crossref_primary_10_1007_s40042_023_00877_9
crossref_primary_10_1103_PhysRevD_104_123526
crossref_primary_10_1109_TPAMI_2022_3215933
crossref_primary_10_1103_PhysRevD_105_063017
crossref_primary_10_1109_TPAMI_2021_3136921
crossref_primary_10_1093_mnras_stac393
crossref_primary_10_1007_s11433_020_1586_3
crossref_primary_10_1093_mnras_stz2610
crossref_primary_10_3389_fdata_2022_787421
crossref_primary_10_3847_1538_4357_ab5f5e
crossref_primary_10_1016_j_cosrev_2024_100695
crossref_primary_10_1051_0004_6361_202243054
crossref_primary_10_1088_1475_7516_2020_11_005
crossref_primary_10_1016_j_dsp_2023_103989
crossref_primary_10_1103_PhysRevA_106_032402
crossref_primary_10_3103_S0027134920060235
crossref_primary_10_1109_TASLP_2022_3224282
crossref_primary_10_1109_ACCESS_2022_3151350
crossref_primary_10_1103_PhysRevD_110_043535
crossref_primary_10_1093_mnras_staa1009
crossref_primary_10_1109_TMI_2022_3168670
crossref_primary_10_1109_TITS_2023_3235057
crossref_primary_10_1140_epjs_s11734_021_00207_9
crossref_primary_10_1103_PhysRevD_102_103509
crossref_primary_10_3390_math12060885
crossref_primary_10_1016_j_patcog_2019_107081
crossref_primary_10_1021_acs_jcim_2c00832
crossref_primary_10_1007_JHEP11_2021_158
crossref_primary_10_1007_s10462_024_10722_5
crossref_primary_10_1051_0004_6361_202245624
crossref_primary_10_1109_TSP_2023_3304410
crossref_primary_10_1029_2023MS004021
crossref_primary_10_1162_imag_a_00353
crossref_primary_10_1016_j_nima_2021_165527
Cites_doi 10.1051/0004-6361/201935211
10.1109/ICCVW.2017.106
10.1051/0004-6361/201321494
10.1002/cpa.21413
10.1051/0004-6361/201525830
10.1109/TSIPN.2017.2710619
10.1093/mnras/stz010
10.1086/427976
10.1093/mnras/stx1626
10.1051/0004-6361/201629178
10.1051/0004-6361/201527101
10.1103/PhysRevD.77.123539
10.3847/1538-4365/aa9e8a
10.1088/1475-7516/2008/04/015
10.1007/978-3-030-01261-8_4
10.1088/1361-6633/aa94d5
10.1016/j.ascom.2015.07.003
10.1103/PhysRevD.97.103515
10.1016/j.neuroimage.2017.12.052
10.1021/acs.molpharmaceut.7b01144
10.1093/mnras/stw2805
10.1137/050623073
10.1109/MSP.2017.2693418
10.1103/PhysRevD.98.123518
10.1109/CVPR.2015.7298965
10.1088/0067-0049/192/2/18
10.1006/jcph.1996.0047
10.1093/mnras/stx3363
10.1109/5.726791
10.1109/ICCV.2017.556
10.1088/1475-7516/2019/01/044
10.1007/978-3-030-01240-3_32
10.1103/PhysRevD.98.043528
10.1093/mnras/sty1719
10.1109/ICCVW.2015.112
10.1093/mnras/stx721
10.1088/1475-7516/2017/08/028
10.1007/BF01261607
10.1088/0264-9381/27/23/233001
10.1109/TSP.2017.2690388
10.1016/S0370-1573(00)00082-X
10.1109/MSP.2012.2235192
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.ascom.2019.03.004
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 2213-1345
EndPage 146
ExternalDocumentID oai:infoscience.epfl.ch:266685
10_1016_j_ascom_2019_03_004
S2213133718301392
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
AAYFN
ABBOA
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
KOM
M41
MO0
O-L
O9-
OAUVE
OGIMB
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSQ
SSV
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c348t-c87b388da47e3adaa9d3398c82ddd0cdc67b5fe6492d47c8e2704878fb41af4d3
IEDL.DBID UNPAY
ISSN 2213-1337
2213-1345
IngestDate Wed Oct 29 12:02:47 EDT 2025
Wed Oct 01 02:05:41 EDT 2025
Thu Apr 24 22:57:17 EDT 2025
Fri Feb 23 02:33:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mass mapping
Spherical convolutional neural network
Graph CNN
Cosmological data analysis
DeepSphere
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-c87b388da47e3adaa9d3398c82ddd0cdc67b5fe6492d47c8e2704878fb41af4d3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://infoscience.epfl.ch/record/266685
PageCount 17
ParticipantIDs unpaywall_primary_10_1016_j_ascom_2019_03_004
crossref_primary_10_1016_j_ascom_2019_03_004
crossref_citationtrail_10_1016_j_ascom_2019_03_004
elsevier_sciencedirect_doi_10_1016_j_ascom_2019_03_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2019
2019-04-00
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationTitle Astronomy and computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al., 2018. Relational inductive biases, deep learning, and graph networks
Li, Yu, Shahabi, Liu (b50) 2018
Monti, Bronstein, Bresson (b58) 2017
Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440.
Howlett, Manera, Percival (b37) 2015; 12
Ktena, Parisot, Ferrante, Rajchl, Lee, Glocker, Rueckert (b46) 2018; 169
Ronchi, Iacono, Paolucci (b68) 1996; 124
Bartelmann, Schneider (b10) 2001; 340
Rokhlin, Tygert (b67) 2006; 27
Boscaini, Masci, Rodolà, Bronstein (b15) 2016
Reinecke, Seljebotn (b65) 2013; 554
Frossard, P., Khasanova, R., 2017. Graph-based classification of omnidirectional images, in: 2017 IEEE International Conference on Computer Vision Workshops, ICCVW, pp. 860–869.
Amsel, Berger, Brandenberger (b6) 2008; 4
Krachmalnicoff, N., Tomasi, M., 2019. Convolutional Neural Networks on the HEALPix sphere: a pixel-based algorithm and its application to CMB data analysis, arXiv preprint
Mohlenkamp (b56) 1999; 5
Bartelmann (b9) 2010; 27
Belkin, Niyogi (b12) 2007
Zhang, Song, Tan, Xiao (b79) 2014
Abolfathi, Aguado, Aguilar, Allende Prieto, Almeida, Ananna, Anders, Anderson, Andrews, Anguiano (b4) 2018; 235
Boomsma, Frellsen (b14) 2017
2018. The Dark Energy Survey Data Release 1
Kondor, R., Trivedi, S., On the generalization of equivariance and convolution in neural networks to the action of compact groups (2018)
Ben Bekhti, Flöer, Keller, Kerp, Lenz, Winkel, Bailin, Calabretta, Dedes, Ford, Gibson, Haud, Janowiecki, Kalberla, Lockman, McClure-Griffiths, Murphy, Nakanishi, Pisano, Staveley-Smith (b13) 2016; 594
Aragon-Calvo, M.A., 2018. Classifying the large scale structure of the universe with deep neural networks
Cohen, T.S., Geiger, M., Koehler, J., Welling, M., 2018. Spherical CNNs
Defferrard, Bresson, Vandergheynst (b22) 2016
Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization
Troxel, M.A., MacCrann, N., Zuntz, J., Eifler, T.F., Krause, E., Dodelson, S., Gruen, D., Blazek, J., Friedrich, O., Samuroff, S., Prat, J., Secco, L.F., Davis, C., Ferté, A., DeRose, J., Alarcon, A., Amara, A., Baxter, E., Becker, M.R., Bernstein, G.M., Bridle, S.L., Cawthon, R., Chang, C., Choi, A., De Vicente, J., Drlica-Wagner, A., Elvin-Poole, J., Frieman, J., Gatti, M., Hartley, W.G., Honscheid, K., Hoyle, B., Huff, E.M., Huterer, D., Jain, B., Jarvis, M., Kacprzak, T., Kirk, D., Kokron, N., Krawiec, C., Lahav, O., Liddle, A.R., Peacock, J., Rau, M.M., Refregier, A., Rollins, R.P., Rozo, E., Rykoff, E.S., Sánchez, C., Sevilla-Noarbe, I., Sheldon, E., Stebbins, A., Varga, T.N., Vielzeuf, P., Wang, M., Wechsler, R.H., Yanny, B., Abbott, T.M.C., Abdalla, F.B., Allam, S., Annis, J., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D.L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F.J., Crocce, M., Cunha, C.E., D’Andrea, C.B., da Costa, L.N., DePoy, D.L., Desai, S., Diehl, H.T., Dietrich, J.P., Doel, P., Fernandez, E., Flaugher, B., Fosalba, P., García-Bellido, J., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Goldstein, D.A., Gruendl, R.A., Gschwend, J., Gutierrez, G., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Kent, S., Kuehn, K., Kuhlmann, S., Kuropatkin, N., Li, T.S., Lima, M., Lin, H., Maia, M.A.G., March, M., Marshall, J.L., Martini, P., Melchior, P., Menanteau, F., Miquel, R., Mohr, J.J., Neilsen, E., Nichol, R.C., Nord, B., Petravick, D., Plazas, A.A., Romer, A.K., Roodman, A., Sako, M., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Smith, M., Smith, R.C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Tucker, D.L., Vikram, V., Walker, A.R., Weller, J., Zhang, Y., 2017. Dark energy survey year 1 results: Cosmological constraints from cosmic shear
Fluri, J., Kacprzak, T., Lucchi, A., Refregier, A., Amara, A., Hofmann, T., 2018. Cosmological constraints from noisy convergence maps through deep learning
Qi, X., Liao, R., Jia, J., Fidler, S., Urtasun, R., 2017. 3D graph neural networks for RGBD semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5199–5208.
Alam, Ata, Bailey, Beutler, Bizyaev, Blazek, Bolton, Brownstein, Burden, Chuang, Comparat, Cuesta, Dawson, Eisenstein, Escoffier, Gil-Marín, Grieb, Hand, Ho, Kinemuchi, Kirkby, Kitaura, Malanushenko, Malanushenko, Maraston, McBride, Nichol, Olmstead, Oravetz, Padmanabhan, Palanque-Delabrouille, Pan, Pellejero-Ibanez, Percival, Petitjean, Prada, Price-Whelan, Reid, Rodríguez-Torres, Roe, Ross, Ross, Rossi, Rubiño-Martín, Saito, Salazar-Albornoz, Samushia, Sánchez, Satpathy, Schlegel, Schneider, Scóccola, Seo, Sheldon, Simmons, Slosar, Strauss, Swanson, Thomas, Tinker, Tojeiro, Magaña, Vazquez, Verde, Wake, Wang, Weinberg, White, Wood-Vasey, Yèche, Zehavi, Zhai, Zhao (b5) 2017; 470
Sgier, Réfrégier, Amara, Nicola (b72) 2019; 2019
Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256.
Lin, M., Chen, Q., Yan, S., 2013. Network in network
Perraudin, Ricaud, Shuman, Vandergheynst (b61) 2018
,
Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine Learning, pp. 448–456.
Ribli, D., Ármin Pataki, B., Csabai, I., 2018. Learning from deep learning: better cosmological parameter inference from weak lensing maps
.
Perraudin, Vandergheynst (b62) 2017; 65
Ravanbakhsh, Oliva, Fromenteau, Price, Ho, Schneider, Póczos (b64) 2016
Inoue, Cabella, Komatsu (b38) 2008; 77
Mallat (b54) 2012; 65
Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for simplicity: The all convolutional net, arXiv preprint
Hildebrandt, Viola, Heymans, Joudaki, Kuijken, Blake, Erben, Joachimi, Klaes, Miller, Morrison, Nakajima, Verdoes Kleijn, Amon, Choi, Covone, de Jong, Dvornik, Fenech Conti, Grado, Harnois-Déraps, Herbonnet, Hoekstra, Köhlinger, McFarland, Mead, Merten, Napolitano, Peacock, Radovich, Schneider, Simon, Valentijn, van den Busch, van Uitert, Van Waerbeke (b35) 2017; 465
Hassan, Liu, Kohn, Aguirre, La Plante, Lidz (b33) 2018; vol. 333
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (b3) 2015
Monti, Boscaini, Masci, Rodola, Svoboda, Bronstein (b57) 2017; vol. 1
Santos, Bull, Alonso, Camera, Ferreira, Bernardi, Maartens, Viel, Villaescusa-Navarro, Abdalla, Jarvis, Metcalf, Pourtsidou, Wolz (b69) 2015
Staggs, Dunkley, Page (b75) 2018; 81
Esteves, C., Allen-Blanchette, C., Makadia, A., Daniilidis, K., 2017. Learning SO(3) equivariant representations with spherical CNNs
He, Ravanbakhsh, Ho (b34) 2018
Baqué, P., Remelli, E., Fleuret, F., Fua, P., 2018. Geodesic convolutional shape optimization, in: International Conference on Machine Learning.
Parisot, Ktena, Ferrante, Lee, Moreno, Glocker, Rueckert (b59) 2017
Patton, Blazek, Honscheid, Huff, Melchior, Ross, Suchyta (b60) 2017; 472
Kondor, R., Lin, Z., Trivedi, S., 2018. Clebsch-gordan nets: a Fully Fourier space spherical convolutional neural network
Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P., 2015. Geodesic convolutional neural networks on riemannian manifolds, in: Proceedings of the IEEE international conference on computer vision workshops, pp. 37–45.
Chang, Pujol, Mawdsley, Bacon, Elvin-Poole, Melchior, Kovács, Jain, Leistedt, Giannantonio, Alarcon, Baxter, Bechtol, Becker, Benoit-Lévy, Bernstein, Bonnett, Busha, Rosell, Castander, Cawthon, da Costa, Davis, De Vicente, DeRose, Drlica-Wagner, Fosalba, Gatti, Gaztanaga, Gruen, Gschwend, Hartley, Hoyle, Huff, Jarvis, Jeffrey, Kacprzak, Lin, MacCrann, Maia, Ogando, Prat, Rau, Rollins, Roodman, Rozo, Rykoff, Samuroff, Sánchez, Sevilla-Noarbe, Sheldon, Troxel, Varga, Vielzeuf, Vikram, Wechsler, Zuntz, Abbott, Abdalla, Allam, Annis, Bertin, Brooks, Buckley-Geer, Burke, Kind, Carretero, Crocce, Cunha, D’Andrea, Desai, Diehl, Dietrich, Doel, Estrada, Neto, Fernandez, Flaugher, Frieman, García-Bellido, Gruendl, Gutierrez, Honscheid, James, Jeltema, Johnson, Johnson, Kent, Kirk, Krause, Kuehn, Kuhlmann, Lahav, Li, Lima, March, Martini, Menanteau, Miquel, Mohr, Neilsen, Nichol, Petravick, Plazas, Romer, Sako, Sanchez, Scarpine, Schubnell, Smith, Smith, Soares-Santos, Sobreira, Suchyta, Tarle, Thomas, Tucker, Walker, Wester, Zhang (b17) 2018; 475
Xiao, Ehinger, Oliva, Torralba (b78) 2012
(b2) 2016; 594
Lucie-Smith, Peiris, Pontzen, Lochner (b53) 2018; 479
(b1) 2016; 594
Duvenaud, Maclaurin, Iparraguirre, Bombarell, Hirzel, Aspuru-Guzik, Adams (b24) 2015
Gorski, Hivon, Banday, Wandelt, Hansen, Reinecke, Bartelmann (b30) 2005; 622
Defferrard, M., Martin, L., Pena, R., Perraudin, N., PyGSP: graph signal processing in python
Schmelzle, J., Lucchi, A., Kacprzak, T., Amara, A., Sgier, R., Réfrégier, A., Hofmann, T., 2017. Cosmological model discrimination with Deep Learning
Komatsu, Smith, Dunkley, Bennett, Gold, Hinshaw, Jarosik, Larson, Nolta, Page, Spergel, Halpern, Hill, Kogut, Limon, Meyer, Odegard, Tucker, Weiland, Wollack, Wright (b42) 2011; 192
Shuman, Narang, Frossard, Ortega, Vandergheynst (b73) 2013; 30
Hop, Allgood, Yu (b36) 2018
Le Magoarou, Gribonval, Tremblay (b47) 2018; 4
Coors, B., Condurache, A.P., Geiger, A., 2018. SphereNet: Learning spherical representations for detection and classification in omnidirectional images, in: European Conference on Computer Vision.
Gupta, Matilla, Hsu, Haiman (b31) 2018; 97
LeCun, Bottou, Ben
(10.1016/j.ascom.2019.03.004_b1) 2016; 594
10.1016/j.ascom.2019.03.004_b18
10.1016/j.ascom.2019.03.004_b19
10.1016/j.ascom.2019.03.004_b11
10.1016/j.ascom.2019.03.004_b55
10.1016/j.ascom.2019.03.004_b52
Reinecke (10.1016/j.ascom.2019.03.004_b65) 2013; 554
10.1016/j.ascom.2019.03.004_b51
Alam (10.1016/j.ascom.2019.03.004_b5) 2017; 470
Perraudin (10.1016/j.ascom.2019.03.004_b61) 2018
Boscaini (10.1016/j.ascom.2019.03.004_b15) 2016
Gorski (10.1016/j.ascom.2019.03.004_b30) 2005; 622
Ben Bekhti (10.1016/j.ascom.2019.03.004_b13) 2016; 594
Defferrard (10.1016/j.ascom.2019.03.004_b22) 2016
Gupta (10.1016/j.ascom.2019.03.004_b31) 2018; 97
Xiao (10.1016/j.ascom.2019.03.004_b78) 2012
Santos (10.1016/j.ascom.2019.03.004_b69) 2015
10.1016/j.ascom.2019.03.004_b29
Monti (10.1016/j.ascom.2019.03.004_b58) 2017
10.1016/j.ascom.2019.03.004_b27
10.1016/j.ascom.2019.03.004_b28
10.1016/j.ascom.2019.03.004_b25
Parisot (10.1016/j.ascom.2019.03.004_b59) 2017
10.1016/j.ascom.2019.03.004_b26
Hassan (10.1016/j.ascom.2019.03.004_b33) 2018; vol. 333
Bronstein (10.1016/j.ascom.2019.03.004_b16) 2017; 34
10.1016/j.ascom.2019.03.004_b23
10.1016/j.ascom.2019.03.004_b21
Hildebrandt (10.1016/j.ascom.2019.03.004_b35) 2017; 465
10.1016/j.ascom.2019.03.004_b66
10.1016/j.ascom.2019.03.004_b63
10.1016/j.ascom.2019.03.004_b20
LeCun (10.1016/j.ascom.2019.03.004_b48) 1998; 86
Abadi (10.1016/j.ascom.2019.03.004_b3) 2015
Boomsma (10.1016/j.ascom.2019.03.004_b14) 2017
10.1016/j.ascom.2019.03.004_b8
10.1016/j.ascom.2019.03.004_b7
Mallat (10.1016/j.ascom.2019.03.004_b54) 2012; 65
Shuman (10.1016/j.ascom.2019.03.004_b73) 2013; 30
Inoue (10.1016/j.ascom.2019.03.004_b38) 2008; 77
Li (10.1016/j.ascom.2019.03.004_b50) 2018
10.1016/j.ascom.2019.03.004_b39
Bartelmann (10.1016/j.ascom.2019.03.004_b9) 2010; 27
Sgier (10.1016/j.ascom.2019.03.004_b72) 2019; 2019
Hop (10.1016/j.ascom.2019.03.004_b36) 2018
Mohlenkamp (10.1016/j.ascom.2019.03.004_b56) 1999; 5
10.1016/j.ascom.2019.03.004_b77
10.1016/j.ascom.2019.03.004_b74
Perraudin (10.1016/j.ascom.2019.03.004_b62) 2017; 65
10.1016/j.ascom.2019.03.004_b70
10.1016/j.ascom.2019.03.004_b71
Kalchbrenner (10.1016/j.ascom.2019.03.004_b40) 2014; vol. 1
Zhang (10.1016/j.ascom.2019.03.004_b79) 2014
Rokhlin (10.1016/j.ascom.2019.03.004_b67) 2006; 27
Ronchi (10.1016/j.ascom.2019.03.004_b68) 1996; 124
Belkin (10.1016/j.ascom.2019.03.004_b12) 2007
He (10.1016/j.ascom.2019.03.004_b34) 2018
Abolfathi (10.1016/j.ascom.2019.03.004_b4) 2018; 235
Le Magoarou (10.1016/j.ascom.2019.03.004_b47) 2018; 4
10.1016/j.ascom.2019.03.004_b49
Patton (10.1016/j.ascom.2019.03.004_b60) 2017; 472
Amsel (10.1016/j.ascom.2019.03.004_b6) 2008; 4
Ktena (10.1016/j.ascom.2019.03.004_b46) 2018; 169
Howlett (10.1016/j.ascom.2019.03.004_b37) 2015; 12
10.1016/j.ascom.2019.03.004_b45
10.1016/j.ascom.2019.03.004_b43
10.1016/j.ascom.2019.03.004_b44
10.1016/j.ascom.2019.03.004_b41
Su (10.1016/j.ascom.2019.03.004_b76) 2017
(10.1016/j.ascom.2019.03.004_b2) 2016; 594
Duvenaud (10.1016/j.ascom.2019.03.004_b24) 2015
Hamilton (10.1016/j.ascom.2019.03.004_b32) 2017
Lucie-Smith (10.1016/j.ascom.2019.03.004_b53) 2018; 479
Monti (10.1016/j.ascom.2019.03.004_b57) 2017; vol. 1
Komatsu (10.1016/j.ascom.2019.03.004_b42) 2011; 192
Bartelmann (10.1016/j.ascom.2019.03.004_b10) 2001; 340
Ravanbakhsh (10.1016/j.ascom.2019.03.004_b64) 2016
Staggs (10.1016/j.ascom.2019.03.004_b75) 2018; 81
Chang (10.1016/j.ascom.2019.03.004_b17) 2018; 475
References_xml – reference: Ciuca, R., Hernández, O.F., Wolman, M., 2017. A convolutional neural network for cosmic string detection in CMB temperature maps,
– reference: Coors, B., Condurache, A.P., Geiger, A., 2018. SphereNet: Learning spherical representations for detection and classification in omnidirectional images, in: European Conference on Computer Vision.
– volume: 65
  start-page: 1331
  year: 2012
  end-page: 1398
  ident: b54
  article-title: Group invariant scattering
  publication-title: Comm. Pure Appl. Math.
– start-page: 177
  year: 2017
  end-page: 185
  ident: b59
  article-title: Spectral graph convolutions for population-based disease prediction
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 81
  year: 2018
  ident: b75
  article-title: Recent discoveries from the cosmic microwave background: a review of recent progress
  publication-title: Rep. Progr. Phys.
– volume: 124
  start-page: 93
  year: 1996
  end-page: 114
  ident: b68
  article-title: The “cubed sphere”: a new method for the solution of partial differential equations in spherical geometry
  publication-title: J. Comput. Phys.
– reference: Ribli, D., Ármin Pataki, B., Csabai, I., 2018. Learning from deep learning: better cosmological parameter inference from weak lensing maps,
– reference: Defferrard, M., Martin, L., Pena, R., Perraudin, N., PyGSP: graph signal processing in python,
– volume: vol. 1
  start-page: 655
  year: 2014
  end-page: 665
  ident: b40
  article-title: A convolutional neural network for modelling sentences
  publication-title: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
– reference: Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization,
– reference: Qi, X., Liao, R., Jia, J., Fidler, S., Urtasun, R., 2017. 3D graph neural networks for RGBD semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5199–5208.
– volume: 169
  start-page: 431
  year: 2018
  end-page: 442
  ident: b46
  article-title: Metric learning with spectral graph convolutions on brain connectivity networks
  publication-title: NeuroImage
– reference: Cohen, T.S., Geiger, M., Koehler, J., Welling, M., 2018. Spherical CNNs
– volume: 340
  start-page: 291
  year: 2001
  end-page: 472
  ident: b10
  article-title: Weak gravitational lensing
  publication-title: Phys. Rep.
– start-page: 2224
  year: 2015
  end-page: 2232
  ident: b24
  article-title: Convolutional networks on graphs for learning molecular fingerprints
  publication-title: Advances in Neural Information Processing Systems
– reference: Frossard, P., Khasanova, R., 2017. Graph-based classification of omnidirectional images, in: 2017 IEEE International Conference on Computer Vision Workshops, ICCVW, pp. 860–869.
– start-page: 3189
  year: 2016
  end-page: 3197
  ident: b15
  article-title: Learning shape correspondence with anisotropic convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– reference: Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for simplicity: The all convolutional net, arXiv preprint
– volume: 192
  start-page: 18
  year: 2011
  ident: b42
  article-title: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation
  publication-title: Astrophys. J. Suppl.
– reference: Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X., 2016. Structured sequence modeling with graph convolutional recurrent networks,
– volume: 27
  year: 2010
  ident: b9
  article-title: Gravitational lensing
  publication-title: Classical Quantum Gravity
– volume: 594
  start-page: A13
  year: 2016
  ident: b2
  article-title: Planck 2015 results. xiii. cosmological parameters
  publication-title: Astron. Astrophys.
– year: 2018
  ident: b50
  article-title: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting
– start-page: 3436
  year: 2017
  end-page: 3446
  ident: b14
  article-title: Spherical convolutions and their application in molecular modelling
  publication-title: Advances in Neural Information Processing Systems
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b48
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– reference: Troxel, M.A., MacCrann, N., Zuntz, J., Eifler, T.F., Krause, E., Dodelson, S., Gruen, D., Blazek, J., Friedrich, O., Samuroff, S., Prat, J., Secco, L.F., Davis, C., Ferté, A., DeRose, J., Alarcon, A., Amara, A., Baxter, E., Becker, M.R., Bernstein, G.M., Bridle, S.L., Cawthon, R., Chang, C., Choi, A., De Vicente, J., Drlica-Wagner, A., Elvin-Poole, J., Frieman, J., Gatti, M., Hartley, W.G., Honscheid, K., Hoyle, B., Huff, E.M., Huterer, D., Jain, B., Jarvis, M., Kacprzak, T., Kirk, D., Kokron, N., Krawiec, C., Lahav, O., Liddle, A.R., Peacock, J., Rau, M.M., Refregier, A., Rollins, R.P., Rozo, E., Rykoff, E.S., Sánchez, C., Sevilla-Noarbe, I., Sheldon, E., Stebbins, A., Varga, T.N., Vielzeuf, P., Wang, M., Wechsler, R.H., Yanny, B., Abbott, T.M.C., Abdalla, F.B., Allam, S., Annis, J., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D.L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F.J., Crocce, M., Cunha, C.E., D’Andrea, C.B., da Costa, L.N., DePoy, D.L., Desai, S., Diehl, H.T., Dietrich, J.P., Doel, P., Fernandez, E., Flaugher, B., Fosalba, P., García-Bellido, J., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Goldstein, D.A., Gruendl, R.A., Gschwend, J., Gutierrez, G., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Kent, S., Kuehn, K., Kuhlmann, S., Kuropatkin, N., Li, T.S., Lima, M., Lin, H., Maia, M.A.G., March, M., Marshall, J.L., Martini, P., Melchior, P., Menanteau, F., Miquel, R., Mohr, J.J., Neilsen, E., Nichol, R.C., Nord, B., Petravick, D., Plazas, A.A., Romer, A.K., Roodman, A., Sako, M., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Smith, M., Smith, R.C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Tucker, D.L., Vikram, V., Walker, A.R., Weller, J., Zhang, Y., 2017. Dark energy survey year 1 results: Cosmological constraints from cosmic shear,
– volume: 594
  start-page: A1
  year: 2016
  ident: b1
  article-title: Planck 2015 results. i. overview of products and scientific results
  publication-title: Astron. Astrophys.
– volume: 34
  start-page: 18
  year: 2017
  end-page: 42
  ident: b16
  article-title: Geometric deep learning: going beyond Euclidean data
  publication-title: IEEE Signal Process. Mag.
– volume: 465
  start-page: 1454
  year: 2017
  end-page: 1498
  ident: b35
  article-title: KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing
  publication-title: Mon. Not. R. Astron. Soc.
– start-page: 19
  year: 2015
  ident: b69
  article-title: Cosmology from a SKA HI intensity mapping survey
  publication-title: Advancing Astrophysics with the Square Kilometre Array, AASKA14
– year: 2018
  ident: b36
  article-title: Geometric deep learning autonomously learns chemical features that outperform those engineered by domain experts
  publication-title: Mol. Pharm.
– year: 2015
  ident: b3
  article-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
– year: 2018
  ident: b34
  article-title: Analysis of Cosmic Microwave Background with Deep Learning
– reference: Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256.
– volume: 77
  year: 2008
  ident: b38
  article-title: Harmonic inpainting of the cosmic microwave background sky: Formulation and error estimate
  publication-title: Phys. Rev. D
– reference: Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440.
– volume: 27
  start-page: 1903
  year: 2006
  end-page: 1928
  ident: b67
  article-title: Fast algorithms for spherical harmonic expansions
  publication-title: SIAM J. Sci. Comput.
– start-page: 2407
  year: 2016
  end-page: 2416
  ident: b64
  article-title: Estimating cosmological parameters from the dark matter distribution
  publication-title: Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48, ICML’16
– reference: Aragon-Calvo, M.A., 2018. Classifying the large scale structure of the universe with deep neural networks,
– reference: Gillet, N., Mesinger, A., Greig, B., Liu, A., Ucci, G., 2018. Deep learning from 21-cm images of the Cosmic Dawn,
– reference: Schmelzle, J., Lucchi, A., Kacprzak, T., Amara, A., Sgier, R., Réfrégier, A., Hofmann, T., 2017. Cosmological model discrimination with Deep Learning,
– reference: Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al., 2018. Relational inductive biases, deep learning, and graph networks,
– start-page: 129
  year: 2007
  end-page: 136
  ident: b12
  article-title: Convergence of laplacian eigenmaps
  publication-title: Advances in Neural Information Processing Systems
– reference: ,
– volume: 12
  start-page: 109
  year: 2015
  end-page: 126
  ident: b37
  article-title: L-PICOLA: A parallel code for fast dark matter simulation
  publication-title: Astron. Comput.
– year: 2018
  ident: b61
  article-title: Global and local uncertainty principles for signals on graphs, vol. 7
– volume: 4
  start-page: 407
  year: 2018
  end-page: 420
  ident: b47
  article-title: Approximate fast graph Fourier transforms via multi-layer sparse approximations
  publication-title: IEEE Trans. Signal Inf. Process. Over Netw.
– reference: Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R., 2016. Gated graph sequence neural networks, in: International Conference on Learning Representation.
– volume: 97
  year: 2018
  ident: b31
  article-title: Non-Gaussian information from weak lensing data via deep learning
  publication-title: Phys. Rev. D
– start-page: 2695
  year: 2012
  end-page: 2702
  ident: b78
  article-title: Recognizing scene viewpoint using panoramic place representation
  publication-title: Computer Vision and Pattern Recognition, CVPR, 2012 IEEE Conference on
– volume: 235
  start-page: 42
  year: 2018
  ident: b4
  article-title: The fourteenth data release of the sloan digital sky survey: First spectroscopic data from the extended baryon oscillation spectroscopic survey and from the second phase of the apache point observatory galactic evolution experiment
  publication-title: Astrophys. J. Suppl.
– reference: Baqué, P., Remelli, E., Fleuret, F., Fua, P., 2018. Geodesic convolutional shape optimization, in: International Conference on Machine Learning.
– reference: Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine Learning, pp. 448–456.
– volume: 4
  start-page: 015
  year: 2008
  ident: b6
  article-title: Detecting cosmic strings in the CMB with the Canny algorithm
  publication-title: J. Cosmol. Astropart. Phys.
– start-page: 529
  year: 2017
  end-page: 539
  ident: b76
  article-title: Learning spherical convolution for fast features from 360 imagery
  publication-title: Advances in Neural Information Processing Systems
– reference: Krachmalnicoff, N., Tomasi, M., 2019. Convolutional Neural Networks on the HEALPix sphere: a pixel-based algorithm and its application to CMB data analysis, arXiv preprint
– volume: 2019
  start-page: 044
  year: 2019
  ident: b72
  article-title: Fast generation of covariance matrices for weak lensing
  publication-title: J. Cosmol. Astropart. Phys.
– year: 2017
  ident: b32
  article-title: Representation learning on graphs: Methods and applications
  publication-title: IEEE Data Eng. Bull.
– reference: Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P., 2015. Geodesic convolutional neural networks on riemannian manifolds, in: Proceedings of the IEEE international conference on computer vision workshops, pp. 37–45.
– volume: 554
  start-page: A112
  year: 2013
  ident: b65
  article-title: Libsharp–spherical harmonic transforms revisited
  publication-title: Astron. Astrophys.
– volume: 470
  start-page: 2617
  year: 2017
  end-page: 2652
  ident: b5
  article-title: The clustering of galaxies in the completed SDSS-III baryon oscillation spectroscopic survey: cosmological analysis of the dr12 galaxy sample
  publication-title: Mon. Not. R. Astron. Soc.
– volume: vol. 333
  start-page: 47
  year: 2018
  end-page: 51
  ident: b33
  article-title: Reionization models classifier using 21cm map deep learning
  publication-title: IAU Symposium
– reference: 2018. The Dark Energy Survey Data Release 1
– volume: 475
  start-page: 3165
  year: 2018
  end-page: 3190
  ident: b17
  article-title: Dark energy survey year 1 results: curved-sky weak lensing mass map
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 622
  start-page: 759
  year: 2005
  ident: b30
  article-title: Healpix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere
  publication-title: Astrophys. J.
– reference: Kondor, R., Trivedi, S., On the generalization of equivariance and convolution in neural networks to the action of compact groups (2018)
– reference: Kondor, R., Lin, Z., Trivedi, S., 2018. Clebsch-gordan nets: a Fully Fourier space spherical convolutional neural network,
– volume: 30
  start-page: 83
  year: 2013
  end-page: 98
  ident: b73
  article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process. Mag.
– reference: Fluri, J., Kacprzak, T., Lucchi, A., Refregier, A., Amara, A., Hofmann, T., 2018. Cosmological constraints from noisy convergence maps through deep learning
– reference: Lin, M., Chen, Q., Yan, S., 2013. Network in network
– volume: 472
  start-page: 439
  year: 2017
  end-page: 446
  ident: b60
  article-title: Cosmological constraints from the convergence 1-point probability distribution
  publication-title: Mon. Not. R. Astron. Soc.
– volume: vol. 1
  start-page: 3
  year: 2017
  ident: b57
  article-title: Geometric deep learning on graphs and manifolds using mixture model CNNs
  publication-title: Proc. CVPR
– reference: .
– reference: Esteves, C., Allen-Blanchette, C., Makadia, A., Daniilidis, K., 2017. Learning SO(3) equivariant representations with spherical CNNs,
– volume: 5
  start-page: 159
  year: 1999
  end-page: 184
  ident: b56
  article-title: A fast transform for spherical harmonics
  publication-title: J. Fourier Anal. Appl.
– start-page: 668
  year: 2014
  end-page: 686
  ident: b79
  article-title: Panocontext: A whole-room 3d context model for panoramic scene understanding
  publication-title: European Conference on Computer Vision
– start-page: 3844
  year: 2016
  end-page: 3852
  ident: b22
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Advances in Neural Information Processing Systems
– start-page: 3697
  year: 2017
  end-page: 3707
  ident: b58
  article-title: Geometric matrix completion with recurrent multi-graph neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 594
  start-page: A116
  year: 2016
  ident: b13
  article-title: HI4PI: A full-sky H I survey based on EBHIS and GASS
  publication-title: Astron. Astrophys.
– volume: 65
  start-page: 3462
  year: 2017
  end-page: 3477
  ident: b62
  article-title: Stationary signal processing on graphs.
  publication-title: IEEE Trans. Signal Process.
– volume: 479
  start-page: 3405
  year: 2018
  end-page: 3414
  ident: b53
  article-title: Machine learning cosmological structure formation
  publication-title: Mon. Not. R. Astron. Soc.
– ident: 10.1016/j.ascom.2019.03.004_b45
  doi: 10.1051/0004-6361/201935211
– ident: 10.1016/j.ascom.2019.03.004_b27
  doi: 10.1109/ICCVW.2017.106
– volume: 554
  start-page: A112
  year: 2013
  ident: 10.1016/j.ascom.2019.03.004_b65
  article-title: Libsharp–spherical harmonic transforms revisited
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201321494
– ident: 10.1016/j.ascom.2019.03.004_b23
– ident: 10.1016/j.ascom.2019.03.004_b71
– volume: 65
  start-page: 1331
  issue: 10
  year: 2012
  ident: 10.1016/j.ascom.2019.03.004_b54
  article-title: Group invariant scattering
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.21413
– start-page: 668
  year: 2014
  ident: 10.1016/j.ascom.2019.03.004_b79
  article-title: Panocontext: A whole-room 3d context model for panoramic scene understanding
– volume: 594
  start-page: A13
  year: 2016
  ident: 10.1016/j.ascom.2019.03.004_b2
  article-title: Planck 2015 results. xiii. cosmological parameters
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201525830
– year: 2018
  ident: 10.1016/j.ascom.2019.03.004_b50
– volume: 4
  start-page: 407
  issue: 2
  year: 2018
  ident: 10.1016/j.ascom.2019.03.004_b47
  article-title: Approximate fast graph Fourier transforms via multi-layer sparse approximations
  publication-title: IEEE Trans. Signal Inf. Process. Over Netw.
  doi: 10.1109/TSIPN.2017.2710619
– start-page: 19
  year: 2015
  ident: 10.1016/j.ascom.2019.03.004_b69
  article-title: Cosmology from a SKA HI intensity mapping survey
– ident: 10.1016/j.ascom.2019.03.004_b28
  doi: 10.1093/mnras/stz010
– volume: vol. 1
  start-page: 655
  year: 2014
  ident: 10.1016/j.ascom.2019.03.004_b40
  article-title: A convolutional neural network for modelling sentences
– ident: 10.1016/j.ascom.2019.03.004_b66
– volume: 622
  start-page: 759
  issue: 2
  year: 2005
  ident: 10.1016/j.ascom.2019.03.004_b30
  article-title: Healpix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere
  publication-title: Astrophys. J.
  doi: 10.1086/427976
– ident: 10.1016/j.ascom.2019.03.004_b43
– volume: 472
  start-page: 439
  year: 2017
  ident: 10.1016/j.ascom.2019.03.004_b60
  article-title: Cosmological constraints from the convergence 1-point probability distribution
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stx1626
– volume: 594
  start-page: A116
  year: 2016
  ident: 10.1016/j.ascom.2019.03.004_b13
  article-title: HI4PI: A full-sky H I survey based on EBHIS and GASS
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201629178
– volume: 594
  start-page: A1
  year: 2016
  ident: 10.1016/j.ascom.2019.03.004_b1
  article-title: Planck 2015 results. i. overview of products and scientific results
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201527101
– volume: 77
  issue: 12
  year: 2008
  ident: 10.1016/j.ascom.2019.03.004_b38
  article-title: Harmonic inpainting of the cosmic microwave background sky: Formulation and error estimate
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.123539
– volume: 235
  start-page: 42
  year: 2018
  ident: 10.1016/j.ascom.2019.03.004_b4
  article-title: The fourteenth data release of the sloan digital sky survey: First spectroscopic data from the extended baryon oscillation spectroscopic survey and from the second phase of the apache point observatory galactic evolution experiment
  publication-title: Astrophys. J. Suppl.
  doi: 10.3847/1538-4365/aa9e8a
– volume: 4
  start-page: 015
  year: 2008
  ident: 10.1016/j.ascom.2019.03.004_b6
  article-title: Detecting cosmic strings in the CMB with the Canny algorithm
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2008/04/015
– ident: 10.1016/j.ascom.2019.03.004_b25
  doi: 10.1007/978-3-030-01261-8_4
– ident: 10.1016/j.ascom.2019.03.004_b49
– ident: 10.1016/j.ascom.2019.03.004_b74
– volume: 81
  issue: 4
  year: 2018
  ident: 10.1016/j.ascom.2019.03.004_b75
  article-title: Recent discoveries from the cosmic microwave background: a review of recent progress
  publication-title: Rep. Progr. Phys.
  doi: 10.1088/1361-6633/aa94d5
– start-page: 529
  year: 2017
  ident: 10.1016/j.ascom.2019.03.004_b76
  article-title: Learning spherical convolution for fast features from 360 imagery
– volume: 12
  start-page: 109
  year: 2015
  ident: 10.1016/j.ascom.2019.03.004_b37
  article-title: L-PICOLA: A parallel code for fast dark matter simulation
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2015.07.003
– year: 2018
  ident: 10.1016/j.ascom.2019.03.004_b61
– volume: 97
  issue: 10
  year: 2018
  ident: 10.1016/j.ascom.2019.03.004_b31
  article-title: Non-Gaussian information from weak lensing data via deep learning
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.103515
– volume: 169
  start-page: 431
  year: 2018
  ident: 10.1016/j.ascom.2019.03.004_b46
  article-title: Metric learning with spectral graph convolutions on brain connectivity networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.12.052
– ident: 10.1016/j.ascom.2019.03.004_b70
– year: 2018
  ident: 10.1016/j.ascom.2019.03.004_b36
  article-title: Geometric deep learning autonomously learns chemical features that outperform those engineered by domain experts
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.7b01144
– ident: 10.1016/j.ascom.2019.03.004_b11
– volume: 465
  start-page: 1454
  year: 2017
  ident: 10.1016/j.ascom.2019.03.004_b35
  article-title: KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stw2805
– volume: 27
  start-page: 1903
  issue: 6
  year: 2006
  ident: 10.1016/j.ascom.2019.03.004_b67
  article-title: Fast algorithms for spherical harmonic expansions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/050623073
– year: 2015
  ident: 10.1016/j.ascom.2019.03.004_b3
– start-page: 3189
  year: 2016
  ident: 10.1016/j.ascom.2019.03.004_b15
  article-title: Learning shape correspondence with anisotropic convolutional neural networks
– volume: 34
  start-page: 18
  issue: 4
  year: 2017
  ident: 10.1016/j.ascom.2019.03.004_b16
  article-title: Geometric deep learning: going beyond Euclidean data
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2693418
– ident: 10.1016/j.ascom.2019.03.004_b8
– start-page: 3844
  year: 2016
  ident: 10.1016/j.ascom.2019.03.004_b22
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– ident: 10.1016/j.ascom.2019.03.004_b39
– ident: 10.1016/j.ascom.2019.03.004_b26
  doi: 10.1103/PhysRevD.98.123518
– ident: 10.1016/j.ascom.2019.03.004_b52
  doi: 10.1109/CVPR.2015.7298965
– ident: 10.1016/j.ascom.2019.03.004_b21
– volume: vol. 1
  start-page: 3
  year: 2017
  ident: 10.1016/j.ascom.2019.03.004_b57
  article-title: Geometric deep learning on graphs and manifolds using mixture model CNNs
– volume: 192
  start-page: 18
  year: 2011
  ident: 10.1016/j.ascom.2019.03.004_b42
  article-title: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation
  publication-title: Astrophys. J. Suppl.
  doi: 10.1088/0067-0049/192/2/18
– start-page: 2224
  year: 2015
  ident: 10.1016/j.ascom.2019.03.004_b24
  article-title: Convolutional networks on graphs for learning molecular fingerprints
– start-page: 2407
  year: 2016
  ident: 10.1016/j.ascom.2019.03.004_b64
  article-title: Estimating cosmological parameters from the dark matter distribution
– volume: 124
  start-page: 93
  issue: 1
  year: 1996
  ident: 10.1016/j.ascom.2019.03.004_b68
  article-title: The “cubed sphere”: a new method for the solution of partial differential equations in spherical geometry
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0047
– ident: 10.1016/j.ascom.2019.03.004_b29
– ident: 10.1016/j.ascom.2019.03.004_b19
– volume: vol. 333
  start-page: 47
  year: 2018
  ident: 10.1016/j.ascom.2019.03.004_b33
  article-title: Reionization models classifier using 21cm map deep learning
– start-page: 3697
  year: 2017
  ident: 10.1016/j.ascom.2019.03.004_b58
  article-title: Geometric matrix completion with recurrent multi-graph neural networks
– volume: 475
  start-page: 3165
  year: 2018
  ident: 10.1016/j.ascom.2019.03.004_b17
  article-title: Dark energy survey year 1 results: curved-sky weak lensing mass map
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stx3363
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.ascom.2019.03.004_b48
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: 10.1016/j.ascom.2019.03.004_b7
– ident: 10.1016/j.ascom.2019.03.004_b41
– year: 2017
  ident: 10.1016/j.ascom.2019.03.004_b32
  article-title: Representation learning on graphs: Methods and applications
  publication-title: IEEE Data Eng. Bull.
– ident: 10.1016/j.ascom.2019.03.004_b63
  doi: 10.1109/ICCV.2017.556
– start-page: 177
  year: 2017
  ident: 10.1016/j.ascom.2019.03.004_b59
  article-title: Spectral graph convolutions for population-based disease prediction
– year: 2018
  ident: 10.1016/j.ascom.2019.03.004_b34
– volume: 2019
  start-page: 044
  issue: 01
  year: 2019
  ident: 10.1016/j.ascom.2019.03.004_b72
  article-title: Fast generation of covariance matrices for weak lensing
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2019/01/044
– ident: 10.1016/j.ascom.2019.03.004_b20
  doi: 10.1007/978-3-030-01240-3_32
– ident: 10.1016/j.ascom.2019.03.004_b51
– start-page: 129
  year: 2007
  ident: 10.1016/j.ascom.2019.03.004_b12
  article-title: Convergence of laplacian eigenmaps
– ident: 10.1016/j.ascom.2019.03.004_b77
  doi: 10.1103/PhysRevD.98.043528
– start-page: 3436
  year: 2017
  ident: 10.1016/j.ascom.2019.03.004_b14
  article-title: Spherical convolutions and their application in molecular modelling
– volume: 479
  start-page: 3405
  year: 2018
  ident: 10.1016/j.ascom.2019.03.004_b53
  article-title: Machine learning cosmological structure formation
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/sty1719
– ident: 10.1016/j.ascom.2019.03.004_b55
  doi: 10.1109/ICCVW.2015.112
– volume: 470
  start-page: 2617
  year: 2017
  ident: 10.1016/j.ascom.2019.03.004_b5
  article-title: The clustering of galaxies in the completed SDSS-III baryon oscillation spectroscopic survey: cosmological analysis of the dr12 galaxy sample
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stx721
– ident: 10.1016/j.ascom.2019.03.004_b18
  doi: 10.1088/1475-7516/2017/08/028
– volume: 5
  start-page: 159
  issue: 2–3
  year: 1999
  ident: 10.1016/j.ascom.2019.03.004_b56
  article-title: A fast transform for spherical harmonics
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/BF01261607
– ident: 10.1016/j.ascom.2019.03.004_b44
– volume: 27
  issue: 23
  year: 2010
  ident: 10.1016/j.ascom.2019.03.004_b9
  article-title: Gravitational lensing
  publication-title: Classical Quantum Gravity
  doi: 10.1088/0264-9381/27/23/233001
– start-page: 2695
  year: 2012
  ident: 10.1016/j.ascom.2019.03.004_b78
  article-title: Recognizing scene viewpoint using panoramic place representation
– volume: 65
  start-page: 3462
  issue: 13
  year: 2017
  ident: 10.1016/j.ascom.2019.03.004_b62
  article-title: Stationary signal processing on graphs.
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2690388
– volume: 340
  start-page: 291
  year: 2001
  ident: 10.1016/j.ascom.2019.03.004_b10
  article-title: Weak gravitational lensing
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(00)00082-X
– volume: 30
  start-page: 83
  issue: 3
  year: 2013
  ident: 10.1016/j.ascom.2019.03.004_b73
  article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2235192
SSID ssj0000941528
Score 2.5251236
Snippet Convolutional Neural Networks (CNNs) are a cornerstone of the Deep Learning toolbox and have led to many breakthroughs in Artificial Intelligence. So far,...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 130
SubjectTerms Cosmological data analysis
DeepSphere
Graph CNN
Mass mapping
Spherical convolutional neural network
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iRS_iE9_kIJ6su23SJvW2rCuLqAgqeCtpHrKy1mJX1Iu_3Zm0XdaDIp7ahAwtmXRmMv3yDSEHxvFEJawbQKiAR3ISHuSOuSAE3x_naeKUxgPOl1fJ8I6f38f3c6TfnoVBWGVj-2ub7q1109NpZrNTjkadmygKGeywwLgyjGPQDnMusIrB8Wc4zbPA9gVclC9MB-MDFGjJhzzMS1WIGgE32JCd8p8c1MJrUaqPNzUezzigs2Wy1ESOtFe_3AqZs8Uq2exVmMt-fvqgh9Tf16mKao2Up9aWN8gaYE_owDNFgIOhFfagZigCzpuFBy0ktvQXDwunmJ-lw0Hv4nr0TiuFuPPigUKEC2LVU2sx6ez_73Vydza47Q-Dpr5CoBmXk0BLkTMpjeLCMmWUSg1jqdQyMsZ0tdGJyGNnE55GhgstbSTgexfS5TxUjhu2QeaL58JuEqryNNI8hlhTKO60VCFYwth1IdoQCuS2SNROaqYb8nGsgTHOWpTZY-Y1kaEmsi7LQBNb5GgqVNbcG78PT1ptZd-WUAbe4XfBYKrbvzxo-78P2iGL2KqBP7tkfvLyavcgppnk-37RfgHnzfas
  priority: 102
  providerName: Elsevier
Title DeepSphere: Efficient spherical convolutional neural network with HEALPix sampling for cosmological applications
URI https://dx.doi.org/10.1016/j.ascom.2019.03.004
http://infoscience.epfl.ch/record/266685
UnpaywallVersion submittedVersion
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2213-1345
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941528
  issn: 2213-1337
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2213-1345
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941528
  issn: 2213-1337
  databaseCode: ACRLP
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 2213-1345
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941528
  issn: 2213-1337
  databaseCode: .~1
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 2213-1345
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941528
  issn: 2213-1337
  databaseCode: AIKHN
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2213-1345
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941528
  issn: 2213-1337
  databaseCode: AKRWK
  dateStart: 20130201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF5BcuiptJQqQTTaA-JUR7F3vbvmZpWgtECE1EYKJ2u9j_JwTIQTAT3w2zvrB0SqGtqT19aObHlG831ez36D0L62lElGBh5QBbclh1EvtcR6PmB_mEbMSuU2OJ-N2WhCv03D6ct6h3urdeqHdGyzvrpseqMBkjARbqI2C4F1t1B7Mj6PL1zvuMAnHnxq8ZcxDRuBobKUSxauMgSgrhY0pX8DoTfLfC4f72WWrYDM8ValeFSU2oSutuSmv1ykffXrT-XGV5__HXpbM00cV6HxHm2YfBt14sKtfd_OHvEBLsfV0kbxAc2PjJl_dyoD5hAPS2UJACRcuCvOk9gVqNeBCmdOCLM8lGXk2K3n4tEwPj2_esCFdHXq-U8MjBjMilmTYfHq__IdNDke_vgy8up-DJ4iVCw8JXhKhNCSckOkljLShERCiUBrPVBaMZ6G1jAaBZpyJUzAIT9wYVPqS0s1-Yha-W1uOgjLNAoUDYGbckmtEtKHzBnaAbATLsGui4LGQYmqxcpdz4wsaarSrpPSq4nzajIgCXi1iz4_G80rrY7101nj-aT2WUUjEkCT9Ybec5z8y412_3P-Hmot7pbmE7CdRdpDm_0nv4fa8deT0bhXh_1vJPUFgw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOilKlDEq9QHxKlhN7ETO72t6KJtWRASIHGzHD-qrZYQNYuAC7-dGSdZwQGEOCVxMnLkcWa-mXweE7JnPc90xvoRQAVckpPxqPDMRzH4_rTIM68NLnA-Oc1Gl_zPVXq1QA67tTBIq2xtf2PTg7VuW3rtaPaqyaR3niQxgwgLjCtDHAN2eImnicAI7OAxnidaIH4BHxV2pgOBCCW66kOB56VrpI2AH2yrnfLXPNTybVnphzs9nT7zQEdfyOcWOtJB83YrZMGVq2RjUGMy--b6ge7TcN7kKuo1Uv1yrjrHsgHuJx2GUhHgYWiNLagaiozzdubBFVa2DIfAC6eYoKWj4WB8NrmntUbiefmXAsQFsfq6M5n0-Q_wr-TyaHhxOIraDRYiw7icRUaKgklpNReOaat1bhnLpZGJtbZvrMlEkXqX8TyxXBjpEgEfvJC-4LH23LJ1sljelG6DUF3kieEpgE2huTdSx2AKU98HuCE0yG2SpBtUZdrq47gJxlR1NLN_KmhCoSZUnynQxCb5MReqmuIbbz-eddpSL-aQAvfwtmA01-17Otr6aEffyfLo4mSsxr9Pj7fJJ7zTsIB2yOLs_637BgBnVuyGCfwEW6v5zw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60Hjz5FisqexBPprTZze7GW9CWIiqCFuopbPbhq43FtPj49c7mUQWx6imbsENCZpjvy2b2G4T2taVMMtL0gCq4LTmMeokl1msB9gdJyKxUboPz-QXr9uhpP-h_rne4t1qmfkjHdtBQd1VvNEASJoJ5tMACYN01tNC7uIxuXO84v0U8-NTin2MaVAJDeSmXzFxlCEBdKWhKfwKhxUk6km8vcjD4AjKd5ULxKMu1CV1tyWNjMk4a6v27cuOvz7-ClkqmiaMiNFbRnEnX0FaUubXvp-EbPsD5uFjayNbR6MSY0ZVTGTBHuJ0rSwAg4cxdcZ7ErkC9DFQ4c0KY-SEvI8duPRd329HZ5f0rzqSrU09vMTBiMMuGVYbFX_-Xb6Bep3193PXKfgyeIlSMPSV4QoTQknJDpJYy1ISEQglfa91UWjGeBNYwGvqaciWMzyE_cGET2pKWarKJaulTarYQlknoKxoAN-WSWiVkCzJnYJvATrgEuzryKwfFqhQrdz0zBnFVlfYQ516NnVfjJonBq3V0ODUaFVods6ezyvNx6bOCRsSAJrMNvWmc_OVG2_-cv4Nq4-eJ2QW2M072ykD_AO8HAvc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepSphere%3A+Efficient+spherical+convolutional+neural+network+with+HEALPix+sampling+for+cosmological+applications&rft.jtitle=Astronomy+and+computing&rft.au=Perraudin%2C+N.&rft.au=Defferrard%2C+M.&rft.au=Kacprzak%2C+T.&rft.au=Sgier%2C+R.&rft.date=2019-04-01&rft.issn=2213-1337&rft.volume=27&rft.spage=130&rft.epage=146&rft_id=info:doi/10.1016%2Fj.ascom.2019.03.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ascom_2019_03_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-1337&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-1337&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-1337&client=summon