Null space conditions and thresholds for rank minimization
Minimizing the rank of a matrix subject to constraints is a challenging problem that arises in many applications in machine learning, control theory, and discrete geometry. This class of optimization problems, known as rank minimization, is NP-hard, and for most practical problems there are no effic...
Saved in:
| Published in | Mathematical programming Vol. 127; no. 1; pp. 175 - 202 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer-Verlag
01.03.2011
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0025-5610 1436-4646 |
| DOI | 10.1007/s10107-010-0422-2 |
Cover
| Abstract | Minimizing the rank of a matrix subject to constraints is a challenging problem that arises in many applications in machine learning, control theory, and discrete geometry. This class of optimization problems, known as rank minimization, is NP-hard, and for most practical problems there are no efficient algorithms that yield exact solutions. A popular heuristic replaces the rank function with the nuclear norm—equal to the sum of the singular values—of the decision variable and has been shown to provide the optimal low rank solution in a variety of scenarios. In this paper, we assess the practical performance of this heuristic for finding the minimum rank matrix subject to linear equality constraints. We characterize properties of the null space of the linear operator defining the constraint set that are necessary and sufficient for the heuristic to succeed. We then analyze linear constraints sampled uniformly at random, and obtain dimension-free bounds under which our null space properties hold almost surely as the matrix dimensions tend to infinity. Finally, we provide empirical evidence that these probabilistic bounds provide accurate predictions of the heuristic’s performance in non-asymptotic scenarios. |
|---|---|
| AbstractList | Minimizing the rank of a matrix subject to constraints is a challenging problem that arises in many applications in machine learning, control theory, and discrete geometry. This class of optimization problems, known as rank minimization, is NP-hard, and for most practical problems there are no efficient algorithms that yield exact solutions. A popular heuristic replaces the rank function with the nuclear norm--equal to the sum of the singular values--of the decision variable and has been shown to provide the optimal low rank solution in a variety of scenarios. In this paper, we assess the practical performance of this heuristic for finding the minimum rank matrix subject to linear equality constraints. We characterize properties of the null space of the linear operator defining the constraint set that are necessary and sufficient for the heuristic to succeed. We then analyze linear constraints sampled uniformly at random, and obtain dimension-free bounds under which our null space properties hold almost surely as the matrix dimensions tend to infinity. Finally, we provide empirical evidence that these probabilistic bounds provide accurate predictions of the heuristic's performance in non-asymptotic scenarios. Issue Title: Special Issue on "Optimization and Machine learning"; Alexandre d'Aspremont * Francis Bach * Inderjit S. Dhillon * Bin Yu Minimizing the rank of a matrix subject to constraints is a challenging problem that arises in many applications in machine learning, control theory, and discrete geometry. This class of optimization problems, known as rank minimization, is NP-hard, and for most practical problems there are no efficient algorithms that yield exact solutions. A popular heuristic replaces the rank function with the nuclear norm--equal to the sum of the singular values--of the decision variable and has been shown to provide the optimal low rank solution in a variety of scenarios. In this paper, we assess the practical performance of this heuristic for finding the minimum rank matrix subject to linear equality constraints. We characterize properties of the null space of the linear operator defining the constraint set that are necessary and sufficient for the heuristic to succeed. We then analyze linear constraints sampled uniformly at random, and obtain dimension-free bounds under which our null space properties hold almost surely as the matrix dimensions tend to infinity. Finally, we provide empirical evidence that these probabilistic bounds provide accurate predictions of the heuristic's performance in non-asymptotic scenarios.[PUBLICATION ABSTRACT] |
| Author | Xu, Weiyu Recht, Benjamin Hassibi, Babak |
| Author_xml | – sequence: 1 givenname: Benjamin surname: Recht fullname: Recht, Benjamin email: brecht@cs.wisc.edu organization: Department of Computer Sciences, University of Wisconsin – sequence: 2 givenname: Weiyu surname: Xu fullname: Xu, Weiyu organization: Electrical Engineering, California Institute of Technology – sequence: 3 givenname: Babak surname: Hassibi fullname: Hassibi, Babak organization: Electrical Engineering, California Institute of Technology |
| BookMark | eNp9kD1PwzAYhC1UJNrCD2CLmFgMtuPEDhuq-JIqWLpbjj-oS2IXOxng15MQJKRKsNy7PHfv6RZg5oM3AJxjdIURYtcJI4wYHAQiSggkR2COaV5CWtJyBuYIkQIWJUYnYJHSDiGEc87n4Oa5b5os7aUymQpeu84FnzLpddZto0nb0OiU2RCzKP1b1jrvWvcpR-oUHFvZJHP2c5dgc3-3WT3C9cvD0-p2DVVOeQdrQ6yyDGOrc1ry3BBGFC5qWSjKOdHWMsMZpVxXipYIG615XREpSVUrVedLcDnF7mN4703qROuSMk0jvQl9ErhkmFQV4WRALw7QXeijH8oJXhBEq4rSAcITpGJIKRor9tG1Mn4IjMS4pZi2FIOIcUsxBrMDj3Ld9whdlK7510kmZxq--FcTfyv9bfoCTViJvQ |
| CODEN | MHPGA4 |
| CitedBy_id | crossref_primary_10_1016_j_mri_2011_07_021 crossref_primary_10_1016_j_ipl_2016_09_008 crossref_primary_10_1214_14_AOS1257 crossref_primary_10_1007_s10589_019_00084_y crossref_primary_10_1109_TAI_2022_3177394 crossref_primary_10_1093_imaiai_iav011 crossref_primary_10_1093_imaiai_iaad033 crossref_primary_10_3934_ipi_2012_6_357 crossref_primary_10_1016_j_jmaa_2015_02_041 crossref_primary_10_3390_s130303902 crossref_primary_10_1109_TSP_2016_2586753 crossref_primary_10_1007_s10898_023_01322_8 crossref_primary_10_1016_j_laa_2014_09_018 crossref_primary_10_1109_TIT_2013_2294644 crossref_primary_10_1155_2013_101974 crossref_primary_10_1016_j_acha_2015_06_006 crossref_primary_10_1109_TNNLS_2021_3051650 crossref_primary_10_1016_j_acha_2015_11_003 crossref_primary_10_1371_journal_ppat_1002797 crossref_primary_10_1109_TSP_2013_2295557 crossref_primary_10_1109_JSTARS_2024_3396049 crossref_primary_10_1109_TSP_2020_3007967 crossref_primary_10_1137_15M1050525 crossref_primary_10_1016_j_sigpro_2015_02_025 crossref_primary_10_3389_fams_2018_00065 crossref_primary_10_1137_19M1238599 crossref_primary_10_1016_j_jsb_2012_10_010 crossref_primary_10_1214_10_AOS850 crossref_primary_10_1093_imaiai_iaad050 crossref_primary_10_1007_s10107_013_0729_x crossref_primary_10_1109_TIT_2017_2773497 crossref_primary_10_1016_j_dsp_2020_102880 crossref_primary_10_1017_S096249291300007X crossref_primary_10_1109_TIT_2012_2204535 crossref_primary_10_1109_TIT_2018_2840720 crossref_primary_10_1109_TSP_2013_2272925 crossref_primary_10_1109_TMI_2012_2215921 crossref_primary_10_1093_imanum_dry069 crossref_primary_10_1007_s10208_012_9135_7 crossref_primary_10_1109_JSTSP_2016_2545518 crossref_primary_10_1137_110847445 crossref_primary_10_1109_CJECE_2014_2348014 crossref_primary_10_1137_14099379X crossref_primary_10_1109_TIT_2024_3422918 crossref_primary_10_1002_nla_1948 crossref_primary_10_1007_s11063_017_9731_2 crossref_primary_10_1080_02331934_2015_1053882 crossref_primary_10_1137_100811404 crossref_primary_10_1142_S0217595915400084 crossref_primary_10_1007_s12532_020_00177_4 crossref_primary_10_1142_S0219691317500321 crossref_primary_10_1186_s13660_017_1602_x crossref_primary_10_1016_j_laa_2013_07_025 crossref_primary_10_1109_TSP_2011_2141661 crossref_primary_10_1093_imaiai_iaw014 crossref_primary_10_1073_pnas_1306110110 crossref_primary_10_1109_TIT_2020_2990948 crossref_primary_10_1190_geo2014_0467_1 crossref_primary_10_1016_j_mri_2012_04_012 crossref_primary_10_1109_MSP_2018_2821706 |
| Cites_doi | 10.1002/j.1538-7305.1962.tb02419.x 10.1109/18.959265 10.1111/j.1467-9868.2007.00591.x 10.1007/BF01200757 10.1145/1273496.1273499 10.1137/070697835 10.1073/pnas.0502258102 10.1007/s11263-005-4939-z 10.1137/090755436 10.1214/aop/1176991893 10.1145/1102351.1102441 10.1145/1390156.1390239 10.1070/SM1967v001n04ABEH001994 10.1080/10556789908805766 10.1073/pnas.0502269102 10.1109/9.871772 10.1007/s10208-009-9045-5 10.1109/CDC.2008.4739332 10.1109/ACC.1998.703562 10.1007/978-3-642-20212-4 10.1007/BF02759761 10.1109/ISIT.2009.5205530 10.1109/TIT.2005.858979 10.1109/9.554402 10.1109/ACC.2001.945730 10.1007/s00454-005-1220-0 10.1109/ICASSP.2008.4518375 10.1109/TIT.2005.862083 10.1137/080738970 |
| ContentType | Journal Article |
| Copyright | Springer and Mathematical Optimization Society 2010 Springer and Mathematical Optimization Society 2011 |
| Copyright_xml | – notice: Springer and Mathematical Optimization Society 2010 – notice: Springer and Mathematical Optimization Society 2011 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10107-010-0422-2 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Science Database Engineering Database (Proquest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Computer and Information Systems Abstracts ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 202 |
| ExternalDocumentID | 2268978761 10_1007_s10107_010_0422_2 |
| Genre | Feature |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c348t-be2fcf711fd34683e272c15ba5c4882dff7e87448d9c4601edd8b92aa29bccb3 |
| IEDL.DBID | U2A |
| ISSN | 0025-5610 |
| IngestDate | Thu Sep 04 17:30:12 EDT 2025 Thu Sep 25 00:50:11 EDT 2025 Thu Apr 24 23:06:25 EDT 2025 Wed Oct 01 04:22:05 EDT 2025 Fri Feb 21 02:32:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | 15A52 Random matrices Matrix norms Convex optimization 90C25 Gaussian processes Rank 90C59 Compressed sensing |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-be2fcf711fd34683e272c15ba5c4882dff7e87448d9c4601edd8b92aa29bccb3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 852049944 |
| PQPubID | 25307 |
| PageCount | 28 |
| ParticipantIDs | proquest_miscellaneous_1671299282 proquest_journals_852049944 crossref_primary_10_1007_s10107_010_0422_2 crossref_citationtrail_10_1007_s10107_010_0422_2 springer_journals_10_1007_s10107_010_0422_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20110300 2011-3-00 20110301 |
| PublicationDateYYYYMMDD | 2011-03-01 |
| PublicationDate_xml | – month: 3 year: 2011 text: 20110300 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2011 |
| Publisher | Springer-Verlag Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer Nature B.V |
| References | YuanM.EkiciA.LuZ.MonteiroR.Dimension reduction and coefficient estimation in multivariate linear regressionJ. Roy. Stat. Soc. Ser. B20076932934610.1111/j.1467-9868.2007.00591.x2323756 Lee, K., Bresler, Y.: Efficient and guaranteed rank minimization by atomic decomposition. In: IEEE International Symposium on Information Theory (2009) CandèsE.J.RombergJ.TaoT.Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency informationIEEE Trans. Inf. Theory200652248950910.1109/TIT.2005.862083 LiuZ.VandenbergheL.Interior-point method for nuclear norm approximation with application to system identificationSIAM J. Matrix Anal. Appl.20093131235125610.1137/0907554362558821 Zhang, Y.: A simple proof for recoverability of ℓ1 minimization: go over or under? Tech. Rep. TR05-09, Rice CAAM Department (2005) Argyriou, A., Micchelli, C.A., Pontil, M.: Convex multi-task feature learning. Machine Learning (2008). Published online first at http://www.springerlink.com GordonY.Gaussian processes and almost spherical sections of convex bodiesAnn. Probab.1988161801880639.6004610.1214/aop/1176991893920263 Recht, B., Xu, W., Hassibi, B.: Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization. In: Proceedings of the 47th IEEE Conference on Decision and Control (2008) WeinbergerK.Q.SaulL.K.Unsupervised learning of image manifolds by semidefinite programmingInt. J. Comput. Vis.2006701779010.1007/s11263-005-4939-z Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constructive Approximation (2008). To Appear. Preprint available at http://dsp.rice.edu/cs/jlcs-v03.pdf DonohoD.High-dimensional centrally symmetric polytopes with neighborliness proportional to dimensionDiscret. Comput. Geom.20063546176521095.5250010.1007/s00454-005-1220-02225676 El Ghaoui, L., Gahinet, P.: Rank minimization under LMI constraints: a framework for output feedback problems. In: Proceedings of the European Control Conference (1993) LinialN.LondonE.RabinovichY.The geometry of graphs and some of its algorithmic applicationsCombinatorica1995152152450827.0502110.1007/BF012007571337355 Rennie, J.D.M., Srebro, N.: Fast maximum margin matrix factorization for collaborative prediction. In: Proceedings of the International Conference of Machine Learning (2005) Stojnic, M., Xu, W., Hassibi, B.: Compressed sensing - probabilistic analysis of a null-space characterization. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2008) Beck, C., D’Andrea, R.: Computational study and comparisons of LFT reducibility methods. In: Proceedings of the American Control Conference (1998) LedouxM.TalagrandM.Probability in Banach Spaces1991BerlinSpringer0748.60004 MesbahiM.PapavassilopoulosG.P.On the rank minimization problem over a positive semidefinite linear matrix inequalityIEEE Trans. Autom. Control19974222392430872.9302910.1109/9.5544021438452 Meka, R., Jain, P., Caramanis, C., Dhillon, I.S.: Rank minimization via online learning. In: Proceedings of the International Conference on Machine Learning (2008) ParriloP.A.KhatriS.On cone-invariant linear matrix inequalitiesIEEE Trans. Automat. Control2000458155815630988.9302910.1109/9.8717721797416 Ames, B.P.W., Vavasis, S.A.: Nuclear norm minimization for the planted clique and biclique problems (2009). Submitted to Mathematical Programming. Preprint available at http://arxiv.org/abs/0901.3348v1 CandèsE.J.TaoT.Decoding by linear programmingIEEE Trans. Inf. Theory200551124203421510.1109/TIT.2005.858979 Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimization (2008). Preprint available at http://www.optimization-online.org/DB_HTML/2008/11/2151.html MarčenkoV.A.PasturL.A.Distributions of eigenvalues for some sets of random matricesMath. USSR-Sbornik1967145748310.1070/SM1967v001n04ABEH001994 SlepianD.The one-sided barrier problem for Gaussian noiseBell Syst. Tech. J.196241463501133183 Amit, Y., Fink, M., Srebro, N., Ullman, S.: Uncovering shared structures in multiclass classification. In: Proceedings of the International Conference of Machine Learning (2007) Fazel, M., Hindi, H., Boyd, S.: A rank minimization heuristic with application to minimum order system approximation. In: Proceedings of the American Control Conference (2001) CandèsE.RechtB.Exact matrix completion via convex optimizationFound. Comput. Math.2009967177720566212810.1007/s10208-009-9045-52565240 DonohoD.L.TannerJ.Neighborliness of randomly projected simplices in high dimensionsProc. Natl. Acad. Sci. USA200510227945294571135.6030010.1073/pnas.05022581022168716 Fazel, M.: Matrix Rank Minimization with Applications. Ph.D. thesis, Stanford University (2002) RechtB.FazelM.ParriloP.Guaranteed minimum rank solutions of matrix equations via nuclear norm minimizationSIAM Rev.20105234715011198.9032110.1137/0706978352680543 BaiZ.D.Methodologies in spectral analysis of large dimensional random matricesStatistica Sinica1999936116610949.600771711663 CaiJ.F.CandèsE.J.ShenZ.A singular value thresholding algorithm for matrix completionSIAM J. Optim.20082041956198210.1137/080738970 GordonY.Some inequalities for Gaussian processes and applicationsIsrael J. Math.1985502652890663.6003410.1007/BF02759761800188 DonohoD.HuoX.Uncertainty principles and ideal atomic decompositionIEEE Trans. Inf. Theory2001477284528621019.9450310.1109/18.9592651872845 DonohoD.L.TannerJ.Sparse nonnegative solution of underdetermined linear equations by linear programmingProc. Natl. Acad. Sci. USA2005102279446945110.1073/pnas.05022691022168715 SturmJ.F.Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric conesOptim. Methods Softw.199911–1262565310.1080/105567899088057661778433 Szarek, S.J.: Metric entropy of homogeneous spaces. In: Quantum probability (Gdańsk, 1997), Banach Center Publ., vol. 43, pp. 395–410. Polish Acad. Sci., Warsaw (1998). Preprint available at arXiv:math/ 9701213v1 V.A. Marčenko (422_CR25) 1967; 1 J.F. Sturm (422_CR34) 1999; 11–12 E.J. Candès (422_CR10) 2005; 51 B. Recht (422_CR29) 2010; 52 D.L. Donoho (422_CR13) 2005; 102 D.L. Donoho (422_CR14) 2005; 102 Y. Gordon (422_CR18) 1985; 50 M. Mesbahi (422_CR27) 1997; 42 D. Donoho (422_CR12) 2001; 47 422_CR1 422_CR30 D. Donoho (422_CR11) 2006; 35 422_CR5 422_CR31 422_CR3 J.F. Cai (422_CR7) 2008; 20 E. Candès (422_CR8) 2009; 9 D. Slepian (422_CR32) 1962; 41 422_CR2 Z.D. Bai (422_CR4) 1999; 9 422_CR33 422_CR35 422_CR16 422_CR38 422_CR6 422_CR15 M. Yuan (422_CR37) 2007; 69 422_CR17 K.Q. Weinberger (422_CR36) 2006; 70 P.A. Parrilo (422_CR28) 2000; 45 N. Linial (422_CR22) 1995; 15 Z. Liu (422_CR23) 2009; 31 Y. Gordon (422_CR19) 1988; 16 E.J. Candès (422_CR9) 2006; 52 422_CR21 M. Ledoux (422_CR20) 1991 422_CR24 422_CR26 |
| References_xml | – reference: Fazel, M., Hindi, H., Boyd, S.: A rank minimization heuristic with application to minimum order system approximation. In: Proceedings of the American Control Conference (2001) – reference: Beck, C., D’Andrea, R.: Computational study and comparisons of LFT reducibility methods. In: Proceedings of the American Control Conference (1998) – reference: ParriloP.A.KhatriS.On cone-invariant linear matrix inequalitiesIEEE Trans. Automat. Control2000458155815630988.9302910.1109/9.8717721797416 – reference: DonohoD.L.TannerJ.Neighborliness of randomly projected simplices in high dimensionsProc. Natl. Acad. Sci. USA200510227945294571135.6030010.1073/pnas.05022581022168716 – reference: GordonY.Gaussian processes and almost spherical sections of convex bodiesAnn. Probab.1988161801880639.6004610.1214/aop/1176991893920263 – reference: Argyriou, A., Micchelli, C.A., Pontil, M.: Convex multi-task feature learning. Machine Learning (2008). Published online first at http://www.springerlink.com/ – reference: DonohoD.L.TannerJ.Sparse nonnegative solution of underdetermined linear equations by linear programmingProc. Natl. Acad. Sci. USA2005102279446945110.1073/pnas.05022691022168715 – reference: LedouxM.TalagrandM.Probability in Banach Spaces1991BerlinSpringer0748.60004 – reference: Rennie, J.D.M., Srebro, N.: Fast maximum margin matrix factorization for collaborative prediction. In: Proceedings of the International Conference of Machine Learning (2005) – reference: YuanM.EkiciA.LuZ.MonteiroR.Dimension reduction and coefficient estimation in multivariate linear regressionJ. Roy. Stat. Soc. Ser. B20076932934610.1111/j.1467-9868.2007.00591.x2323756 – reference: Stojnic, M., Xu, W., Hassibi, B.: Compressed sensing - probabilistic analysis of a null-space characterization. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2008) – reference: DonohoD.HuoX.Uncertainty principles and ideal atomic decompositionIEEE Trans. Inf. Theory2001477284528621019.9450310.1109/18.9592651872845 – reference: SturmJ.F.Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric conesOptim. Methods Softw.199911–1262565310.1080/105567899088057661778433 – reference: SlepianD.The one-sided barrier problem for Gaussian noiseBell Syst. Tech. J.196241463501133183 – reference: Ames, B.P.W., Vavasis, S.A.: Nuclear norm minimization for the planted clique and biclique problems (2009). Submitted to Mathematical Programming. Preprint available at http://arxiv.org/abs/0901.3348v1 – reference: Amit, Y., Fink, M., Srebro, N., Ullman, S.: Uncovering shared structures in multiclass classification. In: Proceedings of the International Conference of Machine Learning (2007) – reference: Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimization (2008). Preprint available at http://www.optimization-online.org/DB_HTML/2008/11/2151.html – reference: CandèsE.RechtB.Exact matrix completion via convex optimizationFound. Comput. Math.2009967177720566212810.1007/s10208-009-9045-52565240 – reference: GordonY.Some inequalities for Gaussian processes and applicationsIsrael J. Math.1985502652890663.6003410.1007/BF02759761800188 – reference: MesbahiM.PapavassilopoulosG.P.On the rank minimization problem over a positive semidefinite linear matrix inequalityIEEE Trans. Autom. Control19974222392430872.9302910.1109/9.5544021438452 – reference: WeinbergerK.Q.SaulL.K.Unsupervised learning of image manifolds by semidefinite programmingInt. J. Comput. Vis.2006701779010.1007/s11263-005-4939-z – reference: Meka, R., Jain, P., Caramanis, C., Dhillon, I.S.: Rank minimization via online learning. In: Proceedings of the International Conference on Machine Learning (2008) – reference: BaiZ.D.Methodologies in spectral analysis of large dimensional random matricesStatistica Sinica1999936116610949.600771711663 – reference: CaiJ.F.CandèsE.J.ShenZ.A singular value thresholding algorithm for matrix completionSIAM J. Optim.20082041956198210.1137/080738970 – reference: DonohoD.High-dimensional centrally symmetric polytopes with neighborliness proportional to dimensionDiscret. Comput. Geom.20063546176521095.5250010.1007/s00454-005-1220-02225676 – reference: CandèsE.J.RombergJ.TaoT.Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency informationIEEE Trans. Inf. Theory200652248950910.1109/TIT.2005.862083 – reference: Lee, K., Bresler, Y.: Efficient and guaranteed rank minimization by atomic decomposition. In: IEEE International Symposium on Information Theory (2009) – reference: Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constructive Approximation (2008). To Appear. Preprint available at http://dsp.rice.edu/cs/jlcs-v03.pdf – reference: Zhang, Y.: A simple proof for recoverability of ℓ1 minimization: go over or under? Tech. Rep. TR05-09, Rice CAAM Department (2005) – reference: CandèsE.J.TaoT.Decoding by linear programmingIEEE Trans. Inf. Theory200551124203421510.1109/TIT.2005.858979 – reference: Szarek, S.J.: Metric entropy of homogeneous spaces. In: Quantum probability (Gdańsk, 1997), Banach Center Publ., vol. 43, pp. 395–410. Polish Acad. Sci., Warsaw (1998). Preprint available at arXiv:math/ 9701213v1 – reference: LinialN.LondonE.RabinovichY.The geometry of graphs and some of its algorithmic applicationsCombinatorica1995152152450827.0502110.1007/BF012007571337355 – reference: El Ghaoui, L., Gahinet, P.: Rank minimization under LMI constraints: a framework for output feedback problems. In: Proceedings of the European Control Conference (1993) – reference: RechtB.FazelM.ParriloP.Guaranteed minimum rank solutions of matrix equations via nuclear norm minimizationSIAM Rev.20105234715011198.9032110.1137/0706978352680543 – reference: MarčenkoV.A.PasturL.A.Distributions of eigenvalues for some sets of random matricesMath. USSR-Sbornik1967145748310.1070/SM1967v001n04ABEH001994 – reference: Fazel, M.: Matrix Rank Minimization with Applications. Ph.D. thesis, Stanford University (2002) – reference: LiuZ.VandenbergheL.Interior-point method for nuclear norm approximation with application to system identificationSIAM J. Matrix Anal. Appl.20093131235125610.1137/0907554362558821 – reference: Recht, B., Xu, W., Hassibi, B.: Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization. In: Proceedings of the 47th IEEE Conference on Decision and Control (2008) – volume: 41 start-page: 463 year: 1962 ident: 422_CR32 publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1962.tb02419.x – volume: 47 start-page: 2845 issue: 7 year: 2001 ident: 422_CR12 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.959265 – volume: 69 start-page: 329 year: 2007 ident: 422_CR37 publication-title: J. Roy. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2007.00591.x – volume: 15 start-page: 215 year: 1995 ident: 422_CR22 publication-title: Combinatorica doi: 10.1007/BF01200757 – volume: 9 start-page: 611 issue: 3 year: 1999 ident: 422_CR4 publication-title: Statistica Sinica – ident: 422_CR15 – ident: 422_CR2 doi: 10.1145/1273496.1273499 – ident: 422_CR17 – volume: 52 start-page: 471 issue: 3 year: 2010 ident: 422_CR29 publication-title: SIAM Rev. doi: 10.1137/070697835 – volume: 102 start-page: 9452 issue: 27 year: 2005 ident: 422_CR13 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0502258102 – ident: 422_CR38 – volume: 70 start-page: 77 issue: 1 year: 2006 ident: 422_CR36 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-005-4939-z – volume: 31 start-page: 1235 issue: 3 year: 2009 ident: 422_CR23 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/090755436 – ident: 422_CR24 – volume: 16 start-page: 180 year: 1988 ident: 422_CR19 publication-title: Ann. Probab. doi: 10.1214/aop/1176991893 – ident: 422_CR31 doi: 10.1145/1102351.1102441 – ident: 422_CR26 doi: 10.1145/1390156.1390239 – volume: 1 start-page: 457 year: 1967 ident: 422_CR25 publication-title: Math. USSR-Sbornik doi: 10.1070/SM1967v001n04ABEH001994 – volume: 11–12 start-page: 625 year: 1999 ident: 422_CR34 publication-title: Optim. Methods Softw. doi: 10.1080/10556789908805766 – volume: 102 start-page: 9446 issue: 27 year: 2005 ident: 422_CR14 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0502269102 – volume: 45 start-page: 1558 issue: 8 year: 2000 ident: 422_CR28 publication-title: IEEE Trans. Automat. Control doi: 10.1109/9.871772 – volume: 9 start-page: 717 issue: 6 year: 2009 ident: 422_CR8 publication-title: Found. Comput. Math. doi: 10.1007/s10208-009-9045-5 – ident: 422_CR30 doi: 10.1109/CDC.2008.4739332 – ident: 422_CR6 doi: 10.1109/ACC.1998.703562 – volume-title: Probability in Banach Spaces year: 1991 ident: 422_CR20 doi: 10.1007/978-3-642-20212-4 – ident: 422_CR35 – volume: 50 start-page: 265 year: 1985 ident: 422_CR18 publication-title: Israel J. Math. doi: 10.1007/BF02759761 – ident: 422_CR21 doi: 10.1109/ISIT.2009.5205530 – volume: 51 start-page: 4203 issue: 12 year: 2005 ident: 422_CR10 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.858979 – volume: 42 start-page: 239 issue: 2 year: 1997 ident: 422_CR27 publication-title: IEEE Trans. Autom. Control doi: 10.1109/9.554402 – ident: 422_CR5 – ident: 422_CR3 – ident: 422_CR16 doi: 10.1109/ACC.2001.945730 – ident: 422_CR1 – volume: 35 start-page: 617 issue: 4 year: 2006 ident: 422_CR11 publication-title: Discret. Comput. Geom. doi: 10.1007/s00454-005-1220-0 – ident: 422_CR33 doi: 10.1109/ICASSP.2008.4518375 – volume: 52 start-page: 489 issue: 2 year: 2006 ident: 422_CR9 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.862083 – volume: 20 start-page: 1956 issue: 4 year: 2008 ident: 422_CR7 publication-title: SIAM J. Optim. doi: 10.1137/080738970 |
| SSID | ssj0001388 |
| Score | 2.325796 |
| Snippet | Minimizing the rank of a matrix subject to constraints is a challenging problem that arises in many applications in machine learning, control theory, and... Issue Title: Special Issue on "Optimization and Machine learning"; Alexandre d'Aspremont * Francis Bach * Inderjit S. Dhillon * Bin Yu Minimizing the rank of a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 175 |
| SubjectTerms | Algorithms Asymptotic methods Calculus of Variations and Optimal Control; Optimization Combinatorics Control theory Exact solutions Full Length Paper Heuristic Infinity Linear operators Machine learning Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Minimization Numerical Analysis Optimization Phase transitions Studies Theoretical |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8NAEB5qfdEH8cR6sYJPSrC7uTaCiEqLCC0iCr6FvfKkqZr0_zuTqyroSyDkWJjZnf1mZ-YbgBNEudYOQ-tRJ1sv4IZ7iQ2Vp63URDmlHacC58k0unsO7l_Clx5M2loYSqtsbWJlqO3M0Bn5uQwFofMguHr_8KhpFAVX2w4aqumsYC8rhrElWBZEjNWH5ZvR9OGxM83cl7Lt4UrAoQ1z1rV0vMrCpGxHdNDEz41qgT5_BUyrfWi8DmsNgGTXtcY3oOfyTVj9RiuId5OOi7XYgospepkMDYdxDJ1fW-doMZVbVqIiC4o_FQyxK6P-7Yy4Rt6a4sxteBqPnm7vvKZjgmf8QJaediIzWcx5Zv0gkr4TsTA81Co0uFCFzbLYEd-9tIkJ0BVzFlWSCKVEoo3R_g7081nudoG5COUttYms4IHWXGWOD7UWIna-zGI1gGErndQ0bOLU1OI1XfAgk0BTvKQk0FQM4LT75L2m0vjv5f1W5Gmzqoq0mwMDOO6e4nKgGIfK3WxepDyKEcEk6EgO4KzV1OIPf4639-94-7BSnyVT7tkB9MvPuTtEMFLqo2aKfQHxw9qR priority: 102 providerName: ProQuest |
| Title | Null space conditions and thresholds for rank minimization |
| URI | https://link.springer.com/article/10.1007/s10107-010-0422-2 https://www.proquest.com/docview/852049944 https://www.proquest.com/docview/1671299282 |
| Volume | 127 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1436-4646 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1436-4646 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: AMVHM dateStart: 19711201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: AFBBN dateStart: 19711201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1436-4646 dateEnd: 20190131 omitProxy: true ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: BENPR dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1436-4646 dateEnd: 20190131 omitProxy: true ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: 8FG dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vehBfGKslhU8KYHu5rXxVqUPlBaRFuopZB85aSom_f_O5tUqKnhJCNlswuzu7DeZmW8ArhDlKtXzlG0q2douldQOlRfbQnFhKKeEpibBeTL1x3P3YeEtqjzurI52r12ShabeSHajRZikCUdECwr1btszbF44iees36hf6nBe12k14KB2Zf7UxdfNaI0wvzlFi71muA97FUgk_XJUD2BLp4ewu0EdiFeThm81O4LbKVqSBJWD1AQNXFXGYZE4VSTHwcqMjykjiE-JqdFODJ_IW5WAeQyz4WB2P7arqgi2dFye20KzRCYBpYlyXJ87mgVMUk_EnsTFyFSSBNpw2nMVShfNLa1Q7CGLYxYKKYVzAq10mepTINr3WI8L6StGXSFonGjaE4KxQDs8CWILerV0IlkxhpvCFa_RmuvYCDTCQ2QEGjELrptH3ku6jL8ad2qRR9XKySKO34RWmOtacNncxSlv_BhxqperLKJ-gCglRGPRgpt6pNY9_Pq-s3-17sBO-f_YxJudQyv_WOkLBCC56MI2H4660O6PXh4HeL4bTJ-eu8U0_AQcaNTR |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcUCmtupSCkeACirp2nMSpVFU8drV97KpCW6k3y6-cIFtIKsR_48cxs3ksRaK3XiJFSWxlPLZnPDPfB_AGrVzvh4mPiMk2ktzxKPeJiaxXliCnbOBU4DydpZNLeXqVXK3B764WhtIquzVxuVD7haMz8gOVCLLOpTy-_h4RaRQFVzsGDdMyK_ijJcJYW9dxFn79RA-uOjr5jMP9VojxaP5pErUkA5GLpaojG0ThiozzwscyVXEQmXA8sSZxqNvCF0UWCCJe-dxJ9F6Cx7_IhTEit87ZGJt9ABsyljm6fhsfR7OLL_1OwGOlOspYslO6qGpTuseXSZ-UXIn-oLi9L66M3X_is8ttb7wJT1p7lX1oFOwprIVyCx7_hWKId9Me-rV6BoczdGoZrlMuMPS1fZMSxkzpWY16U1G4q2JoKjOii2cEbfKtrQXdhvl9yG4H1stFGXaBhRSHV1mXesGltdwUgQ-tFSILsSoyM4BhJx3tWvBy4tD4qlewyyRQjRdNAtViAO_6T64b5I67Xt7rRK7bSVzpXuUG8Lp_irOPQiqmDIubSvM0Q4MpR791AO-7kVq18N_-nt_Z3yt4OJlPz_X5yexsDx41x9iU9vYC1usfN2Ef7aDavmzVjYG-ZwX_A916GJA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EQfQgPjHWxwqelNDuZpNsvBW11EeLhxZ6W_aVk6bFpP_f2ebRKip4CYRsNsnMPr7JzHyD0BWgXGM6ofFdJVufEU38xITSV4YrRzmlLHEJzoNh1B-zp0k4qeqc5nW0e-2SLHMaHEtTVrRnJm2vJL6RRcikC00EawrW4A3meBJgQI9pt1mKScB5XbPVAYXarflTF183piXa_OYgXew7vV20UwFG3C01vIfWbLaPtldoBOFs0HCv5gfodghWJYaFQlsMX2XKmCwsM4MLUFzu_E05BqyKXb127LhF3qtkzEM06j2M7vp-VSHB1wHjha8sTXUaE5KagEU8sDSmmoRKhhomJjVpGlvHb89NohmYXtaAChIqJU2U1io4QuvZNLPHCNsopB2udGQoYUoRmVrSUYrS2AY8jaWHOrV0hK7Yw10Rizex5D12AhVwEE6ggnrourllVlJn_NW4VYtcVLMoFxzeCSwyxjx02VyF4e98GjKz03kuSBQDYknAcPTQTa2pZQ-_Pu_kX60v0ObrfU-8PA6fW2ir_K3swtBO0XrxMbdngEsKdb4Ye59hNNfl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Null+space+conditions+and+thresholds+for+rank+minimization&rft.jtitle=Mathematical+programming&rft.au=Recht%2C+Benjamin&rft.au=Xu%2C+Weiyu&rft.au=Hassibi%2C+Babak&rft.date=2011-03-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=127&rft.issue=1&rft.spage=175&rft.epage=202&rft_id=info:doi/10.1007%2Fs10107-010-0422-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |