Fuzzy Centroid and Genetic Algorithms: Solutions for Numeric and Categorical Mixed Data Clustering

Statistical data analysis in machine learning and data mining usually uses the clustering technique. However, data with both attributes or mixed data exists universally in real life. K-prototype is a well-known algorithm for clustering mixed data because of its effectiveness in handling large data....

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 179; pp. 677 - 684
Main Authors Nooraeni, Rani, Arsa, Muhamad Iqbal, Kusumo Projo, Nucke Widowati
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2021
Subjects
Online AccessGet full text
ISSN1877-0509
1877-0509
DOI10.1016/j.procs.2021.01.055

Cover

Abstract Statistical data analysis in machine learning and data mining usually uses the clustering technique. However, data with both attributes or mixed data exists universally in real life. K-prototype is a well-known algorithm for clustering mixed data because of its effectiveness in handling large data. However, practically, k-prototype has two main weaknesses, the use of mode as a cluster center for categorical attributes cannot accurately represent the objects, and the algorithm may stop at the local optimum solution because affected by random initial cluster prototypes. To overcome the first weakness, we can use fuzzy centroid, and for second weakness is to implement the genetic algorithm to search the global optimum solution. Our research combines the genetic algorithm and Fuzzy K-Prototype to accommodate these two weaknesses. We set up two multivariate data with high correlation and low correlation to see the robustness of the proposed algorithm. According to four value indexes of clustering result evaluation, Coefficient Varians Index, Partition Coefficient, Partition Entropy, and Purity, show that our proposed algorithm has a better result than K prototype. Based on the evaluation result, we conclude that our proposed algorithm can solve two weaknesses of the k-prototype algorithm.
AbstractList Statistical data analysis in machine learning and data mining usually uses the clustering technique. However, data with both attributes or mixed data exists universally in real life. K-prototype is a well-known algorithm for clustering mixed data because of its effectiveness in handling large data. However, practically, k-prototype has two main weaknesses, the use of mode as a cluster center for categorical attributes cannot accurately represent the objects, and the algorithm may stop at the local optimum solution because affected by random initial cluster prototypes. To overcome the first weakness, we can use fuzzy centroid, and for second weakness is to implement the genetic algorithm to search the global optimum solution. Our research combines the genetic algorithm and Fuzzy K-Prototype to accommodate these two weaknesses. We set up two multivariate data with high correlation and low correlation to see the robustness of the proposed algorithm. According to four value indexes of clustering result evaluation, Coefficient Varians Index, Partition Coefficient, Partition Entropy, and Purity, show that our proposed algorithm has a better result than K prototype. Based on the evaluation result, we conclude that our proposed algorithm can solve two weaknesses of the k-prototype algorithm.
Author Nooraeni, Rani
Arsa, Muhamad Iqbal
Kusumo Projo, Nucke Widowati
Author_xml – sequence: 1
  givenname: Rani
  surname: Nooraeni
  fullname: Nooraeni, Rani
  email: raninoor@stis.ac.id
  organization: STIS Polytechnic Statistic, Jakarta, Indonesia
– sequence: 2
  givenname: Muhamad Iqbal
  surname: Arsa
  fullname: Arsa, Muhamad Iqbal
  organization: BPS Statistic Indonesia, Indonesia
– sequence: 3
  givenname: Nucke Widowati
  surname: Kusumo Projo
  fullname: Kusumo Projo, Nucke Widowati
  organization: STIS Polytechnic Statistic, Jakarta, Indonesia
BookMark eNqNkM9OwzAMxiMEEmPsCbjkBTqSdP2HxGEqbCANOADnKHXTkalLpiQFtqcnZRwQB8CyZR--ny1_J-hQGy0ROqNkTAlNz1fjjTXgxowwOiYhk-QADWieZRFJSHH4bT5GI-dWJESc5wXNBqiadbvdFpdSe2tUjYWu8Vxq6RXgabs0VvmXtbvAj6btvDLa4cZYfN-tpQ2KXl0KL3sdiBbfqXdZ4yvhBS7bzvkg0stTdNSI1snRVx-i59n1U3kTLR7mt-V0EUE8yX1UJZRRBrKmtIKsqPJ6ArlkKdQ0VFNk0GQkhYoBYbGgpGYZJKwqRNYwgLSIh2iy39vpjdi-ibblG6vWwm45Jby3iq_4p1W8t4qTkEkSsGKPgTXOWdlwUF70v3orVPsHG_9g_3fxck_J4MarkpY7UFKH15WV4Hlt1K_8BwPzmv4
CitedBy_id crossref_primary_10_1136_bmjdrc_2023_003558
crossref_primary_10_1088_1742_6596_2199_1_012033
crossref_primary_10_1016_j_ptlrs_2022_07_001
crossref_primary_10_1016_j_cie_2024_110066
crossref_primary_10_1016_j_trc_2024_104491
Cites_doi 10.1016/j.eswa.2007.08.049
10.1109/ACCESS.2015.2477216
10.1016/j.knosys.2012.01.006
10.1007/s10462-011-9239-5
10.1007/978-3-540-30125-7_10
10.1016/j.eswa.2007.11.045
10.1016/j.patrec.2004.04.004
10.1016/S0167-8655(98)00083-X
10.1080/01969727208542910
10.1023/B:MACH.0000027785.44527.d6
10.1007/978-1-60327-194-3_2
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.procs.2021.01.055
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 684
ExternalDocumentID 10.1016/j.procs.2021.01.055
10_1016_j_procs_2021_01_055
S1877050921000648
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c348t-b51212ced11bc79b8d4c8e26cd16cdf97cf706cb2c023a10d27c52b9a7f2cc693
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Tue Aug 19 20:19:06 EDT 2025
Wed Oct 01 03:32:39 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
Wed May 17 00:10:07 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Data Mining
Clustering
Fuzzy K Prototype
Mixed Data
Genetic Algorithm
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-b51212ced11bc79b8d4c8e26cd16cdf97cf706cb2c023a10d27c52b9a7f2cc693
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050921000648
PageCount 8
ParticipantIDs unpaywall_primary_10_1016_j_procs_2021_01_055
crossref_citationtrail_10_1016_j_procs_2021_01_055
crossref_primary_10_1016_j_procs_2021_01_055
elsevier_sciencedirect_doi_10_1016_j_procs_2021_01_055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021
2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ahmad (bib0006) 2007; 63
Inza Ia,CB,ARA,BE,APL,&LJA. Machine Learning: An Indispensable Tool in Bioinformatics. In.: Bioinformatics Methods in Clinical Research; 2010. p. 593.
Huang Z. Clustering Large Data Sets with Mixed Numeric and Categorical Values; 1997.
Zhao (bib00020) 2004; 55
Ji J,PW,ZC,HX,&WZ. A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data. Knowledge-Based Systems.; 30: p. 129–135.
Dong (bib00013) 2018
Basak (bib00014) 1998; 19
Sumanthi, S., & Sivanandam, S. Introduction to Data Mining Principles, Studies in Computational Intelligence (SCI). In.; 2016. p. 1-23.
Zhao L,TY,&GM. Genetic Algorithm. In.; 1996. p. 716–719.
Zadeh (bib00015) 1972; 2
Kim (bib00010) 2004; 25
Lam (bib0008) 2015; 3
Li (bib0007) 2002; 14
Hsu (bib00018) 2008; 35
Wang L,JH,&GX. Image Segmentation by a Robust Clustering Algorithm. In.: Communication; 2004. p. 74-81.
Han, Kamber, Pei (bib0002) 2012
Nooraeni (bib00012) 2016
Dagher (bib00019) 2012; 38
Flasi’nski (bib0005) 2016
Gan (bib00016) 2009; 36
Nooraeni (10.1016/j.procs.2021.01.055_bib00012) 2016
Zadeh (10.1016/j.procs.2021.01.055_bib00015) 1972; 2
Basak (10.1016/j.procs.2021.01.055_bib00014) 1998; 19
Li (10.1016/j.procs.2021.01.055_bib0007) 2002; 14
10.1016/j.procs.2021.01.055_bib0009
Zhao (10.1016/j.procs.2021.01.055_bib00020) 2004; 55
10.1016/j.procs.2021.01.055_bib0004
10.1016/j.procs.2021.01.055_bib0003
Ahmad (10.1016/j.procs.2021.01.055_bib0006) 2007; 63
10.1016/j.procs.2021.01.055_bib0001
Flasi’nski (10.1016/j.procs.2021.01.055_bib0005) 2016
Lam (10.1016/j.procs.2021.01.055_bib0008) 2015; 3
Gan (10.1016/j.procs.2021.01.055_bib00016) 2009; 36
Hsu (10.1016/j.procs.2021.01.055_bib00018) 2008; 35
Han (10.1016/j.procs.2021.01.055_bib0002) 2012
10.1016/j.procs.2021.01.055_bib00017
Dagher (10.1016/j.procs.2021.01.055_bib00019) 2012; 38
Dong (10.1016/j.procs.2021.01.055_bib00013) 2018
Kim (10.1016/j.procs.2021.01.055_bib00010) 2004; 25
10.1016/j.procs.2021.01.055_bib00011
References_xml – volume: 14
  start-page: 673
  year: 2002
  end-page: 690
  ident: bib0007
  article-title: IEEE Transactions on Knowledge and Data Engineering
  publication-title: Unsupervised learning with mixed numeric and nominal data.
– reference: Huang Z. Clustering Large Data Sets with Mixed Numeric and Categorical Values; 1997.
– volume: 36
  start-page: 1615
  year: 2009
  end-page: 1620
  ident: bib00016
  article-title: A genetic fuzzy k-Modes algorithm for clustering categorical data
  publication-title: Expert Systems with Applications.
– start-page: 141
  year: 2016
  end-page: 156
  ident: bib0005
  article-title: Introduction to Artificial Intelligence
  publication-title: Pattern Recognition and Cluster Analysis
– reference: Inza Ia,CB,ARA,BE,APL,&LJA. Machine Learning: An Indispensable Tool in Bioinformatics. In.: Bioinformatics Methods in Clinical Research; 2010. p. 593.
– reference: Wang L,JH,&GX. Image Segmentation by a Robust Clustering Algorithm. In.: Communication; 2004. p. 74-81.
– reference: Zhao L,TY,&GM. Genetic Algorithm. In.; 1996. p. 716–719.
– volume: 25
  start-page: 1263
  year: 2004
  end-page: 1271
  ident: bib00010
  article-title: Fuzzy clustering of categorical data using fuzzy centroids
  publication-title: Pattern Recognition Letters.
– reference: Ji J,PW,ZC,HX,&WZ. A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data. Knowledge-Based Systems.; 30: p. 129–135.
– volume: 2
  start-page: 4
  year: 1972
  end-page: 34
  ident: bib00015
  article-title: A fuzzy-set-theoretic interpretation of linguistic hedges
  publication-title: Journal of Cybernetics
– volume: 35
  start-page: 1177
  year: 2008
  end-page: 1185
  ident: bib00018
  article-title: Incremental clustering of mixed data based on distance hierarchy
  publication-title: Expert Systems with Applications.
– year: 2018
  ident: bib00013
  article-title: An Adaptive Multiobjective Genetic Algorithm with Fuzzy c_means for Automatic Data Clustering
  publication-title: Hindawi
– volume: 19
  start-page: 997
  year: 1998
  end-page: 1006
  ident: bib00014
  article-title: Unsupervised feature selection using a neuro-fuzzy approach
  publication-title: Pattern Recognition Letters
– volume: 63
  start-page: 503
  year: 2007
  end-page: 527
  ident: bib0006
  article-title: Data and Knowledge Engineering
  publication-title: A k-mean clustering algorithm for mixed numeric and categorical data.
– volume: 3
  start-page: 1605
  year: 2015
  end-page: 1616
  ident: bib0008
  article-title: Clustering Data of Mixed Categorical and Numerical Type With Unsupervised Feature Learning
  publication-title: IEEE Access.
– volume: 38
  start-page: 25
  year: 2012
  end-page: 39
  ident: bib00019
  article-title: Complex fuzzy c-means algorithm
  publication-title: Artificial Intelligence Review
– year: 2012
  ident: bib0002
  publication-title: Data Mining: Concepts and Techniques
– start-page: 81
  year: 2016
  end-page: 97
  ident: bib00012
  article-title: Cluster Method Using a Combination of Cluster Kprototype Algorithm and Genetic Algorithm for Mixed Data
  publication-title: Jurnal Aplikasi Statistika & Komputasi Statistik
– reference: Sumanthi, S., & Sivanandam, S. Introduction to Data Mining Principles, Studies in Computational Intelligence (SCI). In.; 2016. p. 1-23.
– volume: 55
  start-page: 311
  year: 2004
  end-page: 331
  ident: bib00020
  article-title: Criterion functions for document clustering: Experiments and analysis
  publication-title: Machine Learning.
– year: 2018
  ident: 10.1016/j.procs.2021.01.055_bib00013
  article-title: An Adaptive Multiobjective Genetic Algorithm with Fuzzy c_means for Automatic Data Clustering
  publication-title: Hindawi
– year: 2012
  ident: 10.1016/j.procs.2021.01.055_bib0002
– volume: 35
  start-page: 1177
  issue: 3
  year: 2008
  ident: 10.1016/j.procs.2021.01.055_bib00018
  article-title: Incremental clustering of mixed data based on distance hierarchy
  publication-title: Expert Systems with Applications.
  doi: 10.1016/j.eswa.2007.08.049
– volume: 3
  start-page: 1605
  issue: c
  year: 2015
  ident: 10.1016/j.procs.2021.01.055_bib0008
  article-title: Clustering Data of Mixed Categorical and Numerical Type With Unsupervised Feature Learning
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2015.2477216
– ident: 10.1016/j.procs.2021.01.055_bib00011
  doi: 10.1016/j.knosys.2012.01.006
– volume: 38
  start-page: 25
  issue: 1
  year: 2012
  ident: 10.1016/j.procs.2021.01.055_bib00019
  article-title: Complex fuzzy c-means algorithm
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-011-9239-5
– ident: 10.1016/j.procs.2021.01.055_bib0001
– ident: 10.1016/j.procs.2021.01.055_bib0003
  doi: 10.1007/978-3-540-30125-7_10
– start-page: 81
  year: 2016
  ident: 10.1016/j.procs.2021.01.055_bib00012
  article-title: Cluster Method Using a Combination of Cluster Kprototype Algorithm and Genetic Algorithm for Mixed Data
  publication-title: Jurnal Aplikasi Statistika & Komputasi Statistik
– ident: 10.1016/j.procs.2021.01.055_bib0009
– volume: 14
  start-page: 673
  issue: 4
  year: 2002
  ident: 10.1016/j.procs.2021.01.055_bib0007
  article-title: IEEE Transactions on Knowledge and Data Engineering
  publication-title: Unsupervised learning with mixed numeric and nominal data.
– volume: 36
  start-page: 1615
  year: 2009
  ident: 10.1016/j.procs.2021.01.055_bib00016
  article-title: A genetic fuzzy k-Modes algorithm for clustering categorical data
  publication-title: Expert Systems with Applications.
  doi: 10.1016/j.eswa.2007.11.045
– volume: 25
  start-page: 1263
  issue: 11
  year: 2004
  ident: 10.1016/j.procs.2021.01.055_bib00010
  article-title: Fuzzy clustering of categorical data using fuzzy centroids
  publication-title: Pattern Recognition Letters.
  doi: 10.1016/j.patrec.2004.04.004
– volume: 63
  start-page: 503
  issue: 2
  year: 2007
  ident: 10.1016/j.procs.2021.01.055_bib0006
  article-title: Data and Knowledge Engineering
  publication-title: A k-mean clustering algorithm for mixed numeric and categorical data.
– volume: 19
  start-page: 997
  year: 1998
  ident: 10.1016/j.procs.2021.01.055_bib00014
  article-title: Unsupervised feature selection using a neuro-fuzzy approach
  publication-title: Pattern Recognition Letters
  doi: 10.1016/S0167-8655(98)00083-X
– volume: 2
  start-page: 4
  issue: 3
  year: 1972
  ident: 10.1016/j.procs.2021.01.055_bib00015
  article-title: A fuzzy-set-theoretic interpretation of linguistic hedges
  publication-title: Journal of Cybernetics
  doi: 10.1080/01969727208542910
– volume: 55
  start-page: 311
  issue: 3
  year: 2004
  ident: 10.1016/j.procs.2021.01.055_bib00020
  article-title: Criterion functions for document clustering: Experiments and analysis
  publication-title: Machine Learning.
  doi: 10.1023/B:MACH.0000027785.44527.d6
– start-page: 141
  year: 2016
  ident: 10.1016/j.procs.2021.01.055_bib0005
  article-title: Introduction to Artificial Intelligence
  publication-title: Pattern Recognition and Cluster Analysis
– ident: 10.1016/j.procs.2021.01.055_bib00017
– ident: 10.1016/j.procs.2021.01.055_bib0004
  doi: 10.1007/978-1-60327-194-3_2
SSID ssj0000388917
Score 2.2572799
Snippet Statistical data analysis in machine learning and data mining usually uses the clustering technique. However, data with both attributes or mixed data exists...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 677
SubjectTerms Clustering
Data Mining
Fuzzy K Prototype
Genetic Algorithm
Mixed Data
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT8IwFMcbhYMn8WfEqOnBoyNb122dN4ISYgLxIAmelv6aonMQ2KLw19t2G1GjBJPt1rctfe3etz_epwBcEkyYG0uss3GQhYkas1LJmBqquEIGSpJQkwvTH_i9Ib4beaOSs61zYb6t35t9WPpHrrnayDF8Tc_bBnXfU8K7BurDwX37UQ-pSBBYmmRScYV-t_wr9uzk6ZQu3mmSfIkt3UaRtD03SEK9peS1lWesxZc_gI0bfvYe2C01JmwXjWIfbMn0ADSq8xtg2Z0PAevmy-UCmgneyVhAmgqoMdTKDLaTp8lsnD2_za_hauoMKoULB7lZ5DGlO5ozUVBGYH_8IQW8oRmFnSTX_AUVFY_AsHv70OlZ5ZkLFncxySymBICDuBSOw3gQMiIwJxL5XDjqjkNNMbJ9zhBXwZ46tkAB9xBTLo0R537oHoNaOknlCYC-7UqBY6weJ7BkcYgDpvQVdTmhoSPtJkCVNyJeAsn1uRhJVO08e4lMLUa6FiNbXZ7XBFcro2nB41hf3K_cHJWSopAKkfLYekNr1Sg2edHpP8ufgVo2y-W5UjQZuyhb8idIWvUY
  priority: 102
  providerName: Unpaywall
Title Fuzzy Centroid and Genetic Algorithms: Solutions for Numeric and Categorical Mixed Data Clustering
URI https://dx.doi.org/10.1016/j.procs.2021.01.055
https://doi.org/10.1016/j.procs.2021.01.055
UnpaywallVersion publishedVersion
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: KQ8
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Journal
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: IXB
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: AKRWK
  dateStart: 20100501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOil5dGqlId84Ei0sePNo7dlYYVArFDLiu0p8ittUMiuaCIev54ZJ1mBhBBCSg6OPHE0dvyNx55vCNmPRayCzAqMxuGeiGHNKq1SsFQJjI3AJJEuFuZ8HJ5MxOm0P10iwy4WBo9VtnN_M6e72bp90mu12Zvnee83i6MI2Us4c8CKAb8BNIZBfNPDhZ8F2U4Sl3gX63so0JEPuWNeiBNI282Zo-_EkL_XAWq1Lufy4U4WxTMAGq2Rz63lSAfNx62TJVtukC9dVgba_qSbRI3qx8cH6ty2s9xQWRqK5NIgRgfF39ltXv27-f-TLhxiFOxWOq7d1o2rPUT2iIY7hJ7n99bQI1lJOixqZFUArPtKJqPjy-GJ12ZS8DSopPIUwDrjoFLGlI4SFRuhY8tDbRjcWYLcRH6oFdcA4ZL5hke6zxV0VMa1DpPgG1kuZ6X9TmjoB9aITMDrjLAqS0SkwGqSgY5lwqy_RXinvlS3NOOY7aJIu_Nk16nTeYo6T324-v0tcrAQmjcsG29XD7t-SV8MlhRw4G1Bb9GL72nox0cb2iafsNT4anbIcnVb212wXiq1R1YGZ7-uzvbcMIXSZHwx-PMEf9vxKA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUoHOiF0tKqtIX60CPRxo6TONzotqstZfdSkPYW-SsQlGZXkKjAr--Mk6xaqUKoUnJJPHE0dvzGk5k3hHySQuqocAKzcXggJOxZldMatiqRdSmYJMrnwszmyfRCnC7ixQYZD7kwGFbZr_3dmu5X6_7KqNfmaFWWox9Mpimyl3DmgVU-I1siBusEs_gWn9eOFqQ7yXzlXRQIUGJgH_JxXggUyNvNmefvxJy_fyPUdluv1P0vVVV_INBkl-z0piM96d7uJdlw9SvyYijLQPuvdI_oSfvwcE-933ZZWqpqS5FdGsToSXW5vCmbq5-3x3TtEaNguNJ56__d-NZjpI_oyEPorLxzln5RjaLjqkVaBQC71-Ri8vV8PA36UgqBiYRsAg24zjjolDFt0kxLK4x0PDGWwVlkSE4UJkZzAxiuWGh5amKuYaQKbkySRW_IZr2s3VtCkzByVhQCHmeF00UmUg1mk4qMVBlz4T7hg_py0_OMY7mLKh8Cyq5zr_McdZ6HcMTxPjlaC606mo3HmyfDuOR_zZYcgOBxwWA9ik_p6N3_dvSRbE_PZ2f52bf59_fkOd7pHDcfyGZz07oDMGUafein6m-Us_D7
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT8IwFMcbhYMn8WfEqOnBoyNb122dN4ISYgLxIAmelv6aonMQ2KLw19t2G1GjBJPt1rctfe3etz_epwBcEkyYG0uss3GQhYkas1LJmBqquEIGSpJQkwvTH_i9Ib4beaOSs61zYb6t35t9WPpHrrnayDF8Tc_bBnXfU8K7BurDwX37UQ-pSBBYmmRScYV-t_wr9uzk6ZQu3mmSfIkt3UaRtD03SEK9peS1lWesxZc_gI0bfvYe2C01JmwXjWIfbMn0ADSq8xtg2Z0PAevmy-UCmgneyVhAmgqoMdTKDLaTp8lsnD2_za_hauoMKoULB7lZ5DGlO5ozUVBGYH_8IQW8oRmFnSTX_AUVFY_AsHv70OlZ5ZkLFncxySymBICDuBSOw3gQMiIwJxL5XDjqjkNNMbJ9zhBXwZ46tkAB9xBTLo0R537oHoNaOknlCYC-7UqBY6weJ7BkcYgDpvQVdTmhoSPtJkCVNyJeAsn1uRhJVO08e4lMLUa6FiNbXZ7XBFcro2nB41hf3K_cHJWSopAKkfLYekNr1Sg2edHpP8ufgVo2y-W5UjQZuyhb8idIWvUY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Centroid+and+Genetic+Algorithms%3A+Solutions+for+Numeric+and+Categorical+Mixed+Data+Clustering&rft.jtitle=Procedia+computer+science&rft.au=Nooraeni%2C+Rani&rft.au=Arsa%2C+Muhamad+Iqbal&rft.au=Kusumo+Projo%2C+Nucke+Widowati&rft.date=2021&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=179&rft.spage=677&rft.epage=684&rft_id=info:doi/10.1016%2Fj.procs.2021.01.055&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2021_01_055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon