Fuzzy Centroid and Genetic Algorithms: Solutions for Numeric and Categorical Mixed Data Clustering
Statistical data analysis in machine learning and data mining usually uses the clustering technique. However, data with both attributes or mixed data exists universally in real life. K-prototype is a well-known algorithm for clustering mixed data because of its effectiveness in handling large data....
        Saved in:
      
    
          | Published in | Procedia computer science Vol. 179; pp. 677 - 684 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1877-0509 1877-0509  | 
| DOI | 10.1016/j.procs.2021.01.055 | 
Cover
| Abstract | Statistical data analysis in machine learning and data mining usually uses the clustering technique. However, data with both attributes or mixed data exists universally in real life. K-prototype is a well-known algorithm for clustering mixed data because of its effectiveness in handling large data. However, practically, k-prototype has two main weaknesses, the use of mode as a cluster center for categorical attributes cannot accurately represent the objects, and the algorithm may stop at the local optimum solution because affected by random initial cluster prototypes. To overcome the first weakness, we can use fuzzy centroid, and for second weakness is to implement the genetic algorithm to search the global optimum solution. Our research combines the genetic algorithm and Fuzzy K-Prototype to accommodate these two weaknesses. We set up two multivariate data with high correlation and low correlation to see the robustness of the proposed algorithm. According to four value indexes of clustering result evaluation, Coefficient Varians Index, Partition Coefficient, Partition Entropy, and Purity, show that our proposed algorithm has a better result than K prototype. Based on the evaluation result, we conclude that our proposed algorithm can solve two weaknesses of the k-prototype algorithm. | 
    
|---|---|
| AbstractList | Statistical data analysis in machine learning and data mining usually uses the clustering technique. However, data with both attributes or mixed data exists universally in real life. K-prototype is a well-known algorithm for clustering mixed data because of its effectiveness in handling large data. However, practically, k-prototype has two main weaknesses, the use of mode as a cluster center for categorical attributes cannot accurately represent the objects, and the algorithm may stop at the local optimum solution because affected by random initial cluster prototypes. To overcome the first weakness, we can use fuzzy centroid, and for second weakness is to implement the genetic algorithm to search the global optimum solution. Our research combines the genetic algorithm and Fuzzy K-Prototype to accommodate these two weaknesses. We set up two multivariate data with high correlation and low correlation to see the robustness of the proposed algorithm. According to four value indexes of clustering result evaluation, Coefficient Varians Index, Partition Coefficient, Partition Entropy, and Purity, show that our proposed algorithm has a better result than K prototype. Based on the evaluation result, we conclude that our proposed algorithm can solve two weaknesses of the k-prototype algorithm. | 
    
| Author | Nooraeni, Rani Arsa, Muhamad Iqbal Kusumo Projo, Nucke Widowati  | 
    
| Author_xml | – sequence: 1 givenname: Rani surname: Nooraeni fullname: Nooraeni, Rani email: raninoor@stis.ac.id organization: STIS Polytechnic Statistic, Jakarta, Indonesia – sequence: 2 givenname: Muhamad Iqbal surname: Arsa fullname: Arsa, Muhamad Iqbal organization: BPS Statistic Indonesia, Indonesia – sequence: 3 givenname: Nucke Widowati surname: Kusumo Projo fullname: Kusumo Projo, Nucke Widowati organization: STIS Polytechnic Statistic, Jakarta, Indonesia  | 
    
| BookMark | eNqNkM9OwzAMxiMEEmPsCbjkBTqSdP2HxGEqbCANOADnKHXTkalLpiQFtqcnZRwQB8CyZR--ny1_J-hQGy0ROqNkTAlNz1fjjTXgxowwOiYhk-QADWieZRFJSHH4bT5GI-dWJESc5wXNBqiadbvdFpdSe2tUjYWu8Vxq6RXgabs0VvmXtbvAj6btvDLa4cZYfN-tpQ2KXl0KL3sdiBbfqXdZ4yvhBS7bzvkg0stTdNSI1snRVx-i59n1U3kTLR7mt-V0EUE8yX1UJZRRBrKmtIKsqPJ6ArlkKdQ0VFNk0GQkhYoBYbGgpGYZJKwqRNYwgLSIh2iy39vpjdi-ibblG6vWwm45Jby3iq_4p1W8t4qTkEkSsGKPgTXOWdlwUF70v3orVPsHG_9g_3fxck_J4MarkpY7UFKH15WV4Hlt1K_8BwPzmv4 | 
    
| CitedBy_id | crossref_primary_10_1136_bmjdrc_2023_003558 crossref_primary_10_1088_1742_6596_2199_1_012033 crossref_primary_10_1016_j_ptlrs_2022_07_001 crossref_primary_10_1016_j_cie_2024_110066 crossref_primary_10_1016_j_trc_2024_104491  | 
    
| Cites_doi | 10.1016/j.eswa.2007.08.049 10.1109/ACCESS.2015.2477216 10.1016/j.knosys.2012.01.006 10.1007/s10462-011-9239-5 10.1007/978-3-540-30125-7_10 10.1016/j.eswa.2007.11.045 10.1016/j.patrec.2004.04.004 10.1016/S0167-8655(98)00083-X 10.1080/01969727208542910 10.1023/B:MACH.0000027785.44527.d6 10.1007/978-1-60327-194-3_2  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 | 
    
| Copyright_xml | – notice: 2020 | 
    
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1016/j.procs.2021.01.055 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1877-0509 | 
    
| EndPage | 684 | 
    
| ExternalDocumentID | 10.1016/j.procs.2021.01.055 10_1016_j_procs_2021_01_055 S1877050921000648  | 
    
| GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION ~HD ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c348t-b51212ced11bc79b8d4c8e26cd16cdf97cf706cb2c023a10d27c52b9a7f2cc693 | 
    
| IEDL.DBID | IXB | 
    
| ISSN | 1877-0509 | 
    
| IngestDate | Tue Aug 19 20:19:06 EDT 2025 Wed Oct 01 03:32:39 EDT 2025 Thu Apr 24 23:07:28 EDT 2025 Wed May 17 00:10:07 EDT 2023  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Data Mining Clustering Fuzzy K Prototype Mixed Data Genetic Algorithm  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c348t-b51212ced11bc79b8d4c8e26cd16cdf97cf706cb2c023a10d27c52b9a7f2cc693 | 
    
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050921000648 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_procs_2021_01_055 crossref_citationtrail_10_1016_j_procs_2021_01_055 crossref_primary_10_1016_j_procs_2021_01_055 elsevier_sciencedirect_doi_10_1016_j_procs_2021_01_055  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021 2021-00-00  | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – year: 2021 text: 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Procedia computer science | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Ahmad (bib0006) 2007; 63 Inza Ia,CB,ARA,BE,APL,&LJA. Machine Learning: An Indispensable Tool in Bioinformatics. In.: Bioinformatics Methods in Clinical Research; 2010. p. 593. Huang Z. Clustering Large Data Sets with Mixed Numeric and Categorical Values; 1997. Zhao (bib00020) 2004; 55 Ji J,PW,ZC,HX,&WZ. A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data. Knowledge-Based Systems.; 30: p. 129–135. Dong (bib00013) 2018 Basak (bib00014) 1998; 19 Sumanthi, S., & Sivanandam, S. Introduction to Data Mining Principles, Studies in Computational Intelligence (SCI). In.; 2016. p. 1-23. Zhao L,TY,&GM. Genetic Algorithm. In.; 1996. p. 716–719. Zadeh (bib00015) 1972; 2 Kim (bib00010) 2004; 25 Lam (bib0008) 2015; 3 Li (bib0007) 2002; 14 Hsu (bib00018) 2008; 35 Wang L,JH,&GX. Image Segmentation by a Robust Clustering Algorithm. In.: Communication; 2004. p. 74-81. Han, Kamber, Pei (bib0002) 2012 Nooraeni (bib00012) 2016 Dagher (bib00019) 2012; 38 Flasi’nski (bib0005) 2016 Gan (bib00016) 2009; 36 Nooraeni (10.1016/j.procs.2021.01.055_bib00012) 2016 Zadeh (10.1016/j.procs.2021.01.055_bib00015) 1972; 2 Basak (10.1016/j.procs.2021.01.055_bib00014) 1998; 19 Li (10.1016/j.procs.2021.01.055_bib0007) 2002; 14 10.1016/j.procs.2021.01.055_bib0009 Zhao (10.1016/j.procs.2021.01.055_bib00020) 2004; 55 10.1016/j.procs.2021.01.055_bib0004 10.1016/j.procs.2021.01.055_bib0003 Ahmad (10.1016/j.procs.2021.01.055_bib0006) 2007; 63 10.1016/j.procs.2021.01.055_bib0001 Flasi’nski (10.1016/j.procs.2021.01.055_bib0005) 2016 Lam (10.1016/j.procs.2021.01.055_bib0008) 2015; 3 Gan (10.1016/j.procs.2021.01.055_bib00016) 2009; 36 Hsu (10.1016/j.procs.2021.01.055_bib00018) 2008; 35 Han (10.1016/j.procs.2021.01.055_bib0002) 2012 10.1016/j.procs.2021.01.055_bib00017 Dagher (10.1016/j.procs.2021.01.055_bib00019) 2012; 38 Dong (10.1016/j.procs.2021.01.055_bib00013) 2018 Kim (10.1016/j.procs.2021.01.055_bib00010) 2004; 25 10.1016/j.procs.2021.01.055_bib00011  | 
    
| References_xml | – volume: 14 start-page: 673 year: 2002 end-page: 690 ident: bib0007 article-title: IEEE Transactions on Knowledge and Data Engineering publication-title: Unsupervised learning with mixed numeric and nominal data. – reference: Huang Z. Clustering Large Data Sets with Mixed Numeric and Categorical Values; 1997. – volume: 36 start-page: 1615 year: 2009 end-page: 1620 ident: bib00016 article-title: A genetic fuzzy k-Modes algorithm for clustering categorical data publication-title: Expert Systems with Applications. – start-page: 141 year: 2016 end-page: 156 ident: bib0005 article-title: Introduction to Artificial Intelligence publication-title: Pattern Recognition and Cluster Analysis – reference: Inza Ia,CB,ARA,BE,APL,&LJA. Machine Learning: An Indispensable Tool in Bioinformatics. In.: Bioinformatics Methods in Clinical Research; 2010. p. 593. – reference: Wang L,JH,&GX. Image Segmentation by a Robust Clustering Algorithm. In.: Communication; 2004. p. 74-81. – reference: Zhao L,TY,&GM. Genetic Algorithm. In.; 1996. p. 716–719. – volume: 25 start-page: 1263 year: 2004 end-page: 1271 ident: bib00010 article-title: Fuzzy clustering of categorical data using fuzzy centroids publication-title: Pattern Recognition Letters. – reference: Ji J,PW,ZC,HX,&WZ. A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data. Knowledge-Based Systems.; 30: p. 129–135. – volume: 2 start-page: 4 year: 1972 end-page: 34 ident: bib00015 article-title: A fuzzy-set-theoretic interpretation of linguistic hedges publication-title: Journal of Cybernetics – volume: 35 start-page: 1177 year: 2008 end-page: 1185 ident: bib00018 article-title: Incremental clustering of mixed data based on distance hierarchy publication-title: Expert Systems with Applications. – year: 2018 ident: bib00013 article-title: An Adaptive Multiobjective Genetic Algorithm with Fuzzy c_means for Automatic Data Clustering publication-title: Hindawi – volume: 19 start-page: 997 year: 1998 end-page: 1006 ident: bib00014 article-title: Unsupervised feature selection using a neuro-fuzzy approach publication-title: Pattern Recognition Letters – volume: 63 start-page: 503 year: 2007 end-page: 527 ident: bib0006 article-title: Data and Knowledge Engineering publication-title: A k-mean clustering algorithm for mixed numeric and categorical data. – volume: 3 start-page: 1605 year: 2015 end-page: 1616 ident: bib0008 article-title: Clustering Data of Mixed Categorical and Numerical Type With Unsupervised Feature Learning publication-title: IEEE Access. – volume: 38 start-page: 25 year: 2012 end-page: 39 ident: bib00019 article-title: Complex fuzzy c-means algorithm publication-title: Artificial Intelligence Review – year: 2012 ident: bib0002 publication-title: Data Mining: Concepts and Techniques – start-page: 81 year: 2016 end-page: 97 ident: bib00012 article-title: Cluster Method Using a Combination of Cluster Kprototype Algorithm and Genetic Algorithm for Mixed Data publication-title: Jurnal Aplikasi Statistika & Komputasi Statistik – reference: Sumanthi, S., & Sivanandam, S. Introduction to Data Mining Principles, Studies in Computational Intelligence (SCI). In.; 2016. p. 1-23. – volume: 55 start-page: 311 year: 2004 end-page: 331 ident: bib00020 article-title: Criterion functions for document clustering: Experiments and analysis publication-title: Machine Learning. – year: 2018 ident: 10.1016/j.procs.2021.01.055_bib00013 article-title: An Adaptive Multiobjective Genetic Algorithm with Fuzzy c_means for Automatic Data Clustering publication-title: Hindawi – year: 2012 ident: 10.1016/j.procs.2021.01.055_bib0002 – volume: 35 start-page: 1177 issue: 3 year: 2008 ident: 10.1016/j.procs.2021.01.055_bib00018 article-title: Incremental clustering of mixed data based on distance hierarchy publication-title: Expert Systems with Applications. doi: 10.1016/j.eswa.2007.08.049 – volume: 3 start-page: 1605 issue: c year: 2015 ident: 10.1016/j.procs.2021.01.055_bib0008 article-title: Clustering Data of Mixed Categorical and Numerical Type With Unsupervised Feature Learning publication-title: IEEE Access. doi: 10.1109/ACCESS.2015.2477216 – ident: 10.1016/j.procs.2021.01.055_bib00011 doi: 10.1016/j.knosys.2012.01.006 – volume: 38 start-page: 25 issue: 1 year: 2012 ident: 10.1016/j.procs.2021.01.055_bib00019 article-title: Complex fuzzy c-means algorithm publication-title: Artificial Intelligence Review doi: 10.1007/s10462-011-9239-5 – ident: 10.1016/j.procs.2021.01.055_bib0001 – ident: 10.1016/j.procs.2021.01.055_bib0003 doi: 10.1007/978-3-540-30125-7_10 – start-page: 81 year: 2016 ident: 10.1016/j.procs.2021.01.055_bib00012 article-title: Cluster Method Using a Combination of Cluster Kprototype Algorithm and Genetic Algorithm for Mixed Data publication-title: Jurnal Aplikasi Statistika & Komputasi Statistik – ident: 10.1016/j.procs.2021.01.055_bib0009 – volume: 14 start-page: 673 issue: 4 year: 2002 ident: 10.1016/j.procs.2021.01.055_bib0007 article-title: IEEE Transactions on Knowledge and Data Engineering publication-title: Unsupervised learning with mixed numeric and nominal data. – volume: 36 start-page: 1615 year: 2009 ident: 10.1016/j.procs.2021.01.055_bib00016 article-title: A genetic fuzzy k-Modes algorithm for clustering categorical data publication-title: Expert Systems with Applications. doi: 10.1016/j.eswa.2007.11.045 – volume: 25 start-page: 1263 issue: 11 year: 2004 ident: 10.1016/j.procs.2021.01.055_bib00010 article-title: Fuzzy clustering of categorical data using fuzzy centroids publication-title: Pattern Recognition Letters. doi: 10.1016/j.patrec.2004.04.004 – volume: 63 start-page: 503 issue: 2 year: 2007 ident: 10.1016/j.procs.2021.01.055_bib0006 article-title: Data and Knowledge Engineering publication-title: A k-mean clustering algorithm for mixed numeric and categorical data. – volume: 19 start-page: 997 year: 1998 ident: 10.1016/j.procs.2021.01.055_bib00014 article-title: Unsupervised feature selection using a neuro-fuzzy approach publication-title: Pattern Recognition Letters doi: 10.1016/S0167-8655(98)00083-X – volume: 2 start-page: 4 issue: 3 year: 1972 ident: 10.1016/j.procs.2021.01.055_bib00015 article-title: A fuzzy-set-theoretic interpretation of linguistic hedges publication-title: Journal of Cybernetics doi: 10.1080/01969727208542910 – volume: 55 start-page: 311 issue: 3 year: 2004 ident: 10.1016/j.procs.2021.01.055_bib00020 article-title: Criterion functions for document clustering: Experiments and analysis publication-title: Machine Learning. doi: 10.1023/B:MACH.0000027785.44527.d6 – start-page: 141 year: 2016 ident: 10.1016/j.procs.2021.01.055_bib0005 article-title: Introduction to Artificial Intelligence publication-title: Pattern Recognition and Cluster Analysis – ident: 10.1016/j.procs.2021.01.055_bib00017 – ident: 10.1016/j.procs.2021.01.055_bib0004 doi: 10.1007/978-1-60327-194-3_2  | 
    
| SSID | ssj0000388917 | 
    
| Score | 2.2572799 | 
    
| Snippet | Statistical data analysis in machine learning and data mining usually uses the clustering technique. However, data with both attributes or mixed data exists... | 
    
| SourceID | unpaywall crossref elsevier  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 677 | 
    
| SubjectTerms | Clustering Data Mining Fuzzy K Prototype Genetic Algorithm Mixed Data  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT8IwFMcbhYMn8WfEqOnBoyNb122dN4ISYgLxIAmelv6aonMQ2KLw19t2G1GjBJPt1rctfe3etz_epwBcEkyYG0uss3GQhYkas1LJmBqquEIGSpJQkwvTH_i9Ib4beaOSs61zYb6t35t9WPpHrrnayDF8Tc_bBnXfU8K7BurDwX37UQ-pSBBYmmRScYV-t_wr9uzk6ZQu3mmSfIkt3UaRtD03SEK9peS1lWesxZc_gI0bfvYe2C01JmwXjWIfbMn0ADSq8xtg2Z0PAevmy-UCmgneyVhAmgqoMdTKDLaTp8lsnD2_za_hauoMKoULB7lZ5DGlO5ozUVBGYH_8IQW8oRmFnSTX_AUVFY_AsHv70OlZ5ZkLFncxySymBICDuBSOw3gQMiIwJxL5XDjqjkNNMbJ9zhBXwZ46tkAB9xBTLo0R537oHoNaOknlCYC-7UqBY6weJ7BkcYgDpvQVdTmhoSPtJkCVNyJeAsn1uRhJVO08e4lMLUa6FiNbXZ7XBFcro2nB41hf3K_cHJWSopAKkfLYekNr1Sg2edHpP8ufgVo2y-W5UjQZuyhb8idIWvUY priority: 102 providerName: Unpaywall  | 
    
| Title | Fuzzy Centroid and Genetic Algorithms: Solutions for Numeric and Categorical Mixed Data Clustering | 
    
| URI | https://dx.doi.org/10.1016/j.procs.2021.01.055 https://doi.org/10.1016/j.procs.2021.01.055  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 179 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: KQ8 dateStart: 20100501 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: ScienceDirect Free and Delayed Access Journal customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: IXB dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: AKRWK dateStart: 20100501 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOil5dGqlId84Ei0sePNo7dlYYVArFDLiu0p8ittUMiuaCIev54ZJ1mBhBBCSg6OPHE0dvyNx55vCNmPRayCzAqMxuGeiGHNKq1SsFQJjI3AJJEuFuZ8HJ5MxOm0P10iwy4WBo9VtnN_M6e72bp90mu12Zvnee83i6MI2Us4c8CKAb8BNIZBfNPDhZ8F2U4Sl3gX63so0JEPuWNeiBNI282Zo-_EkL_XAWq1Lufy4U4WxTMAGq2Rz63lSAfNx62TJVtukC9dVgba_qSbRI3qx8cH6ty2s9xQWRqK5NIgRgfF39ltXv27-f-TLhxiFOxWOq7d1o2rPUT2iIY7hJ7n99bQI1lJOixqZFUArPtKJqPjy-GJ12ZS8DSopPIUwDrjoFLGlI4SFRuhY8tDbRjcWYLcRH6oFdcA4ZL5hke6zxV0VMa1DpPgG1kuZ6X9TmjoB9aITMDrjLAqS0SkwGqSgY5lwqy_RXinvlS3NOOY7aJIu_Nk16nTeYo6T324-v0tcrAQmjcsG29XD7t-SV8MlhRw4G1Bb9GL72nox0cb2iafsNT4anbIcnVb212wXiq1R1YGZ7-uzvbcMIXSZHwx-PMEf9vxKA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUoHOiF0tKqtIX60CPRxo6TONzotqstZfdSkPYW-SsQlGZXkKjAr--Mk6xaqUKoUnJJPHE0dvzGk5k3hHySQuqocAKzcXggJOxZldMatiqRdSmYJMrnwszmyfRCnC7ixQYZD7kwGFbZr_3dmu5X6_7KqNfmaFWWox9Mpimyl3DmgVU-I1siBusEs_gWn9eOFqQ7yXzlXRQIUGJgH_JxXggUyNvNmefvxJy_fyPUdluv1P0vVVV_INBkl-z0piM96d7uJdlw9SvyYijLQPuvdI_oSfvwcE-933ZZWqpqS5FdGsToSXW5vCmbq5-3x3TtEaNguNJ56__d-NZjpI_oyEPorLxzln5RjaLjqkVaBQC71-Ri8vV8PA36UgqBiYRsAg24zjjolDFt0kxLK4x0PDGWwVlkSE4UJkZzAxiuWGh5amKuYaQKbkySRW_IZr2s3VtCkzByVhQCHmeF00UmUg1mk4qMVBlz4T7hg_py0_OMY7mLKh8Cyq5zr_McdZ6HcMTxPjlaC606mo3HmyfDuOR_zZYcgOBxwWA9ik_p6N3_dvSRbE_PZ2f52bf59_fkOd7pHDcfyGZz07oDMGUafein6m-Us_D7 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT8IwFMcbhYMn8WfEqOnBoyNb122dN4ISYgLxIAmelv6aonMQ2KLw19t2G1GjBJPt1rctfe3etz_epwBcEkyYG0uss3GQhYkas1LJmBqquEIGSpJQkwvTH_i9Ib4beaOSs61zYb6t35t9WPpHrrnayDF8Tc_bBnXfU8K7BurDwX37UQ-pSBBYmmRScYV-t_wr9uzk6ZQu3mmSfIkt3UaRtD03SEK9peS1lWesxZc_gI0bfvYe2C01JmwXjWIfbMn0ADSq8xtg2Z0PAevmy-UCmgneyVhAmgqoMdTKDLaTp8lsnD2_za_hauoMKoULB7lZ5DGlO5ozUVBGYH_8IQW8oRmFnSTX_AUVFY_AsHv70OlZ5ZkLFncxySymBICDuBSOw3gQMiIwJxL5XDjqjkNNMbJ9zhBXwZ46tkAB9xBTLo0R537oHoNaOknlCYC-7UqBY6weJ7BkcYgDpvQVdTmhoSPtJkCVNyJeAsn1uRhJVO08e4lMLUa6FiNbXZ7XBFcro2nB41hf3K_cHJWSopAKkfLYekNr1Sg2edHpP8ufgVo2y-W5UjQZuyhb8idIWvUY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Centroid+and+Genetic+Algorithms%3A+Solutions+for+Numeric+and+Categorical+Mixed+Data+Clustering&rft.jtitle=Procedia+computer+science&rft.au=Nooraeni%2C+Rani&rft.au=Arsa%2C+Muhamad+Iqbal&rft.au=Kusumo+Projo%2C+Nucke+Widowati&rft.date=2021&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=179&rft.spage=677&rft.epage=684&rft_id=info:doi/10.1016%2Fj.procs.2021.01.055&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2021_01_055 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |