Null space conditions and thresholds for rank minimization

Minimizing the rank of a matrix subject to constraints is a challenging problem that arises in many applications in machine learning, control theory, and discrete geometry. This class of optimization problems, known as rank minimization, is NP-hard, and for most practical problems there are no effic...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 127; no. 1; pp. 175 - 202
Main Authors Recht, Benjamin, Xu, Weiyu, Hassibi, Babak
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.03.2011
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0025-5610
1436-4646
DOI10.1007/s10107-010-0422-2

Cover

Abstract Minimizing the rank of a matrix subject to constraints is a challenging problem that arises in many applications in machine learning, control theory, and discrete geometry. This class of optimization problems, known as rank minimization, is NP-hard, and for most practical problems there are no efficient algorithms that yield exact solutions. A popular heuristic replaces the rank function with the nuclear norm—equal to the sum of the singular values—of the decision variable and has been shown to provide the optimal low rank solution in a variety of scenarios. In this paper, we assess the practical performance of this heuristic for finding the minimum rank matrix subject to linear equality constraints. We characterize properties of the null space of the linear operator defining the constraint set that are necessary and sufficient for the heuristic to succeed. We then analyze linear constraints sampled uniformly at random, and obtain dimension-free bounds under which our null space properties hold almost surely as the matrix dimensions tend to infinity. Finally, we provide empirical evidence that these probabilistic bounds provide accurate predictions of the heuristic’s performance in non-asymptotic scenarios.
AbstractList Minimizing the rank of a matrix subject to constraints is a challenging problem that arises in many applications in machine learning, control theory, and discrete geometry. This class of optimization problems, known as rank minimization, is NP-hard, and for most practical problems there are no efficient algorithms that yield exact solutions. A popular heuristic replaces the rank function with the nuclear norm--equal to the sum of the singular values--of the decision variable and has been shown to provide the optimal low rank solution in a variety of scenarios. In this paper, we assess the practical performance of this heuristic for finding the minimum rank matrix subject to linear equality constraints. We characterize properties of the null space of the linear operator defining the constraint set that are necessary and sufficient for the heuristic to succeed. We then analyze linear constraints sampled uniformly at random, and obtain dimension-free bounds under which our null space properties hold almost surely as the matrix dimensions tend to infinity. Finally, we provide empirical evidence that these probabilistic bounds provide accurate predictions of the heuristic's performance in non-asymptotic scenarios.
Issue Title: Special Issue on "Optimization and Machine learning"; Alexandre d'Aspremont * Francis Bach * Inderjit S. Dhillon * Bin Yu Minimizing the rank of a matrix subject to constraints is a challenging problem that arises in many applications in machine learning, control theory, and discrete geometry. This class of optimization problems, known as rank minimization, is NP-hard, and for most practical problems there are no efficient algorithms that yield exact solutions. A popular heuristic replaces the rank function with the nuclear norm--equal to the sum of the singular values--of the decision variable and has been shown to provide the optimal low rank solution in a variety of scenarios. In this paper, we assess the practical performance of this heuristic for finding the minimum rank matrix subject to linear equality constraints. We characterize properties of the null space of the linear operator defining the constraint set that are necessary and sufficient for the heuristic to succeed. We then analyze linear constraints sampled uniformly at random, and obtain dimension-free bounds under which our null space properties hold almost surely as the matrix dimensions tend to infinity. Finally, we provide empirical evidence that these probabilistic bounds provide accurate predictions of the heuristic's performance in non-asymptotic scenarios.[PUBLICATION ABSTRACT]
Author Xu, Weiyu
Recht, Benjamin
Hassibi, Babak
Author_xml – sequence: 1
  givenname: Benjamin
  surname: Recht
  fullname: Recht, Benjamin
  email: brecht@cs.wisc.edu
  organization: Department of Computer Sciences, University of Wisconsin
– sequence: 2
  givenname: Weiyu
  surname: Xu
  fullname: Xu, Weiyu
  organization: Electrical Engineering, California Institute of Technology
– sequence: 3
  givenname: Babak
  surname: Hassibi
  fullname: Hassibi, Babak
  organization: Electrical Engineering, California Institute of Technology
BookMark eNp9kD1PwzAYhC1UJNrCD2CLmFgMtuPEDhuq-JIqWLpbjj-oS2IXOxng15MQJKRKsNy7PHfv6RZg5oM3AJxjdIURYtcJI4wYHAQiSggkR2COaV5CWtJyBuYIkQIWJUYnYJHSDiGEc87n4Oa5b5os7aUymQpeu84FnzLpddZto0nb0OiU2RCzKP1b1jrvWvcpR-oUHFvZJHP2c5dgc3-3WT3C9cvD0-p2DVVOeQdrQ6yyDGOrc1ry3BBGFC5qWSjKOdHWMsMZpVxXipYIG615XREpSVUrVedLcDnF7mN4703qROuSMk0jvQl9ErhkmFQV4WRALw7QXeijH8oJXhBEq4rSAcITpGJIKRor9tG1Mn4IjMS4pZi2FIOIcUsxBrMDj3Ld9whdlK7510kmZxq--FcTfyv9bfoCTViJvQ
CODEN MHPGA4
CitedBy_id crossref_primary_10_1016_j_mri_2011_07_021
crossref_primary_10_1016_j_ipl_2016_09_008
crossref_primary_10_1214_14_AOS1257
crossref_primary_10_1007_s10589_019_00084_y
crossref_primary_10_1109_TAI_2022_3177394
crossref_primary_10_1093_imaiai_iav011
crossref_primary_10_1093_imaiai_iaad033
crossref_primary_10_3934_ipi_2012_6_357
crossref_primary_10_1016_j_jmaa_2015_02_041
crossref_primary_10_3390_s130303902
crossref_primary_10_1109_TSP_2016_2586753
crossref_primary_10_1007_s10898_023_01322_8
crossref_primary_10_1016_j_laa_2014_09_018
crossref_primary_10_1109_TIT_2013_2294644
crossref_primary_10_1155_2013_101974
crossref_primary_10_1016_j_acha_2015_06_006
crossref_primary_10_1109_TNNLS_2021_3051650
crossref_primary_10_1016_j_acha_2015_11_003
crossref_primary_10_1371_journal_ppat_1002797
crossref_primary_10_1109_TSP_2013_2295557
crossref_primary_10_1109_JSTARS_2024_3396049
crossref_primary_10_1109_TSP_2020_3007967
crossref_primary_10_1137_15M1050525
crossref_primary_10_1016_j_sigpro_2015_02_025
crossref_primary_10_3389_fams_2018_00065
crossref_primary_10_1137_19M1238599
crossref_primary_10_1016_j_jsb_2012_10_010
crossref_primary_10_1214_10_AOS850
crossref_primary_10_1093_imaiai_iaad050
crossref_primary_10_1007_s10107_013_0729_x
crossref_primary_10_1109_TIT_2017_2773497
crossref_primary_10_1016_j_dsp_2020_102880
crossref_primary_10_1017_S096249291300007X
crossref_primary_10_1109_TIT_2012_2204535
crossref_primary_10_1109_TIT_2018_2840720
crossref_primary_10_1109_TSP_2013_2272925
crossref_primary_10_1109_TMI_2012_2215921
crossref_primary_10_1093_imanum_dry069
crossref_primary_10_1007_s10208_012_9135_7
crossref_primary_10_1109_JSTSP_2016_2545518
crossref_primary_10_1137_110847445
crossref_primary_10_1109_CJECE_2014_2348014
crossref_primary_10_1137_14099379X
crossref_primary_10_1109_TIT_2024_3422918
crossref_primary_10_1002_nla_1948
crossref_primary_10_1007_s11063_017_9731_2
crossref_primary_10_1080_02331934_2015_1053882
crossref_primary_10_1137_100811404
crossref_primary_10_1142_S0217595915400084
crossref_primary_10_1007_s12532_020_00177_4
crossref_primary_10_1142_S0219691317500321
crossref_primary_10_1186_s13660_017_1602_x
crossref_primary_10_1016_j_laa_2013_07_025
crossref_primary_10_1109_TSP_2011_2141661
crossref_primary_10_1093_imaiai_iaw014
crossref_primary_10_1073_pnas_1306110110
crossref_primary_10_1109_TIT_2020_2990948
crossref_primary_10_1190_geo2014_0467_1
crossref_primary_10_1016_j_mri_2012_04_012
crossref_primary_10_1109_MSP_2018_2821706
Cites_doi 10.1002/j.1538-7305.1962.tb02419.x
10.1109/18.959265
10.1111/j.1467-9868.2007.00591.x
10.1007/BF01200757
10.1145/1273496.1273499
10.1137/070697835
10.1073/pnas.0502258102
10.1007/s11263-005-4939-z
10.1137/090755436
10.1214/aop/1176991893
10.1145/1102351.1102441
10.1145/1390156.1390239
10.1070/SM1967v001n04ABEH001994
10.1080/10556789908805766
10.1073/pnas.0502269102
10.1109/9.871772
10.1007/s10208-009-9045-5
10.1109/CDC.2008.4739332
10.1109/ACC.1998.703562
10.1007/978-3-642-20212-4
10.1007/BF02759761
10.1109/ISIT.2009.5205530
10.1109/TIT.2005.858979
10.1109/9.554402
10.1109/ACC.2001.945730
10.1007/s00454-005-1220-0
10.1109/ICASSP.2008.4518375
10.1109/TIT.2005.862083
10.1137/080738970
ContentType Journal Article
Copyright Springer and Mathematical Optimization Society 2010
Springer and Mathematical Optimization Society 2011
Copyright_xml – notice: Springer and Mathematical Optimization Society 2010
– notice: Springer and Mathematical Optimization Society 2011
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10107-010-0422-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Science Database
Engineering Database (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 202
ExternalDocumentID 2268978761
10_1007_s10107_010_0422_2
Genre Feature
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c348t-be2fcf711fd34683e272c15ba5c4882dff7e87448d9c4601edd8b92aa29bccb3
IEDL.DBID U2A
ISSN 0025-5610
IngestDate Thu Sep 04 17:30:12 EDT 2025
Thu Sep 25 00:50:11 EDT 2025
Thu Apr 24 23:06:25 EDT 2025
Wed Oct 01 04:22:05 EDT 2025
Fri Feb 21 02:32:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 15A52
Random matrices
Matrix norms
Convex optimization
90C25
Gaussian processes
Rank
90C59
Compressed sensing
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-be2fcf711fd34683e272c15ba5c4882dff7e87448d9c4601edd8b92aa29bccb3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 852049944
PQPubID 25307
PageCount 28
ParticipantIDs proquest_miscellaneous_1671299282
proquest_journals_852049944
crossref_primary_10_1007_s10107_010_0422_2
crossref_citationtrail_10_1007_s10107_010_0422_2
springer_journals_10_1007_s10107_010_0422_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20110300
2011-3-00
20110301
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 3
  year: 2011
  text: 20110300
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2011
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References YuanM.EkiciA.LuZ.MonteiroR.Dimension reduction and coefficient estimation in multivariate linear regressionJ. Roy. Stat. Soc. Ser. B20076932934610.1111/j.1467-9868.2007.00591.x2323756
Lee, K., Bresler, Y.: Efficient and guaranteed rank minimization by atomic decomposition. In: IEEE International Symposium on Information Theory (2009)
CandèsE.J.RombergJ.TaoT.Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency informationIEEE Trans. Inf. Theory200652248950910.1109/TIT.2005.862083
LiuZ.VandenbergheL.Interior-point method for nuclear norm approximation with application to system identificationSIAM J. Matrix Anal. Appl.20093131235125610.1137/0907554362558821
Zhang, Y.: A simple proof for recoverability of ℓ1 minimization: go over or under? Tech. Rep. TR05-09, Rice CAAM Department (2005)
Argyriou, A., Micchelli, C.A., Pontil, M.: Convex multi-task feature learning. Machine Learning (2008). Published online first at http://www.springerlink.com
GordonY.Gaussian processes and almost spherical sections of convex bodiesAnn. Probab.1988161801880639.6004610.1214/aop/1176991893920263
Recht, B., Xu, W., Hassibi, B.: Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization. In: Proceedings of the 47th IEEE Conference on Decision and Control (2008)
WeinbergerK.Q.SaulL.K.Unsupervised learning of image manifolds by semidefinite programmingInt. J. Comput. Vis.2006701779010.1007/s11263-005-4939-z
Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constructive Approximation (2008). To Appear. Preprint available at http://dsp.rice.edu/cs/jlcs-v03.pdf
DonohoD.High-dimensional centrally symmetric polytopes with neighborliness proportional to dimensionDiscret. Comput. Geom.20063546176521095.5250010.1007/s00454-005-1220-02225676
El Ghaoui, L., Gahinet, P.: Rank minimization under LMI constraints: a framework for output feedback problems. In: Proceedings of the European Control Conference (1993)
LinialN.LondonE.RabinovichY.The geometry of graphs and some of its algorithmic applicationsCombinatorica1995152152450827.0502110.1007/BF012007571337355
Rennie, J.D.M., Srebro, N.: Fast maximum margin matrix factorization for collaborative prediction. In: Proceedings of the International Conference of Machine Learning (2005)
Stojnic, M., Xu, W., Hassibi, B.: Compressed sensing - probabilistic analysis of a null-space characterization. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2008)
Beck, C., D’Andrea, R.: Computational study and comparisons of LFT reducibility methods. In: Proceedings of the American Control Conference (1998)
LedouxM.TalagrandM.Probability in Banach Spaces1991BerlinSpringer0748.60004
MesbahiM.PapavassilopoulosG.P.On the rank minimization problem over a positive semidefinite linear matrix inequalityIEEE Trans. Autom. Control19974222392430872.9302910.1109/9.5544021438452
Meka, R., Jain, P., Caramanis, C., Dhillon, I.S.: Rank minimization via online learning. In: Proceedings of the International Conference on Machine Learning (2008)
ParriloP.A.KhatriS.On cone-invariant linear matrix inequalitiesIEEE Trans. Automat. Control2000458155815630988.9302910.1109/9.8717721797416
Ames, B.P.W., Vavasis, S.A.: Nuclear norm minimization for the planted clique and biclique problems (2009). Submitted to Mathematical Programming. Preprint available at http://arxiv.org/abs/0901.3348v1
CandèsE.J.TaoT.Decoding by linear programmingIEEE Trans. Inf. Theory200551124203421510.1109/TIT.2005.858979
Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimization (2008). Preprint available at http://www.optimization-online.org/DB_HTML/2008/11/2151.html
MarčenkoV.A.PasturL.A.Distributions of eigenvalues for some sets of random matricesMath. USSR-Sbornik1967145748310.1070/SM1967v001n04ABEH001994
SlepianD.The one-sided barrier problem for Gaussian noiseBell Syst. Tech. J.196241463501133183
Amit, Y., Fink, M., Srebro, N., Ullman, S.: Uncovering shared structures in multiclass classification. In: Proceedings of the International Conference of Machine Learning (2007)
Fazel, M., Hindi, H., Boyd, S.: A rank minimization heuristic with application to minimum order system approximation. In: Proceedings of the American Control Conference (2001)
CandèsE.RechtB.Exact matrix completion via convex optimizationFound. Comput. Math.2009967177720566212810.1007/s10208-009-9045-52565240
DonohoD.L.TannerJ.Neighborliness of randomly projected simplices in high dimensionsProc. Natl. Acad. Sci. USA200510227945294571135.6030010.1073/pnas.05022581022168716
Fazel, M.: Matrix Rank Minimization with Applications. Ph.D. thesis, Stanford University (2002)
RechtB.FazelM.ParriloP.Guaranteed minimum rank solutions of matrix equations via nuclear norm minimizationSIAM Rev.20105234715011198.9032110.1137/0706978352680543
BaiZ.D.Methodologies in spectral analysis of large dimensional random matricesStatistica Sinica1999936116610949.600771711663
CaiJ.F.CandèsE.J.ShenZ.A singular value thresholding algorithm for matrix completionSIAM J. Optim.20082041956198210.1137/080738970
GordonY.Some inequalities for Gaussian processes and applicationsIsrael J. Math.1985502652890663.6003410.1007/BF02759761800188
DonohoD.HuoX.Uncertainty principles and ideal atomic decompositionIEEE Trans. Inf. Theory2001477284528621019.9450310.1109/18.9592651872845
DonohoD.L.TannerJ.Sparse nonnegative solution of underdetermined linear equations by linear programmingProc. Natl. Acad. Sci. USA2005102279446945110.1073/pnas.05022691022168715
SturmJ.F.Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric conesOptim. Methods Softw.199911–1262565310.1080/105567899088057661778433
Szarek, S.J.: Metric entropy of homogeneous spaces. In: Quantum probability (Gdańsk, 1997), Banach Center Publ., vol. 43, pp. 395–410. Polish Acad. Sci., Warsaw (1998). Preprint available at arXiv:math/ 9701213v1
V.A. Marčenko (422_CR25) 1967; 1
J.F. Sturm (422_CR34) 1999; 11–12
E.J. Candès (422_CR10) 2005; 51
B. Recht (422_CR29) 2010; 52
D.L. Donoho (422_CR13) 2005; 102
D.L. Donoho (422_CR14) 2005; 102
Y. Gordon (422_CR18) 1985; 50
M. Mesbahi (422_CR27) 1997; 42
D. Donoho (422_CR12) 2001; 47
422_CR1
422_CR30
D. Donoho (422_CR11) 2006; 35
422_CR5
422_CR31
422_CR3
J.F. Cai (422_CR7) 2008; 20
E. Candès (422_CR8) 2009; 9
D. Slepian (422_CR32) 1962; 41
422_CR2
Z.D. Bai (422_CR4) 1999; 9
422_CR33
422_CR35
422_CR16
422_CR38
422_CR6
422_CR15
M. Yuan (422_CR37) 2007; 69
422_CR17
K.Q. Weinberger (422_CR36) 2006; 70
P.A. Parrilo (422_CR28) 2000; 45
N. Linial (422_CR22) 1995; 15
Z. Liu (422_CR23) 2009; 31
Y. Gordon (422_CR19) 1988; 16
E.J. Candès (422_CR9) 2006; 52
422_CR21
M. Ledoux (422_CR20) 1991
422_CR24
422_CR26
References_xml – reference: Fazel, M., Hindi, H., Boyd, S.: A rank minimization heuristic with application to minimum order system approximation. In: Proceedings of the American Control Conference (2001)
– reference: Beck, C., D’Andrea, R.: Computational study and comparisons of LFT reducibility methods. In: Proceedings of the American Control Conference (1998)
– reference: ParriloP.A.KhatriS.On cone-invariant linear matrix inequalitiesIEEE Trans. Automat. Control2000458155815630988.9302910.1109/9.8717721797416
– reference: DonohoD.L.TannerJ.Neighborliness of randomly projected simplices in high dimensionsProc. Natl. Acad. Sci. USA200510227945294571135.6030010.1073/pnas.05022581022168716
– reference: GordonY.Gaussian processes and almost spherical sections of convex bodiesAnn. Probab.1988161801880639.6004610.1214/aop/1176991893920263
– reference: Argyriou, A., Micchelli, C.A., Pontil, M.: Convex multi-task feature learning. Machine Learning (2008). Published online first at http://www.springerlink.com/
– reference: DonohoD.L.TannerJ.Sparse nonnegative solution of underdetermined linear equations by linear programmingProc. Natl. Acad. Sci. USA2005102279446945110.1073/pnas.05022691022168715
– reference: LedouxM.TalagrandM.Probability in Banach Spaces1991BerlinSpringer0748.60004
– reference: Rennie, J.D.M., Srebro, N.: Fast maximum margin matrix factorization for collaborative prediction. In: Proceedings of the International Conference of Machine Learning (2005)
– reference: YuanM.EkiciA.LuZ.MonteiroR.Dimension reduction and coefficient estimation in multivariate linear regressionJ. Roy. Stat. Soc. Ser. B20076932934610.1111/j.1467-9868.2007.00591.x2323756
– reference: Stojnic, M., Xu, W., Hassibi, B.: Compressed sensing - probabilistic analysis of a null-space characterization. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2008)
– reference: DonohoD.HuoX.Uncertainty principles and ideal atomic decompositionIEEE Trans. Inf. Theory2001477284528621019.9450310.1109/18.9592651872845
– reference: SturmJ.F.Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric conesOptim. Methods Softw.199911–1262565310.1080/105567899088057661778433
– reference: SlepianD.The one-sided barrier problem for Gaussian noiseBell Syst. Tech. J.196241463501133183
– reference: Ames, B.P.W., Vavasis, S.A.: Nuclear norm minimization for the planted clique and biclique problems (2009). Submitted to Mathematical Programming. Preprint available at http://arxiv.org/abs/0901.3348v1
– reference: Amit, Y., Fink, M., Srebro, N., Ullman, S.: Uncovering shared structures in multiclass classification. In: Proceedings of the International Conference of Machine Learning (2007)
– reference: Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimization (2008). Preprint available at http://www.optimization-online.org/DB_HTML/2008/11/2151.html
– reference: CandèsE.RechtB.Exact matrix completion via convex optimizationFound. Comput. Math.2009967177720566212810.1007/s10208-009-9045-52565240
– reference: GordonY.Some inequalities for Gaussian processes and applicationsIsrael J. Math.1985502652890663.6003410.1007/BF02759761800188
– reference: MesbahiM.PapavassilopoulosG.P.On the rank minimization problem over a positive semidefinite linear matrix inequalityIEEE Trans. Autom. Control19974222392430872.9302910.1109/9.5544021438452
– reference: WeinbergerK.Q.SaulL.K.Unsupervised learning of image manifolds by semidefinite programmingInt. J. Comput. Vis.2006701779010.1007/s11263-005-4939-z
– reference: Meka, R., Jain, P., Caramanis, C., Dhillon, I.S.: Rank minimization via online learning. In: Proceedings of the International Conference on Machine Learning (2008)
– reference: BaiZ.D.Methodologies in spectral analysis of large dimensional random matricesStatistica Sinica1999936116610949.600771711663
– reference: CaiJ.F.CandèsE.J.ShenZ.A singular value thresholding algorithm for matrix completionSIAM J. Optim.20082041956198210.1137/080738970
– reference: DonohoD.High-dimensional centrally symmetric polytopes with neighborliness proportional to dimensionDiscret. Comput. Geom.20063546176521095.5250010.1007/s00454-005-1220-02225676
– reference: CandèsE.J.RombergJ.TaoT.Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency informationIEEE Trans. Inf. Theory200652248950910.1109/TIT.2005.862083
– reference: Lee, K., Bresler, Y.: Efficient and guaranteed rank minimization by atomic decomposition. In: IEEE International Symposium on Information Theory (2009)
– reference: Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constructive Approximation (2008). To Appear. Preprint available at http://dsp.rice.edu/cs/jlcs-v03.pdf
– reference: Zhang, Y.: A simple proof for recoverability of ℓ1 minimization: go over or under? Tech. Rep. TR05-09, Rice CAAM Department (2005)
– reference: CandèsE.J.TaoT.Decoding by linear programmingIEEE Trans. Inf. Theory200551124203421510.1109/TIT.2005.858979
– reference: Szarek, S.J.: Metric entropy of homogeneous spaces. In: Quantum probability (Gdańsk, 1997), Banach Center Publ., vol. 43, pp. 395–410. Polish Acad. Sci., Warsaw (1998). Preprint available at arXiv:math/ 9701213v1
– reference: LinialN.LondonE.RabinovichY.The geometry of graphs and some of its algorithmic applicationsCombinatorica1995152152450827.0502110.1007/BF012007571337355
– reference: El Ghaoui, L., Gahinet, P.: Rank minimization under LMI constraints: a framework for output feedback problems. In: Proceedings of the European Control Conference (1993)
– reference: RechtB.FazelM.ParriloP.Guaranteed minimum rank solutions of matrix equations via nuclear norm minimizationSIAM Rev.20105234715011198.9032110.1137/0706978352680543
– reference: MarčenkoV.A.PasturL.A.Distributions of eigenvalues for some sets of random matricesMath. USSR-Sbornik1967145748310.1070/SM1967v001n04ABEH001994
– reference: Fazel, M.: Matrix Rank Minimization with Applications. Ph.D. thesis, Stanford University (2002)
– reference: LiuZ.VandenbergheL.Interior-point method for nuclear norm approximation with application to system identificationSIAM J. Matrix Anal. Appl.20093131235125610.1137/0907554362558821
– reference: Recht, B., Xu, W., Hassibi, B.: Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization. In: Proceedings of the 47th IEEE Conference on Decision and Control (2008)
– volume: 41
  start-page: 463
  year: 1962
  ident: 422_CR32
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1962.tb02419.x
– volume: 47
  start-page: 2845
  issue: 7
  year: 2001
  ident: 422_CR12
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.959265
– volume: 69
  start-page: 329
  year: 2007
  ident: 422_CR37
  publication-title: J. Roy. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2007.00591.x
– volume: 15
  start-page: 215
  year: 1995
  ident: 422_CR22
  publication-title: Combinatorica
  doi: 10.1007/BF01200757
– volume: 9
  start-page: 611
  issue: 3
  year: 1999
  ident: 422_CR4
  publication-title: Statistica Sinica
– ident: 422_CR15
– ident: 422_CR2
  doi: 10.1145/1273496.1273499
– ident: 422_CR17
– volume: 52
  start-page: 471
  issue: 3
  year: 2010
  ident: 422_CR29
  publication-title: SIAM Rev.
  doi: 10.1137/070697835
– volume: 102
  start-page: 9452
  issue: 27
  year: 2005
  ident: 422_CR13
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0502258102
– ident: 422_CR38
– volume: 70
  start-page: 77
  issue: 1
  year: 2006
  ident: 422_CR36
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-005-4939-z
– volume: 31
  start-page: 1235
  issue: 3
  year: 2009
  ident: 422_CR23
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/090755436
– ident: 422_CR24
– volume: 16
  start-page: 180
  year: 1988
  ident: 422_CR19
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176991893
– ident: 422_CR31
  doi: 10.1145/1102351.1102441
– ident: 422_CR26
  doi: 10.1145/1390156.1390239
– volume: 1
  start-page: 457
  year: 1967
  ident: 422_CR25
  publication-title: Math. USSR-Sbornik
  doi: 10.1070/SM1967v001n04ABEH001994
– volume: 11–12
  start-page: 625
  year: 1999
  ident: 422_CR34
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789908805766
– volume: 102
  start-page: 9446
  issue: 27
  year: 2005
  ident: 422_CR14
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0502269102
– volume: 45
  start-page: 1558
  issue: 8
  year: 2000
  ident: 422_CR28
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.871772
– volume: 9
  start-page: 717
  issue: 6
  year: 2009
  ident: 422_CR8
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-009-9045-5
– ident: 422_CR30
  doi: 10.1109/CDC.2008.4739332
– ident: 422_CR6
  doi: 10.1109/ACC.1998.703562
– volume-title: Probability in Banach Spaces
  year: 1991
  ident: 422_CR20
  doi: 10.1007/978-3-642-20212-4
– ident: 422_CR35
– volume: 50
  start-page: 265
  year: 1985
  ident: 422_CR18
  publication-title: Israel J. Math.
  doi: 10.1007/BF02759761
– ident: 422_CR21
  doi: 10.1109/ISIT.2009.5205530
– volume: 51
  start-page: 4203
  issue: 12
  year: 2005
  ident: 422_CR10
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.858979
– volume: 42
  start-page: 239
  issue: 2
  year: 1997
  ident: 422_CR27
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.554402
– ident: 422_CR5
– ident: 422_CR3
– ident: 422_CR16
  doi: 10.1109/ACC.2001.945730
– ident: 422_CR1
– volume: 35
  start-page: 617
  issue: 4
  year: 2006
  ident: 422_CR11
  publication-title: Discret. Comput. Geom.
  doi: 10.1007/s00454-005-1220-0
– ident: 422_CR33
  doi: 10.1109/ICASSP.2008.4518375
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  ident: 422_CR9
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.862083
– volume: 20
  start-page: 1956
  issue: 4
  year: 2008
  ident: 422_CR7
  publication-title: SIAM J. Optim.
  doi: 10.1137/080738970
SSID ssj0001388
Score 2.325796
Snippet Minimizing the rank of a matrix subject to constraints is a challenging problem that arises in many applications in machine learning, control theory, and...
Issue Title: Special Issue on "Optimization and Machine learning"; Alexandre d'Aspremont * Francis Bach * Inderjit S. Dhillon * Bin Yu Minimizing the rank of a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 175
SubjectTerms Algorithms
Asymptotic methods
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Control theory
Exact solutions
Full Length Paper
Heuristic
Infinity
Linear operators
Machine learning
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Minimization
Numerical Analysis
Optimization
Phase transitions
Studies
Theoretical
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8NAEB5qfdEH8cR6sYJPSrC7uTaCiEqLCC0iCr6FvfKkqZr0_zuTqyroSyDkWJjZnf1mZ-YbgBNEudYOQ-tRJ1sv4IZ7iQ2Vp63URDmlHacC58k0unsO7l_Clx5M2loYSqtsbWJlqO3M0Bn5uQwFofMguHr_8KhpFAVX2w4aqumsYC8rhrElWBZEjNWH5ZvR9OGxM83cl7Lt4UrAoQ1z1rV0vMrCpGxHdNDEz41qgT5_BUyrfWi8DmsNgGTXtcY3oOfyTVj9RiuId5OOi7XYgospepkMDYdxDJ1fW-doMZVbVqIiC4o_FQyxK6P-7Yy4Rt6a4sxteBqPnm7vvKZjgmf8QJaediIzWcx5Zv0gkr4TsTA81Co0uFCFzbLYEd-9tIkJ0BVzFlWSCKVEoo3R_g7081nudoG5COUttYms4IHWXGWOD7UWIna-zGI1gGErndQ0bOLU1OI1XfAgk0BTvKQk0FQM4LT75L2m0vjv5f1W5Gmzqoq0mwMDOO6e4nKgGIfK3WxepDyKEcEk6EgO4KzV1OIPf4639-94-7BSnyVT7tkB9MvPuTtEMFLqo2aKfQHxw9qR
  priority: 102
  providerName: ProQuest
Title Null space conditions and thresholds for rank minimization
URI https://link.springer.com/article/10.1007/s10107-010-0422-2
https://www.proquest.com/docview/852049944
https://www.proquest.com/docview/1671299282
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1436-4646
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: AMVHM
  dateStart: 19711201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: AFBBN
  dateStart: 19711201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1436-4646
  dateEnd: 20190131
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: BENPR
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20190131
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: 8FG
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vehBfGKslhU8KYHu5rXxVqUPlBaRFuopZB85aSom_f_O5tUqKnhJCNlswuzu7DeZmW8ArhDlKtXzlG0q2douldQOlRfbQnFhKKeEpibBeTL1x3P3YeEtqjzurI52r12ShabeSHajRZikCUdECwr1btszbF44iees36hf6nBe12k14KB2Zf7UxdfNaI0wvzlFi71muA97FUgk_XJUD2BLp4ewu0EdiFeThm81O4LbKVqSBJWD1AQNXFXGYZE4VSTHwcqMjykjiE-JqdFODJ_IW5WAeQyz4WB2P7arqgi2dFye20KzRCYBpYlyXJ87mgVMUk_EnsTFyFSSBNpw2nMVShfNLa1Q7CGLYxYKKYVzAq10mepTINr3WI8L6StGXSFonGjaE4KxQDs8CWILerV0IlkxhpvCFa_RmuvYCDTCQ2QEGjELrptH3ku6jL8ad2qRR9XKySKO34RWmOtacNncxSlv_BhxqperLKJ-gCglRGPRgpt6pNY9_Pq-s3-17sBO-f_YxJudQyv_WOkLBCC56MI2H4660O6PXh4HeL4bTJ-eu8U0_AQcaNTR
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcUCmtupSCkeACirp2nMSpVFU8drV97KpCW6k3y6-cIFtIKsR_48cxs3ksRaK3XiJFSWxlPLZnPDPfB_AGrVzvh4mPiMk2ktzxKPeJiaxXliCnbOBU4DydpZNLeXqVXK3B764WhtIquzVxuVD7haMz8gOVCLLOpTy-_h4RaRQFVzsGDdMyK_ijJcJYW9dxFn79RA-uOjr5jMP9VojxaP5pErUkA5GLpaojG0ThiozzwscyVXEQmXA8sSZxqNvCF0UWCCJe-dxJ9F6Cx7_IhTEit87ZGJt9ABsyljm6fhsfR7OLL_1OwGOlOspYslO6qGpTuseXSZ-UXIn-oLi9L66M3X_is8ttb7wJT1p7lX1oFOwprIVyCx7_hWKId9Me-rV6BoczdGoZrlMuMPS1fZMSxkzpWY16U1G4q2JoKjOii2cEbfKtrQXdhvl9yG4H1stFGXaBhRSHV1mXesGltdwUgQ-tFSILsSoyM4BhJx3tWvBy4tD4qlewyyRQjRdNAtViAO_6T64b5I67Xt7rRK7bSVzpXuUG8Lp_irOPQiqmDIubSvM0Q4MpR791AO-7kVq18N_-nt_Z3yt4OJlPz_X5yexsDx41x9iU9vYC1usfN2Ef7aDavmzVjYG-ZwX_A916GJA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EQfQgPjHWxwqelNDuZpNsvBW11EeLhxZ6W_aVk6bFpP_f2ebRKip4CYRsNsnMPr7JzHyD0BWgXGM6ofFdJVufEU38xITSV4YrRzmlLHEJzoNh1B-zp0k4qeqc5nW0e-2SLHMaHEtTVrRnJm2vJL6RRcikC00EawrW4A3meBJgQI9pt1mKScB5XbPVAYXarflTF183piXa_OYgXew7vV20UwFG3C01vIfWbLaPtldoBOFs0HCv5gfodghWJYaFQlsMX2XKmCwsM4MLUFzu_E05BqyKXb127LhF3qtkzEM06j2M7vp-VSHB1wHjha8sTXUaE5KagEU8sDSmmoRKhhomJjVpGlvHb89NohmYXtaAChIqJU2U1io4QuvZNLPHCNsopB2udGQoYUoRmVrSUYrS2AY8jaWHOrV0hK7Yw10Rizex5D12AhVwEE6ggnrourllVlJn_NW4VYtcVLMoFxzeCSwyxjx02VyF4e98GjKz03kuSBQDYknAcPTQTa2pZQ-_Pu_kX60v0ObrfU-8PA6fW2ir_K3swtBO0XrxMbdngEsKdb4Ye59hNNfl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Null+space+conditions+and+thresholds+for+rank+minimization&rft.jtitle=Mathematical+programming&rft.au=Recht%2C+Benjamin&rft.au=Xu%2C+Weiyu&rft.au=Hassibi%2C+Babak&rft.date=2011-03-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=127&rft.issue=1&rft.spage=175&rft.epage=202&rft_id=info:doi/10.1007%2Fs10107-010-0422-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon